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Abstract

In this paper we consider thanline ftp problemThe goal is to service a sequence of file transfer
requests given bandwidth constraints of the underlying communication network. The main result
of the paper is a technique that leads to algorithms that optimize several natural metrics, such as
max-stretch, total flow time, max flow time, and total completion time. In particular, we show how
to achieve optimum total flow time and optimum max-stretch if we increase the capacity of the
underlying network by a logarithmic factor. We show that the resource augmentation is necessary by
proving polynomial lower bounds on the max-stretch and total flow time for the case where online
and offline algorithms are using same-capacity edges. Moreover, we also give polylogarithmic lower
bounds on the resource augmentation factor necessary in order to keep the total flow time and max-
stretch within a constant factor of optimum.
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1. Introduction

Consider the problem of sending large files (e.g., bitmap images) through a general
topology network. The requests arrive online and the goal is to eventually satisfy all the
requests. Since the bandwidth of the links in the network is limited, it makes sense to try
to schedule the transmissions in a way that uses the available resources optimally.

In this paper we consider thanline ftp problemwhich is a formal abstraction of the
above file transfer problem. We assume that each ftp request specifies source/destination
nodes and the size of the file. The goal of the online algorithm is to choose a path
that will be used for transmitting each file, and to decide on the transmission rate. The
main difference between this model and the (well-studied) models for online routing and
admission control [1,3,15,16] is that here we do not assume that the sources have pre-
specified transmission rate requirements, i.e., we can deal with nonstreaming types of
information. We will study the idealized case where the transmission delays are all zero,
and data cannot be buffered along its route.

There are two related measures of performance that can be used to compare different
algorithms for the online ftp problem. The first measure isttttel flow time i.e., the sum
over all jobs of the time that elapses between the instant the ftp request is submitted and
the time it is satisfied (including the transmission time). The other measure inake
stretch which is the maximum over all ratios of the flow time of each request and the
smallest time needed to satisfy this request. The second quantity is determined by the link
bandwidth and the size of the file. Both measures are useful since they are directly related
to the performance of the network perceived by the end-user.

Let n be the number of requests adithe maximum ratio between the sizes of the
files. Assume that the smallest file can be transferred in one time unit}.gt denote
the optimum max-flow, i.e., the smallest value for the maximum time a request spends in
the system. The main results of the paper are algorithms that achieeptiheim max-
stretchand theoptimum total flow timeising resource augmentatidiror the max-stretch
algorithm we need to increase capacities by a fact@ @bg P), whereas for the total flow
time algorithm, we need a factor 6f(log Fy;, ) increased capacifyThe latter algorithm
not only achieves the optimum total flow time, limultaneouslyapproximates many
other objective functions, like the maximum flow time, the total square-of-flow-time, etc.

To justify the need for giving larger capacities to the online algorithm (i.e., resource
augmentation), we show polynomial lower bounds on both max-stretch and total flow time
for the case where both online and offline algorithms use the same capacities. Moreover,
we show that in order to achieve a constant competitive ratio against an adaptive adversary
we have to give the online algorithm an(log P/ loglog P) factor more capacity for the

5 Throughout this paper, when we refer to an optimum solution, we mean the optimum without any resource
augmentation.

6 Note thatFy, oy < nP and therefore logy, .y <logn +log P.
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max-stretch metric, and a2 (,/logy /Toglogy) more capacity for the total flow metric,
wherey = min{n, P}.

In the context of machine scheduling, total flow time is known to be a hard metric to
approximate [22] and it is only recently that progress has been made towards obtaining
algorithms that give total flow time guarantees. In particular, logarithmic-factor resource
augmentation was used in [25] to obtain optimum flow time for machine scheduling.
Unlike the problem we consider, resource augmentation is not necessary to obtain good
approximation ratios for minimizing flow time in the machine scheduling problem if
preemption is allowed, as demonstrated by the logarithmic approximation obtained in [23].
Max-stretch was recently proposed as a good metric to measure user satisfaction [7]. Our
lower bound on the amount of resource augmentation needed for max-stretch holds in
the machine scheduling model as well, and therefore our upper bounds on the amount
of augmentation required for max-stretch are also of interest in the machine scheduling
model. Notice that these bounds are quite close to each other: the upper bolrmbig)
whereas the lower bound i§(|og P). Without resource augmentation, the best known
competitive ratio for max-stretch in the machine scheduling problem, evensimgbe
machinds O (+/P) [7,8].

When proving upper bounds, we restrict our algorithms to use a single rate when
transmitting a specific file, and do not allow preemption. The competitive ratio is computed
against an offline algorithm that does not have these restrictions. Our lower bounds for
online flow-time minimization algorithm without resource augmentation (i.e., both the
online and the offline algorithms work in the same network) hold even if we remove this
restriction, i.e., allow the algorithm to use a time-varying rate when transmitting a file. This
contrasts with minimizing flow time for machine scheduling, where aPlagpmpetitive
preemptive algorithm is known [23]. Also, the lower bound for total flow time is achieved
using same-size files. This is in contrast to machine scheduling where the unit jobs case is
trivial.

The online ftp problem is a special case of et scheduling problenin the set
scheduling problem we have a set of resources and each job requires a specific subset of
these resources (or one of a set of subsets). Set scheduling is a natural generalization of the
machine scheduling problem that was extensively studied under several different metrics.
(See [21] for a survey of offline approximation algorithms, and [2,7,11,19,20,23,25,26]
for a sampling of recent results in online algorithms.) The set scheduling model is similar
to the parallel jobs model studied by [14,28]. We show how to apply several techniques
developed in the context of machine scheduling to the set scheduling problem (and hence
the online ftp problem) for simpler metrics such as makespan and total completion time. In
particular, we use the technique that allows us to convert an offline optimization algorithm
that maximizes the number of scheduled jobs into an online algorithm that minimizes total
completion time [19,20,26]. We also develop new techniques that help us attack more
difficult metrics such as total flow time and max-stretch.

Our techniques apply only when the jobs are malleable [9,14,19,28], i.e., extra
capacity/resources can be used to reduce the processing time of jobs. Two previously
studied examples of such problems are the parallel jobs problem [9,14,28] and the vector
scheduling problem [6,10,17]. The techniques developed in this paper can be better
understood when compared to the technique of Hall et al. [19,20]. They use offline
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p-approximation algorithms for offline packing problems to consti@¢p)-competitive
online algorithms for average completion time. Our techniques allow the transformation
of offline packing algorithms that achieve the optimum packing using) resource
augmentation for malleable jobs into online algorithms that achieve the optimum flow time
using O (p - log Fyj;ox ) resource augmentation. If the online algorithm is not required to
work in polynomial time, then an optimum offline solutiom£ 1) can be used.

Significant recent progress has been made in recent years on flow and stretch metrics
for scheduling. Muthukrishnan et al. [24] showed that the simple Shortest Remaining
Processing Time heuristic gives @n(1) competitive ratio for the average stretch problem
in machine scheduling. This is the same algorithm that was used by Leonardi and Raz [23]
who proved that the Shortest Remaining Processing Time rule haglagn) competitive
ratio for minimizing flow time on parallel machines. This algorithm allows jobs to migrate.
Becchetti et al. [5] later presented an algorithm which obt#hi$) competitive ratio for
average stretch for the machine scheduling problem without job migration. Again, they
use an algorithm which obtained @n(logn) competitive ratio for the flow time problem,
without migration [2]. This is an interesting set of results, where the same algorithm is often
good for multiple measures. Our main result is also an algorithm that is simultaneously
good for a large class of objective functions. Subsequent to our work, Epstein and van Stee
studied flow time for nonmalleable jobs on a single machine [12]. One of the consequences
of their work is a slight improvement in our lower bound on the amount of resource
augmentation needed for the flow time problem.

In Section 2 we explain our models. Section 3 contains the main technical contributions
of the paper—the lower and upper bounds on the performance of online algorithms using
the total flow time and max-stretch metrics. In Section 4 we describe online algorithms
for the ftp problem using the makespan and total completion time metrics. Not all online
algorithms in Sections 3 and 4 run in polynomial time; polynomial-time online algorithms
and offline approximation algorithms are discussed in Section 5. Section 5 also sketches
an offline, polynomial-time algorithm for minimizing the makespan for the set scheduling
problem (and hence the online ftp problem) if the rate at which a request is serviced is
allowed to vary arbitrarily.

2. Models and definitions

In the set scheduling problerthere aren jobs andm resources. Job has an arrival
time (release date);, a processing time»;, and a resource requiremesit where S;
is a subset off, the set of resources. We defifle= max; p;/ min; p;. The quantityP
plays a crucial role in the analysis of our algorithms. As in traditional scheduling, both
the preemptive and nonpreemptive variants are of interest. The Set Scheduling Problem
can be formulated as either an offline or an online problem. As in job shop scheduling and
multiprocessor scheduling, the performance of an algorithm for this problem can be studied
under several different metrics—most notably makespan, total completion time, total flow
time, and max-stretch. In this paper we will concentrate mainly on online algorithms. To
the best of our knowledge, a systematic study of offline algorithms for the set-scheduling
problem has not yet been performed, and may well be an interesting research direction.
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Theonline ftp problenis defined as follows. We are given a hetwadrk= (V, E) where
all edges have identical bandwidths. Assume that the transmission delay along any link is
zero, and that there are no buffers in the network. Once a source starts transmitting data to
another node, the other node starts receiving itimmediately. Of course the rate at which the
sender transmits the data is bounded by the minimum available bandwidth along the route
over which the transmission is taking place. kebe the number of links in the network,
andn the number of ftp requests. Requgsdtas an arrival time:;, specifies file size;,
and a routeR ; over which the data needs to be transmitted. We also address the case where
instead of the route, the request specifies only the source and the sink nodes. The former
model is closer to the IP world, where the routes are determined by an external algorithm,
while the second model is closer to the ATM world, where one can use source routing.

Let C; be the completion time of job in a schedule. The quantity; = C; —a; is
called the flow time of jobj. The makespan of a schedule is m&; total completion
time is ), C;; total flow time is}_; F; and max-stretch is maxt'; /t; wherez; is the
time it would take to satisfy job if it had the whole network to itself. We also permit jobs
to have weightsw;. In the presence of weights the total completion time and total flow
time metrics are defined @:j w;C; and Zj w; F}, respectively. Traditionally, the total
flow time and max-stretch metrics are considered to be the hardest. These are also perhaps
the most interesting metrics as they most directly measure end user experience.

The following theorem captures the hardness of the set scheduling problem—the
reduction is straightforward, but is sketched below for completeness.

Theorem 1. The Vertex Color problem reducdsia polynomial-time reductionsto
Minimizing Makespan for Set Scheduling in an approximation preserving fashion.

Proof. Let G(V, E) be an instance of the vertex color problem. We construct an instance

of the set scheduling problem with= E. For each vertex in the original vertex color
problem, we introduce a jolj, with arrival time O, processing time 1, and resource
requirement/ (v), wherel (v) is the set of all edges incident an Jobsj, and j, need

a common resource iff there is an edge between verticaslv. Thus, jobsj, andj, can

be scheduled at the same timeifandv can have the same color. This establishes a one to
one correspondence between the makespan of the set scheduling problem and the number
of colors needed for the vertex color problent

For the vertex color problem lower bounds are known for both the approximation
ratio ($2(n1~¢) unless P= NP [13]) and competitive ratio$Z(n1/3) [4]), yielding
corresponding lower bounds for the set scheduling problem. The set scheduling problem
trivially reduces to the file transfer problem with routes and rates given as input. Hence,
the above lower bounds also hold for the online ftp problem if the routes as well
as the transmission rates are given as input. Clearly, to make progress with the set
scheduling/online ftp problems, we need to relax the model. The first relaxation we propose
is to allow rate control for jobs. Thus each job would be assigned a starkfifse > a;)
and arate; by the scheduler. The job would execute from tispéo s; + p; /r; and would
consume an; fraction of each resource in its resource Sgtduring this interval. More
than one jobs may use a resource at the same time. However, the total usage of a resource
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at any time must be at most 1. The temnmalleable jobss commonly used to describe this
property [9,14,19,28]. This relaxation is particularly appropriate to the ftp problem: it is
possible to control the rate of a TCP connection and more than one connections can use the
same link. Further, a connection uses up the same bandwidth on each link along ifs route.

3. Flow time and max-stretch using resour ce augmentation
3.1. Upper bounds with resource augmentation but no preemption

Assume that all links have the same capacity in the original network; rescale capacities
so that this capacity becomes 1. Further rescale time such that the smallest request takes
four units of time to finish if it has the entire network to itself. Then the time required to
service the largest request (if the request has the entire network to itself) is at Pmost 4

Letn be the number of requests, andhe number of links. LeK = 3+ logn + log P.

We assume that the online algorithm can use a fackbobresource augmentation. Thus
the online algorithm pretends that the capacity of each linkkis B/e will compare our
online algorithm to an offline optimum solution that is only allowed to use the original
capacity of 1 on each link.

Let w; be the weight of jobj. The online algorithm partitions the network info
copies,Gop...Gg -1, each with edge capacities 5. We call this algoritttRHP (Most
Recent Highest Priority) since at any given time, connections which have been waiting in
the system the shortest are the most likely to get scheduled. The online algorithm does
its processing only at integral time instants. Scheduling decisions fatthhsopy of the
network are made every #ime units. Figure 1 describes the behavior of MRHP at time
such that = 2¢ -+, wherer’ is odd.

Eachi in Fig. 1 corresponds to the cogy;. The same job may get scheduled by
multiple copies of the network. The flow time of such a job is taken to be the smallest
flow time from all its copies. All the jobs ultimately get scheduled by the online algorithm,

fori =0to minfk, K — 1}

1. Let S; be the set of requests which arrived in the interval [r—2 1);

2. Find the | argest weight subset of S§; that can be conpleted in the
network G; between tines ¢ and
1+ 2; (Note This step may not run in polynomial time in general

3. Schedule this subset in G; such that each request
has starting tinme ¢, finishing time r+2, and a uniformrate during
this interval.

Fig. 1. Algorithm MRHP at time = 2% - ¢/, wherer’ is odd.

7 Instead of allowing a fixed rate; for each job, we could also allow the rate to vary. It turns out that our
online algorithms, even though they use just onerater job j, are competitive against optimal solutions which
are allowed to vary the rate. For offline algorithms it may help to vary the rate; we will delve into this a little in
Section 5.
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asGk-_1 schedules over a sufficiently large interval to schedule all the jobs by itself the
very first time it is invoked.

Let F; denote the total time this job spends in the system.@ebe the total weight of
the requests which get scheduled in at least one of the netwhyks G. Let O be the
total weight of all requests that have a flow time of at mdstan the optimum solution.
Let gx = Qx — Qk—1, andgq; = Qf — Qj_, (for convenience defin@_; and 0* ; to
be 0). Each jobyj which contributes ta, must have a flow time; < 2¢+1 in the MRHP
schedule, and each jgbwhich contributes tg; must have a flow time"; > 21 in the
optimum schedule.

Lemma?2. Forall k suchthaD<k < K — 1, O > Q5.

Proof. Let S} be the set of requests which contribute @j. By definition, each of
these requests has a flow time of at mdst2 Divide time into intervals of the form
[[i-2%,(G+1)-2% fori>0. Let S,i’) denote the set of requests frasfi which arrive

during theith interval, and IetQ,((i)* denote their combined weight. All these jobs are
scheduled by the optimum algorithm to finish before tithe- 1) - 28 + 2¢+2, Hence alll
these jobs must arrive and finish in the intefval®, (i 4+ 1) - 2F + 2¢+2), which has length
5.2k, SinceGy has 5 times the original capacity on each edge, and since it has all the
jobs in S available for scheduling during the interval + 1) - 2, (i 4 2) - 2%, it will
schedule jobs with a weight of at Ieagy(f)* during this interval. Summing up over all
Qr=>0Q;. O

Letg be any function fronit* to %i*. Let 7 denote the optimum value 9f ; w; g (F)
that can be obtained in an unaugmented network,Bndenote the corresponding value
obtained by MRHP.

Theorem 3. F, < F, for all nondecreasing functionsfrom i* to %+,

Proof. Sinceg; is the weight of jobs whose flow time in the optimum solution belongs
to the range(2+1, 2], and ¢ is nondecreasingF; > Y o<k (2 Thg;. Similarly,
Fe < Zogkgl(_lg(zk—i_l)‘h-

Let W = Z,,' w;. We defineP (k) = g/ W and P*(k) = ¢q;;/W. Further, letg’(x) =

P and P* are probability density functions, and Lemma 2 implies thastochastically
dominatesP. By definition of stochastic dominance, it is possible to construct a random
experiment which yields two variableg X* with the following properties:

(1) P(k) is the probability of the event =k,
(2) P*(k) is the probability of the event* =k, and
(3) X < X*.
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Property 1 implies thatF, < E[¢'(X)]. Property (2) implies thar; > E[g'(X™)].
Observe tha’ is also a nondecreasing function frait to %*. Hence, property (3)
implies thatg’(X) < ¢/(X*), whichin turn implies thaE[g’ (X)] < E[g’(X*)]. Putting the
above three statements together yields the desired result.

Theorem 3 is particularly interesting because it shows that MRHP simultaneously
optimizes a very wide class of metrics. In particular, the following results can be obtained
as corollaries.

Let 7* and F denote the total weighted flow times of the optimum and online
algorithms, respectively. LeFyax denote the maximum flow time (max-flow) in the
schedule obtained by MRHP aif¢; ., denote the max-flow in the optimum schedule.

Corollary 3.1. MRHP guarantees that < F*.
Proof. Let g be the identity function in the statement of Theorem 81

Corollary 3.2. MRHP guarantees thatuax < Fyjax -

Proof. For p > 0, defineF, to be)"; w;(F;)”. F; is defined analogously. Theorem 3
implies that7, < 77 for all p > 0. Fmax and Fy,y are the limiting values o(]-‘p)l/p
and(]—‘;‘)l/z7 respectively ap — oo. ThereforeFyax < Fyjax- O

The average stretch of a job can be mimicked using a total weighted flow time objective
function by setting the weight; of job j to 1/p;. MRHP does not need to kno in
advance—it can maintain an estimatekfand increment this estimate by one whenever
the current value oK does not suffice to schedule all the requests. £gt, be the
optimum max-flow for the given sequence of jobs, given that the shortest job takes one unit
time to finish if it has the entire network to itself. Notice thfg,, < nP. The following
theorem gives a sharper bound on the amount of resource augmentation needed by MRHP.

Theorem 4. MRHP need%) (log F;,x ) resource augmentation. Furthefy, ., need not
be known in advance.

The above theorem represents a significant improvement, sisea be arbitrarily large
even in a well behaved system with small max-flow. Section 5 shows how to implement
the algorithm in expected polynomial time wit@ (logn + logP + logm) resource
augmentation.

We now return to the max-flow metric introduced in Corollary 3.2. The max-flow metric
(Fmax ) is interesting primarily because it relates to the max-stretch metric. We give a
simple online algorithhrMMF (Minimum Max-Flow) that uses only a constant factor
resource augmentation. More specifically, MMF uses at most five times the capacity of the
original network. MMF assumes that the optimum max-flow is at I&ashd at most Z.
(Initially, T is assumed to be the time required to complete the very first job in the original
network.) At times which are multiples of" /2, MMF looks at all requests which arrived
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during the lastT'/2 time units. It then assigns to each of these jobs a rate which is just
sufficient for this job to finish in the nextt/2 time units. If the load on any edge exceeds
five times the capacity of that edge in the original network, MMF douBleaborts the
current phase, and waits till the current time becomes a multiple of the new valy® of
The following theorem subsumes Corollary 3.2.

Theorem 5. The maximum flow time of a job in the schedule produced by MMF is no larger
than the optimum max-flow. MMF runs in time polynomiakjmz, andlog P.

Proof. Consider all jobs that arrive in the interval (i — 1), Zi]. Let the optimum
max-flow be Fy,y . All these jobs must finish in the optimal schedule by the time
(T/2)i + Fjax - If Fyax < 2T then the total requirement of all the jobs that need edge

e can be at most2 + T/2 =5T/2 (recall that the capacity of each edge is one). Hence
by stretchingall these jobs over an interval of lendthi2, no edge can exceed its capacity

by more than a factor of 5. If an edge exceeds capacity by more than a factor of 5, we can
conclude thatFy ., > 2T, and hence double our estimatefaf O

We are now ready to preseMMS (Minimum Max-stretch) which use® (log P)
resource augmentation and guarantees a max-stretch that is no worse than the optimum
max-stretch. We first observe that MMF can be modified to guarantee a max-flow that is
at most half the optimum value if the amount of capacity on each edge is ten times that
in the original network. Letp1 be the amount of data transfer required by the first job.
MMS bunches incoming requests into (at most Rgclasses, with classcontaining all
requests which have a data requirement in the rapge2’, p1 - 22+1) (i may be negative
as well). There can be at mos#2og P classes. For requests within cladgMS invokes
a separate copy of modified MMF. Thus the resource augmentation needed by MMS is
O (log P). Note that MMS does not need to knaivin advance. The fact that the max-
flow obtained within each class is at most half the optimum max-flow for that class is
sufficient to guarantee that the max-stretch obtained by MMS is no more than the optimum
max-stretch. The following theorem summarizes the claims made in the above discussion.

Theorem 6. MMS usesO (log P) resource augmentation and obtains a max-stretch that
is no more than the optimum max-stretch. Further, MMS does not need to RnbMS
runs in time polynomial im, m, andlog P.

Note that neither MRHP, nor MMF, nor MMS need to get the transmission rautes
input.

Theorem 7. MRHP, MMF, and MMS can obtain optimum values for their respective
metrics even if the routeB; are not given as input.

If routes are not provided as input, MRHP, MMF, and MMS as described above would not
run in polynomial time. See Theorem 15 for the amount of resource augmentation needed
by polynomial-time algorithms.
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3.2. Lower bounds with preemption but without resource augmentation

We show that without extra capacity, the competitive ratio of any randomized online
algorithm which tries to minimize the total flow time (max-stretch, respectively) for the
data transfer problem against an oblivious adversary cannot be bounded by any function
of the network size. The lower bound for the competitive ratio in terms of the number of
jobs,n, is £2 (y/n) for both metrics. The quantit is 1 for the flow-time lower bound, and
J/n for the max-stretch lower bound. The lower bounds hold even if the online algorithm
is allowed to preempt jobs and use fractional capacities on links but the adversary is not.

Consider the length-3 path — B — C — D. Assume that all 3 links have the same
bandwidth,u. Each connection requests the same amount of dai&e rescale time so
thatu =r, i.e., each request can be serviced in exactly one time unit.

Total flow time The adversary first tosses an unbiased coin. If the outcome is “Heads” it
chooses the linld — B as a special link, else it choos€s— D. During the first
time step, the adversary generatesquests fromi to C andk from B to D. The
adversary does not do anything for the nlext 1 time units. Then for the nexf
time units the adversary generates one request per time unit over the special link.

Lemma 8. The expected flow time of any online algorithm on this sequence must be
2(k3), even if preemption is allowed and the online algorithm is allowed to use fractional
capacities. Further, the optimum flow time for this sequena@ (&) even without using
fractional capacities and preemption.

Proof. During the firstk time units, the algorithm can send orilyunits of data over the
edgeB — C. Hence k units of data remains unsent at tirheSince the special edge is
picked randomly by the adversary and not known to the algorithm, the expected amount of
unsent data which needs to traverse the special edge is at J@aBturing the next? time

units, even if the special edge is kept continuously busy, the expected amount of unsent
data waiting to cross the special edge is at l&é#8t Therefore the expected flow time of

the algorithm is at leas? - (k/2) = £2(k3). The adversary on the other hand will schedule

all the requests that need the special edge during thé fiirste units to obtain a total flow

time of O(k%). O

Since the number of jobs is= 2k + k2, the competitive ratio of any online algorithm must
be 22 (4/n) which does not depend on the network size.

Max-stretch Again, the adversary first tosses an unbiased coin. If the outcome is “Heads”
it chooses the linkd — B as a special link, else it choos€s- D. During the first
time step, the adversary generates 1 request #idmC and 1 fromB to D, each
of sizek; for the nextk — 1 time units the adversary does nothing. Over the next
k? time units the adversary generates one request of size 1 every time unit over
the special link. The proof of the following lemma is similar to the previous one,
and is omitted.
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Lemma 9. The expected max-stretch of any online algorithm on this sequence must be
£2(k), even if preemption is allowed and the online algorithm is allowed to use fractional
capacities. Further, the optimum max-stretch for this sequen@segen without using
fractional capacities and preemption.

The ratioP = pmax/ pmin for this sequence . Since the number of jobs is= 2+ k2,
the competitive ratio of any online algorithm must Bgmin{P, /n}) which does not
depend on the network size. A lower bound @i PY/3) for the competitive ratio of
an online algorithm for the minimum max-stretch problem in the context of machine
scheduling was presented in [7].

3.3. Lower bounds on the amount of resource augmentation

In this section we give lower bounds on the amount of resource augmentation needed
for any randomized online algorithm to achieve a constant competitive ratio. These lower
bounds require an adaptive adversary, and assume that the online algorithm is not allowed
to preempt requests or change the rate at which a request is being serviced. All our upper
bound algorithms work against adaptive adversaries, and do not preempt requests.

Theorem 10. Against an adaptive adversary, any randomized online algorithm that
achieves constant competitiveness for max-stretch mus@usen{n, log P/loglogP})
resource augmentation.

Proof. The adversary uses a one link network with capacity 1.:.&te the resource
augmentation that the online algorithm uses andkldéte a parameter chosen suitably
below. The sequence of requests created by the adversary consists of subsequences
Ao, Az, ..., Ay, for some f > 0. The beginning of a new subsequenteis called a
restart Initially i = 0. Each subsequencg consists of requests of sizg, one every

L; time units wherd.; = (16uk)3“~. Define ani -phaseto be a time interval between the

ith and the +1st restart during which no new jobs af arrive and no old jobs of\; are
completed by the online algorithm. Since the algorithm is not allowed to vary the rates, the
adversary can determine at the beginning of quhase how long thé-phase would last

if no new job arrived. The adversary also knows the bandwidth utilization of the online
algorithm during the -phase. If the adversary encountersigphase that would last at
leastL;/(8u) time units and where jobs of; use more than /B units of bandwidth, the
adversary incremenisand it restarts. If the adversary does not encounter suétphase,

it stops whem; consists ok jobs.

Note that whenever the adversary restarts, the bandwidth available to the online
algorithm for jobs created after the restart is reduced by at l¢&stThus the adversary
restarts at mosti3times, i.e.,f < 3u. It can be shown inductively that the optimum
algorithm can schedule all jobs (n),.; 4; (i.e., all jobs of size less thah;) in time at
mostL;. Hence delaying the last job of each size by its size gives an algorithm with max-
stretch at most 2.

We show next that the max-stretch of the online algorithm is at leaset Ly =
(16uk)3“—/ be the size of the shortest jobs generated by the adversary. When the adversary
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creates jobs of siz& ¢ no f-phase exists of length at leasj /(8u) where jobs ofd y use
more than 13 units of bandwidth. Since jobs of sizeL s are created, there are at most
2k f-phases. The total amount of data of jobsdin transferred during/-phases where
the jobs inA y use more than/B units of bandwidthis at mosk2 L s /(8u) - u = L sk /4.
We consider nextf-phases where the jobs iy use at most A3 units of bandwidth.
During the first 2L ; time units of thesef-phases at mostkZ /3 data of jobs inA
is transferred. Therefore the total amount of data of jobs jntransferred by the online
algorithm during the first 2L ; time units since the last restartis at mostL}/12. Hence,
there are some jobs of ; left unfinished at time 2L ; and therefore, there must be some
job with a stretch ok.

It follows that the competitive ratio is at ledst2. Note that the rati® of the maximum
job size to minimum job size i€l6uk)/ and that the number of jobs is at mosifk. Since
f < 3u, n <3ku and P < (16uk)®. If the competitive ratio is a constant, bot}3u and
P/ 3w /(16u) must be a constant. The first condition translates+os2 (n) and the second
translates ta = £2(log P/ loglog P). Therefore

u = 2(min{n, log P/loglog P}). |

Theorem 11. Let y = min{n, P}. Against an adaptive adversary, any randomized
online algorithm that achieves constant competitiveness for Total Flow Time must use

2(y/Togy/Toglogy) resource augmentatioh.

Proof. We define the adversary recursively. Choose a fixed constanf,/6, and let

k > 2 be a parameter whose value we will specify later. k&ie the amount of resource
augmentation; we restrict our attention to thas¢hat are multiples ob. The network
consists of just a single link and the adversary generates requests which need to transfer 1
unit of data over this link; we call these thang jobs. Define a basic interval to be of the
form[i/(2u), (i +1)/(2u)), wherei is a nonzero integer. If the online algorithm schedules

a job over the duratiofry, 2), then we round up; and round downy to be multiples of

1/(2u) without altering the rate which was assigned to this job by the online algorithm.
This can only help the online algorithm. Define a basic interval to be “bad” if the online
algorithm uses a capacity of more th&aon the link during this interval.

The adversary generates a long request at time 0. Then, at t#®, the adversary
generates a long request only if the previous time [unrit1, i) did not contain a bad basic
interval. The adversary stops as soon as it éé¢s basic bad intervals or has generated
k long requests. Also, during each basic bad interval, the adversary recursively generates
the lower bound sequence far — §) resource augmentation with time scaled down by a
factor of 1/ (4ku).

Let F*(u) denote the optimal flow time for the above sequence, Aagd denote the
flow time obtained by the online algorithm. L&%u) and P (1) denote the number of jobs
and the ratio of the largest to the smallest job generated by the adversary, respectively. We

81n a preliminary version of this paper [18] we claimed a slightly weaker lower bound of
£2(/logy/loglogy).
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use the lower bound example from Lemma 8 as a base%akerex = 1. For the base
case, choos# (1) = k. ThenF (1) = @ k1), F*(1) = ©(k), and P(1) = 1.

The optimum way to schedule all the jobs generated by the adversary is to schedule a
long job during a time unit which does not contain a basic bad interval. There will never be
more than one long job waiting in the system. Further, since there are never moké than
basic bad intervals, the total duration of the schedule is at in@sts/u < 2k. Therefore,
the total contribution of the long jobs to the flow time is at maistthis also ensures that
all the jobs generated during the recursive procedure fit into the basic interval and do not
overflow. During each basic bad interval time is scaled down by a factof(dki), which
implies the recurrence

1 kS
Fru)<2k+—F"(u—98)— <2k + F*(u—29).
4ku u

Using the base case, we obtain
F*(u) < 2ku/8 + O (k) = O (ku). (1)

Also, P(u) < (4ku)P(u — 8), which simplifies toP(u) = (ku)°™, and N(u) = k +
(k8/u)N(u — 8) = k9w,

We now provide a lower bound af(u). First, we study the case in which the adversary
terminated before findings/u basic bad intervals. Since the capacity available to the
algorithm isu, any job must originally be scheduled for at leagt: Iime. By rounding
up the start and rounding down the end of an interval of length at I¢gagbImultiples of
1/(2u), the length of the interval decreases by a factor of at most 2. Hence, the total data
transferred originally by the algorithm is at most twice the data transfer after the rounding.
If the number of bad basic intervals is less tihdyu then the total data transfer during these
bad intervals is at mogts. Further, the bandwidth used during the good basic intervals is
at most 2§ during the first 2 time units. Hence, the total data transferred originally by
the algorithm is at most(2s + 2k8) = 6kd during the first 2 time units. Therefore there
is at least (1 — 65) amount of data left unsent at the end of tldigne units; the flow time
because of this data must be at le@stl — 68))2/(4u) = 2 (k?/u). If on the other hand,
the adversary terminates because it found enough bad basic intervals, then the flow time
must be at leastl/4ku)(k8/u)F (u — 8) = F (u — 8)/(4u?). Therefore,

F(u) =min{(k(1 - 65))2/(2u), F(u—38)/(4?)).
For largek, the second term is always smaller than the first (inductively) and we obtain
F(u) =k>?/u®W.

Now, the competitive ratio i€ (1) = vk/u®®™ . For C(u) to be constanty must equal
u® _ We now lower bound in terms ofn = N (1) and P = P(u), given thatk = u°®,
We can increasé as long as neither of the two condition&(u) = k™ and P(u) =
(ku)O® is satisfied; hence for a constant competitive ratio eithes k0@ = ;0@

9 Lemma 8 uses a length three path as opposed to a single edge network used in the current theorem; it is easy
to see that the proofs in the current theorem go through even for a length three path.
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or P = (ku)?® = 420 |n other words, ify = min{n, P}, theny = uP® ory =

2(/logy/loglogy). O

4. Online algorithmsfor makespan and total completion time

In contrast to the flow and stretch metrics studied in the previous section, standard
techniques can be used to obtain constant competitive online algorithms for makespan
and average completion time for the online ftp problem without the use of resource
augmentation. We outline the details below.

Makespan Definel as the maximum amount of data that needs to be transferred over an
edge in the network. We rescale time so that one unit of data can be transferred
over a link in one unit of time. Letimax be the time at which the last request
arrives. LetL be the quantity maxmax, A). L is a lower bound on the makespan
of any schedule. The online algorithm does the following:

It maintains a gues for the value ofL. We assume that the first request arrives at
time 0. The initial value of. is set top1, the amount of data transfer needed by the first
request. Each time a request arrives, the algorithm recomputéd. > 1, X is reset to
max(L, 21.). The online algorithm schedules a newly arrived requdstexecute from
time A to 2x, with a rate ofp; /4. It is easy to see that the above algorithm does not
violate capacity constraints. Lét represent the final value af by constructiorl/ is

at most Z. The makespan is at mosv2+ U + U /2+ - - - < 4U. We cannow claim the
following result.

Theorem 12. The above algorithm i8-competitive.

If routes are given as input, and hence., can be computed efficiently and the above
algorithm runs in polynomial time. Therefore, it is also an offline approximation algorithm.
Moreover, an offline algorithm can compute the exact valué oéther than maintain a
guess. Hence, the offline algorithm can provide an approximation guarantee of 2.

If routes are not given as part of the input, computings equivalent to the integer
routing problem, and our approach does not result irogh) approximation algorithm.

The above online algorithm still obtains an 8-approximation, but it cannot be implemented
to run in polynomial time unless £ NP.

It is easy to obtain a lower bound of2b on the competitive ratio of any algorithm for
minimizing makespan for the online ftp problem, even with given routes. Consider again
the three link network used in Section 3.2. The adversary randomly chooses one of the
links A — B andC — D to be special. At time = 0, the adversary generates a request from
A to C and one fromB to D, each requiring one unit of time to complete. At time- 1
the adversary generates another unit request, this time over the special link. The optimum
makespan is 2, but the expected makespan of any online algorithm must be at3east 2
Notice that the above lower bound assumes only an oblivious adversary, whereas the upper
bound is against an adaptive adversary.
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Total completion time The general scaling technique outlined by Hall et al. [19,20]
directly results in a 4-competitive online algorithm for the total completion time
metric, regardless of whether routes are given as part of the input. Their technique
requires an offline algorithm that can pack an optimum number of requests into a
given interval. This problem is NP hard, and therefore, our online algorithm does
not run in polynomial time. ArO (logm)-competitive polynomial-time algorithm
is outlined in Section 5.

The lower bound example outlined above for makespan gives a lower bouritt ¢fid
optimum total completion time for the above sequence is 5 whereas any online algorithm
must have an expected total completion time of at least 5.5.

5. Polynomial time approximation and online algorithms

In this section we give offline approximation algorithms for total completion time,
makespan, total flow time, average stretch, maximum flow time, and maximum stretch
that run in polynomial time. The algorithms for total completion time and makespan
approximate the optimum performance without resource augmentation. The algorithms
for the remaining metrics achieve optimum performance using either a constant-factor
or a polylogarithmic-factor resource augmentation. We conclude the section by giving
polynomial-time algorithms with optimum makespan under two different relaxations of
our model:

(1) We relax the condition that the rate of a job has to be constant: we give a polynomial-
time algorithm that varies the rates and achieves optimum makespan.

(2) We assume that the start timgis part of the input and show that then the problem
can be solved in polynomial time.

Theorem 13. There exists an algorithm that achieves @rilogm)-approximation of the
total completion time for the online ftp problem in time polynomial iandm, regardless
of whether routes are given as part of the input.

Proof. Consider the problem of maximizing the number of ftp requests (out of a given
set of requests, all of which have the same arrival time) that can be scheduled over
a given period of time. Letv* denote the value of the optimum solution. We first
describe a polynomial-time algorithm that can schedule at lgasequests in an interval
which is at most a facto© (logm) larger than the original interval. The algorithm uses
multicommodity flow followed by randomized rounding [27] as described below:

Obtain the multicommodity flow relaxation by allowing requests to complete fraction-
ally. This relaxation is a linear program and can be solved in polynomial time; ldetnote
the fraction of requestcompleted in the optimum fractional solution. Round the fractional
solution by choosing; = 1 with probability mir{x; logm, 1} andx; = 0 otherwise. Here
X; = 1 denotes that requestvill be chosen. If the number of requests satisfied by the inte-
ger solution is less than the fractional optimum, or if the integer solution exceeds capacity
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on any edge by a factor greater than 44oghen repeat the rounding process, else use the
currentx; as the integer solution and terminate.

Standard Chernoff bound arguments imply that the probability that the rounding process
will be successful is + o(1) during each iteration; for our purposes it is sufficient to
assume that the probability is at leagR1The expected running time of the algorithm is
polynomial, and when the algorithm terminates, we are guaranteed to have scheduled at
leastN* requests and exceeded capacities by at most a f@cgtogm). Since the requests
are malleable, exceeding capacities®glogm) is equivalent to stretching the scheduling
interval by the same factor.

Plugging this into the general technique of Hall et al. [19,20] results i®dngm)-
competitive polynomial-time online algorithm for the total completion time of ftp
requests. O

A polynomial-time 2-approximation for the makespan of the ftp problem when routes
are given as part of the input follows from the discussion in Section 4; Theorem 13 results
in an O (logm)-approximation if routes are not provided as input. Hence, we obtain:

Theorem 14. There exists an algorithm that achieve&-@approximation for makespan in
time polynomial im andm if routes are given as part of the input, adt{logm) otherwise.

We now describe how to implement algorithm MRHP in polynomial time. The only step
of MRHP which might take super-polynomial time is step 2, finding the largest weight
subsetA; of S; that can be completed between timeands + 2'. To implement it in
expected polynomial time we need to addaog- 2¢ K to the capacity of each edge, where
K =logn +logP + 3.

We use first a linear programming relaxation of the problem, then round it probabilisti-
cally and finally show that with high probability no edge capacity constraint is violated:

1. Thelinear program uses for each jo variabler; and maximize$ _ ; .5, w;x; under

the constraint that for each edge} _ ; yses. pj/2" <1 and that for eacli, x; > 0.
Letx’ denote the value of; in the solution.

2. We probabilistically round each jopfor each network suchP(j € A;) = x;‘. Let
X. be the random variable denoting the load of edgeG.

3. The expected valug of X, is > o g D_; usesex;fpj/Zi < K. Using Chernoff
bounds with§ = (logm + 2¢K)/u — 1 shows that

6’5 w e logm—+2eK 1
Pr(X. > lo 2¢K) < =15 ) S\ o% m(
(Xe > logm + 2¢K) ((1+8)l+8) <|ogm+2e[() = (m(nP)ze)

Thus, the probability that one of the edge capacities overflows is at miesP 12 in
which case we simply redo the rounding step.

Note that both MMF and MMS already run in time polynomialinm, and logP if
routes are given as part of the input. The same ideas that we outlined above for total flow
time also result in polynomial-time algorithms for the max-flow and max-stretch problems
when routes are not given as input.
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Theorem 15. There exis(online and offlingalgorithms that run in time polynomial im,
m, andlog P and

e achieve optimum total flow-time or average stretch with an expe@téan +log P +
logm)-factor resource augmentation regardless of whether routes are given as part of
the input

e achieve optimum maximum flow time with a constant-factor resource augmentation
if the routes are given as part of the input, and expealgtbgn + logm) resource
augmentation otherwise

e achieve optimum maximum stretch with @rlog P)-factor resource augmentation
if the routes are given as part of the input, and expeagtbgn + logm + log P)
resource augmentation otherwise.

We finally relax some of our conditions. Consider first the case that the rate of jobs can
vary. Assume that the optimum makesparMs We present a linear program that given
M checks whether there exists a feasible solution. By performing a binary searcM pver
with 0 < M < nP and assuming that time is rescaled so that the shortest job takes one time
unit, we get a polynomial-time algorithm that finds the optimum makespan.

We assume w.l.0.g. that the first job arrives at time 0. Break the time from\ ittto
intervals whenever a new job arrives and number the time intervals from 1ltet /; be
the length of interval and letayax be the arrival time of the last job. Note that the length
of the last interval is — amax . There is a variable; ; for each interval and each joly.

The linear program checks whether there is a nonnegative assignment for the variables
such that

(1) foreachjoby, Y ; xjili > pj,
(2) for each edge and interval, 3 ; yses. Xi,j < 1, and
(3) for each jobj and intervak such thatj arrived after, x;; =0.

6. Conclusions

In this paper we considered tloaline ftp problemThe goal is to service a sequence
of file transfer requests given bandwidth constraints of the underlying communication
network. For several metrics of interest (average flow time, max-stretch etc), it is provably
hard to obtain sub-polynomial competitive ratios. Hence, it is worthwhile trying to study
these problems in a resource-augmentation model. In this model, the online algorithm is
given greater capacity than the offline optimum it is compared against. This corresponds to
the concept of “over-engineering” in real-life networks, where extra capacity is built in to
cope with inefficiencies in network protocols.

The main result of the paper is a technigue that leads to algorithms that optimize several
natural metrics, such as max-stretch, total flow time, max flow time, and total completion
time. In particular, we show how to achieve optimum total flow time and optimum max-
stretch if we increase the capacity of the underlying network by a logarithmic factor.
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We also gave polylogarithmic lower bounds on the resource augmentation factor
necessary in order to keep the total flow time and max-stretch within a constant factor
of optimum.
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