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Abstract

In this paper we consider theonline ftp problem. The goal is to service a sequence of file trans
requests given bandwidth constraints of the underlying communication network. The main
of the paper is a technique that leads to algorithms that optimize several natural metrics,
max-stretch, total flow time, max flow time, and total completion time. In particular, we show
to achieve optimum total flow time and optimum max-stretch if we increase the capacity
underlying network by a logarithmic factor. We show that the resource augmentation is neces
proving polynomial lower bounds on the max-stretch and total flow time for the case where
and offline algorithms are using same-capacity edges. Moreover, we also give polylogarithmic
bounds on the resource augmentation factor necessary in order to keep the total flow time a
stretch within a constant factor of optimum.
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1. Introduction

Consider the problem of sending large files (e.g., bitmap images) through a g
topology network. The requests arrive online and the goal is to eventually satisfy a
requests. Since the bandwidth of the links in the network is limited, it makes sense
to schedule the transmissions in a way that uses the available resources optimally.

In this paper we consider theonline ftp problem, which is a formal abstraction of th
above file transfer problem. We assume that each ftp request specifies source/des
nodes and the size of the file. The goal of the online algorithm is to choose a
that will be used for transmitting each file, and to decide on the transmission rate
main difference between this model and the (well-studied) models for online routin
admission control [1,3,15,16] is that here we do not assume that the sources ha
specified transmission rate requirements, i.e., we can deal with nonstreaming ty
information. We will study the idealized case where the transmission delays are al
and data cannot be buffered along its route.

There are two related measures of performance that can be used to compare d
algorithms for the online ftp problem. The first measure is thetotal flow time, i.e., the sum
over all jobs of the time that elapses between the instant the ftp request is submitt
the time it is satisfied (including the transmission time). The other measure is themax-
stretch, which is the maximum over all ratios of the flow time of each request and
smallest time needed to satisfy this request. The second quantity is determined by t
bandwidth and the size of the file. Both measures are useful since they are directly
to the performance of the network perceived by the end-user.

Let n be the number of requests andP the maximum ratio between the sizes of t
files. Assume that the smallest file can be transferred in one time unit. LetF ∗

MAX denote
the optimum max-flow, i.e., the smallest value for the maximum time a request spe
the system. The main results of the paper are algorithms that achieve theoptimum max-
stretchand theoptimum total flow timeusing resource augmentation.5 For the max-stretch
algorithm we need to increase capacities by a factor ofO(logP), whereas for the total flow
time algorithm, we need a factor ofO(logF ∗

MAX ) increased capacity.6 The latter algorithm
not only achieves the optimum total flow time, butsimultaneouslyapproximates man
other objective functions, like the maximum flow time, the total square-of-flow-time,

To justify the need for giving larger capacities to the online algorithm (i.e., reso
augmentation), we show polynomial lower bounds on both max-stretch and total flow
for the case where both online and offline algorithms use the same capacities. Mo
we show that in order to achieve a constant competitive ratio against an adaptive ad
we have to give the online algorithm anΩ(logP/ log logP) factor more capacity for th

5 Throughout this paper, when we refer to an optimum solution, we mean the optimum without any re
augmentation.

6 Note thatF ∗ � nP and therefore logF ∗ � logn + logP .
MAX MAX
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logγ / log logγ ) more capacity for the total flow metric
whereγ = min{n,P }.

In the context of machine scheduling, total flow time is known to be a hard met
approximate [22] and it is only recently that progress has been made towards ob
algorithms that give total flow time guarantees. In particular, logarithmic-factor res
augmentation was used in [25] to obtain optimum flow time for machine schedu
Unlike the problem we consider, resource augmentation is not necessary to obtai
approximation ratios for minimizing flow time in the machine scheduling proble
preemption is allowed, as demonstrated by the logarithmic approximation obtained i
Max-stretch was recently proposed as a good metric to measure user satisfaction [
lower bound on the amount of resource augmentation needed for max-stretch h
the machine scheduling model as well, and therefore our upper bounds on the a
of augmentation required for max-stretch are also of interest in the machine sche
model. Notice that these bounds are quite close to each other: the upper bound isÕ(logP)

whereas the lower bound is̃Ω(logP). Without resource augmentation, the best kno
competitive ratio for max-stretch in the machine scheduling problem, even on asingle
machineis O(

√
P ) [7,8].

When proving upper bounds, we restrict our algorithms to use a single rate
transmitting a specific file, and do not allow preemption. The competitive ratio is com
against an offline algorithm that does not have these restrictions. Our lower boun
online flow-time minimization algorithm without resource augmentation (i.e., both
online and the offline algorithms work in the same network) hold even if we remove
restriction, i.e., allow the algorithm to use a time-varying rate when transmitting a file.
contrasts with minimizing flow time for machine scheduling, where a logP -competitive
preemptive algorithm is known [23]. Also, the lower bound for total flow time is achie
using same-size files. This is in contrast to machine scheduling where the unit jobs
trivial.

The online ftp problem is a special case of theset scheduling problem. In the set
scheduling problem we have a set of resources and each job requires a specific s
these resources (or one of a set of subsets). Set scheduling is a natural generalizatio
machine scheduling problem that was extensively studied under several different m
(See [21] for a survey of offline approximation algorithms, and [2,7,11,19,20,23,2
for a sampling of recent results in online algorithms.) The set scheduling model is s
to the parallel jobs model studied by [14,28]. We show how to apply several techn
developed in the context of machine scheduling to the set scheduling problem (and
the online ftp problem) for simpler metrics such as makespan and total completion ti
particular, we use the technique that allows us to convert an offline optimization algo
that maximizes the number of scheduled jobs into an online algorithm that minimize
completion time [19,20,26]. We also develop new techniques that help us attack
difficult metrics such as total flow time and max-stretch.

Our techniques apply only when the jobs are malleable [9,14,19,28], i.e.,
capacity/resources can be used to reduce the processing time of jobs. Two pre
studied examples of such problems are the parallel jobs problem [9,14,28] and the
scheduling problem [6,10,17]. The techniques developed in this paper can be
understood when compared to the technique of Hall et al. [19,20]. They use o
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ρ-approximation algorithms for offline packing problems to constructO(ρ)-competitive
online algorithms for average completion time. Our techniques allow the transform
of offline packing algorithms that achieve the optimum packing usingO(ρ) resource
augmentation for malleable jobs into online algorithms that achieve the optimum flow
usingO(ρ · logF ∗

MAX ) resource augmentation. If the online algorithm is not require
work in polynomial time, then an optimum offline solution (ρ = 1) can be used.

Significant recent progress has been made in recent years on flow and stretch
for scheduling. Muthukrishnan et al. [24] showed that the simple Shortest Rema
Processing Time heuristic gives anO(1) competitive ratio for the average stretch probl
in machine scheduling. This is the same algorithm that was used by Leonardi and R
who proved that the Shortest Remaining Processing Time rule has anO(logn) competitive
ratio for minimizing flow time on parallel machines. This algorithm allows jobs to migr
Becchetti et al. [5] later presented an algorithm which obtainsO(1) competitive ratio for
average stretch for the machine scheduling problem without job migration. Again
use an algorithm which obtained anO(logn) competitive ratio for the flow time problem
without migration [2]. This is an interesting set of results, where the same algorithm is
good for multiple measures. Our main result is also an algorithm that is simultane
good for a large class of objective functions. Subsequent to our work, Epstein and va
studied flow time for nonmalleable jobs on a single machine [12]. One of the consequ
of their work is a slight improvement in our lower bound on the amount of reso
augmentation needed for the flow time problem.

In Section 2 we explain our models. Section 3 contains the main technical contrib
of the paper—the lower and upper bounds on the performance of online algorithms
the total flow time and max-stretch metrics. In Section 4 we describe online algor
for the ftp problem using the makespan and total completion time metrics. Not all o
algorithms in Sections 3 and 4 run in polynomial time; polynomial-time online algorit
and offline approximation algorithms are discussed in Section 5. Section 5 also sk
an offline, polynomial-time algorithm for minimizing the makespan for the set sched
problem (and hence the online ftp problem) if the rate at which a request is servi
allowed to vary arbitrarily.

2. Models and definitions

In the set scheduling problemthere aren jobs andm resources. Jobj has an arriva
time (release date)aj , a processing timepj , and a resource requirementSj whereSj

is a subset ofS, the set of resources. We defineP = maxj pj /minj pj . The quantityP
plays a crucial role in the analysis of our algorithms. As in traditional scheduling,
the preemptive and nonpreemptive variants are of interest. The Set Scheduling P
can be formulated as either an offline or an online problem. As in job shop schedulin
multiprocessor scheduling, the performance of an algorithm for this problem can be s
under several different metrics—most notably makespan, total completion time, tota
time, and max-stretch. In this paper we will concentrate mainly on online algorithm
the best of our knowledge, a systematic study of offline algorithms for the set-sche
problem has not yet been performed, and may well be an interesting research direc
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Theonline ftp problemis defined as follows. We are given a networkG = (V ,E) where
all edges have identical bandwidths. Assume that the transmission delay along any
zero, and that there are no buffers in the network. Once a source starts transmitting
another node, the other node starts receiving it immediately. Of course the rate at wh
sender transmits the data is bounded by the minimum available bandwidth along th
over which the transmission is taking place. Letm be the number of links in the networ
andn the number of ftp requests. Requestj has an arrival timeaj , specifies file sizepj ,
and a routeRj over which the data needs to be transmitted. We also address the case
instead of the route, the request specifies only the source and the sink nodes. The
model is closer to the IP world, where the routes are determined by an external algo
while the second model is closer to the ATM world, where one can use source routin

Let Cj be the completion time of jobj in a schedule. The quantityFj = Cj − aj is
called the flow time of jobj . The makespan of a schedule is maxj Cj ; total completion
time is

∑
j Cj ; total flow time is

∑
j Fj and max-stretch is maxj Fj /τj whereτj is the

time it would take to satisfy jobj if it had the whole network to itself. We also permit jo
to have weightswj . In the presence of weights the total completion time and total
time metrics are defined as

∑
j wjCj and

∑
j wjFj , respectively. Traditionally, the tota

flow time and max-stretch metrics are considered to be the hardest. These are also
the most interesting metrics as they most directly measure end user experience.

The following theorem captures the hardness of the set scheduling problem
reduction is straightforward, but is sketched below for completeness.

Theorem 1. The Vertex Color problem reduces(via polynomial-time reductions) to
Minimizing Makespan for Set Scheduling in an approximation preserving fashion.

Proof. Let G(V,E) be an instance of the vertex color problem. We construct an inst
of the set scheduling problem withS = E. For each vertexv in the original vertex color
problem, we introduce a jobjv with arrival time 0, processing time 1, and resou
requirementI (v), whereI (v) is the set of all edges incident onv. Jobsju andjv need
a common resource iff there is an edge between verticesu andv. Thus, jobsju andjv can
be scheduled at the same time iffu andv can have the same color. This establishes a on
one correspondence between the makespan of the set scheduling problem and the
of colors needed for the vertex color problem.✷

For the vertex color problem lower bounds are known for both the approxim
ratio (Ω(n1−ε) unless P= NP [13]) and competitive ratio (Ω(n1/3) [4]), yielding
corresponding lower bounds for the set scheduling problem. The set scheduling p
trivially reduces to the file transfer problem with routes and rates given as input. H
the above lower bounds also hold for the online ftp problem if the routes as
as the transmission rates are given as input. Clearly, to make progress with t
scheduling/online ftp problems, we need to relax the model. The first relaxation we pr
is to allow rate control for jobs. Thus each job would be assigned a start timesj (sj � aj )
and a raterj by the scheduler. The job would execute from timesj to sj +pj /rj and would
consume anrj fraction of each resource in its resource setSj during this interval. More
than one jobs may use a resource at the same time. However, the total usage of a r
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at any time must be at most 1. The termmalleable jobsis commonly used to describe th
property [9,14,19,28]. This relaxation is particularly appropriate to the ftp problem:
possible to control the rate of a TCP connection and more than one connections can
same link. Further, a connection uses up the same bandwidth on each link along its7

3. Flow time and max-stretch using resource augmentation

3.1. Upper bounds with resource augmentation but no preemption

Assume that all links have the same capacity in the original network; rescale cap
so that this capacity becomes 1. Further rescale time such that the smallest reque
four units of time to finish if it has the entire network to itself. Then the time require
service the largest request (if the request has the entire network to itself) is at mostP .

Let n be the number of requests, andm the number of links. LetK = 3+ logn+ logP .
We assume that the online algorithm can use a factor 5K of resource augmentation. Th
the online algorithm pretends that the capacity of each link is 5K. We will compare our
online algorithm to an offline optimum solution that is only allowed to use the orig
capacity of 1 on each link.

Let wj be the weight of jobj . The online algorithm partitions the network intoK
copies,G0 . . .GK−1, each with edge capacities 5. We call this algorithmMRHP (Most
Recent Highest Priority) since at any given time, connections which have been wai
the system the shortest are the most likely to get scheduled. The online algorithm
its processing only at integral time instants. Scheduling decisions for theith copy of the
network are made every 2i time units. Figure 1 describes the behavior of MRHP at timt
such thatt = 2k · t ′, wheret ′ is odd.

Each i in Fig. 1 corresponds to the copyGi . The same job may get scheduled
multiple copies of the network. The flow time of such a job is taken to be the sm
flow time from all its copies. All the jobs ultimately get scheduled by the online algori

for i = 0 to min{k,K − 1}
1. Let Si be the set of requests which arrived in the interval [t − 2i , t);
2. Find the largest weight subset of Si that can be completed in the

network Gi between times t and
t + 2i; (Note: This step may not run in polynomial time in general)

3. Schedule this subset in Gi such that each request
has starting time t, finishing time t + 2i, and a uniform rate during
this interval.

Fig. 1. Algorithm MRHP at timet = 2k · t ′, wheret ′ is odd.

7 Instead of allowing a fixed raterj for each job, we could also allow the rate to vary. It turns out that
online algorithms, even though they use just one raterj for job j , are competitive against optimal solutions whi
are allowed to vary the rate. For offline algorithms it may help to vary the rate; we will delve into this a li
Section 5.
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very first time it is invoked.

Let Fj denote the total time this job spends in the system. LetQk be the total weight o
the requests which get scheduled in at least one of the networksG0 . . .Gk . Let Q∗

k be the
total weight of all requests that have a flow time of at most 2k+2 in the optimum solution
Let qk = Qk − Qk−1, andq∗

k = Q∗
k − Q∗

k−1 (for convenience defineQ−1 and Q∗−1 to
be 0). Each jobj which contributes toqk must have a flow timeFj � 2k+1 in the MRHP
schedule, and each jobj which contributes toq∗

k must have a flow timeF ∗
j � 2k+1 in the

optimum schedule.

Lemma 2. For all k such that0 � k � K − 1, Qk � Q∗
k .

Proof. Let S∗
k be the set of requests which contribute toQ∗

k . By definition, each of
these requests has a flow time of at most 2k+2. Divide time into intervals of the form
[i · 2k, (i + 1) · 2k) for i � 0. Let S

(i)∗
k denote the set of requests fromS∗

k which arrive

during theith interval, and letQ(i)∗
k denote their combined weight. All these jobs a

scheduled by the optimum algorithm to finish before time(i + 1) · 2k + 2k+2. Hence all
these jobs must arrive and finish in the interval[i ·2k, (i +1) ·2k +2k+2), which has length
5 · 2k . SinceGk has 5 times the original capacity on each edge, and since it has a
jobs inS

(i)∗
k available for scheduling during the interval[(i + 1) · 2k, (i + 2) · 2k), it will

schedule jobs with a weight of at leastQ
(i)∗
k during this interval. Summing up over alli,

Qk � Q∗
k . ✷

Letg be any function from�+ to �+. LetF∗
g denote the optimum value of

∑
j wj g(Fj )

that can be obtained in an unaugmented network, andFg denote the corresponding valu
obtained by MRHP.

Theorem 3. Fg � F∗
g , for all nondecreasing functionsg from �+ to �+.

Proof. Sinceq∗
k is the weight of jobs whose flow time in the optimum solution belo

to the range(2k+1,2k], and g is nondecreasing,F∗
g �

∑
0�k�K g(2k+1)q∗

k . Similarly,
Fg �

∑
0�k�K−1 g(2k+1)qk.

Let W = ∑
j wj . We defineP(k) = qk/W andP ∗(k) = q∗

k /W . Further, letg′(x) =
Wg(2x+1). Now,F∗

g �
∑

0�k�K g′(k)P ∗(k) andFg �
∑

0�k�K−1 g′(k)P ∗(k).
P andP ∗ are probability density functions, and Lemma 2 implies thatP ∗ stochastically

dominatesP . By definition of stochastic dominance, it is possible to construct a ran
experiment which yields two variablesX,X∗ with the following properties:

(1) P(k) is the probability of the eventX = k,
(2) P ∗(k) is the probability of the eventX∗ = k, and
(3) X � X∗.
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Property 1 implies thatFg � E[g′(X)]. Property (2) implies thatF∗
g � E[g′(X∗)].

Observe thatg′ is also a nondecreasing function from�+ to �+. Hence, property (3
implies thatg′(X) � g′(X∗), which in turn implies thatE[g′(X)] � E[g′(X∗)]. Putting the
above three statements together yields the desired result.✷

Theorem 3 is particularly interesting because it shows that MRHP simultane
optimizes a very wide class of metrics. In particular, the following results can be obt
as corollaries.

Let F∗ and F denote the total weighted flow times of the optimum and on
algorithms, respectively. LetFMAX denote the maximum flow time (max-flow) in th
schedule obtained by MRHP andF ∗

MAX denote the max-flow in the optimum schedule.

Corollary 3.1. MRHP guarantees thatF � F∗.

Proof. Let g be the identity function in the statement of Theorem 3.✷
Corollary 3.2. MRHP guarantees thatFMAX � F ∗

MAX .

Proof. For p > 0, defineFp to be
∑

j wj (Fj )p . F∗
p is defined analogously. Theorem

implies thatFp � F∗
p for all p > 0. FMAX andF ∗

MAX are the limiting values of(Fp)1/p

and(F∗
p)1/p respectively asp → ∞. ThereforeFMAX � F ∗

MAX . ✷
The average stretch of a job can be mimicked using a total weighted flow time obj

function by setting the weightwj of job j to 1/pj . MRHP does not need to knowK in
advance—it can maintain an estimate ofK and increment this estimate by one whene
the current value ofK does not suffice to schedule all the requests. LetF ∗

MAX be the
optimum max-flow for the given sequence of jobs, given that the shortest job takes on
time to finish if it has the entire network to itself. Notice thatF ∗

MAX � nP . The following
theorem gives a sharper bound on the amount of resource augmentation needed by

Theorem 4. MRHP needsO(logF ∗
MAX ) resource augmentation. Further,F ∗

MAX need not
be known in advance.

The above theorem represents a significant improvement, sincen can be arbitrarily large
even in a well behaved system with small max-flow. Section 5 shows how to imple
the algorithm in expected polynomial time withO(logn + logP + logm) resource
augmentation.

We now return to the max-flow metric introduced in Corollary 3.2. The max-flow m
(FMAX ) is interesting primarily because it relates to the max-stretch metric. We g
simple online algorithmMMF (Minimum Max-Flow) that uses only a constant fac
resource augmentation. More specifically, MMF uses at most five times the capacity
original network. MMF assumes that the optimum max-flow is at leastT and at most 2T .
(Initially, T is assumed to be the time required to complete the very first job in the ori
network.) At timest which are multiples ofT/2, MMF looks at all requests which arrive
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during the lastT/2 time units. It then assigns to each of these jobs a rate which is
sufficient for this job to finish in the nextT/2 time units. If the load on any edge excee
five times the capacity of that edge in the original network, MMF doublesT , aborts the
current phase, and waits till the current time becomes a multiple of the new value oT/2.
The following theorem subsumes Corollary 3.2.

Theorem 5. The maximum flow time of a job in the schedule produced by MMF is no la
than the optimum max-flow. MMF runs in time polynomial inn, m, andlogP .

Proof. Consider all jobs that arrive in the interval( T
2 (i − 1), T

2 i]. Let the optimum
max-flow be F ∗

MAX . All these jobs must finish in the optimal schedule by the t
(T /2)i + F ∗

MAX . If F ∗
MAX � 2T then the total requirement of all the jobs that need e

e can be at most 2T + T/2 = 5T/2 (recall that the capacity of each edge is one). He
by stretchingall these jobs over an interval of lengthT/2, no edge can exceed its capac
by more than a factor of 5. If an edge exceeds capacity by more than a factor of 5, w
conclude thatF ∗

MAX > 2T , and hence double our estimate ofT . ✷
We are now ready to presentMMS (Minimum Max-stretch) which usesO(logP)

resource augmentation and guarantees a max-stretch that is no worse than the o
max-stretch. We first observe that MMF can be modified to guarantee a max-flow
at most half the optimum value if the amount of capacity on each edge is ten time
in the original network. Letp1 be the amount of data transfer required by the first
MMS bunches incoming requests into (at most logP ) classes, with classi containing all
requests which have a data requirement in the range[p1 · 2i , p1 · 2i+1) (i may be negative
as well). There can be at most 2+ logP classes. For requests within classi MMS invokes
a separate copy of modified MMF. Thus the resource augmentation needed by M
O(logP). Note that MMS does not need to knowP in advance. The fact that the ma
flow obtained within each class is at most half the optimum max-flow for that cla
sufficient to guarantee that the max-stretch obtained by MMS is no more than the op
max-stretch. The following theorem summarizes the claims made in the above discu

Theorem 6. MMS usesO(logP) resource augmentation and obtains a max-stretch
is no more than the optimum max-stretch. Further, MMS does not need to knowP . MMS
runs in time polynomial inn, m, andlogP .

Note that neither MRHP, nor MMF, nor MMS need to get the transmission routesRj as
input.

Theorem 7. MRHP, MMF, and MMS can obtain optimum values for their respec
metrics even if the routesRj are not given as input.

If routes are not provided as input, MRHP, MMF, and MMS as described above wou
run in polynomial time. See Theorem 15 for the amount of resource augmentation n
by polynomial-time algorithms.
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3.2. Lower bounds with preemption but without resource augmentation

We show that without extra capacity, the competitive ratio of any randomized o
algorithm which tries to minimize the total flow time (max-stretch, respectively) for
data transfer problem against an oblivious adversary cannot be bounded by any fu
of the network size. The lower bound for the competitive ratio in terms of the numb
jobs,n, is Ω(

√
n) for both metrics. The quantityP is 1 for the flow-time lower bound, an√

n for the max-stretch lower bound. The lower bounds hold even if the online algo
is allowed to preempt jobs and use fractional capacities on links but the adversary is

Consider the length-3 pathA − B − C − D. Assume that all 3 links have the sam
bandwidth,u. Each connection requests the same amount of data,r. We rescale time s
thatu = r, i.e., each request can be serviced in exactly one time unit.

Total flow time: The adversary first tosses an unbiased coin. If the outcome is “Hea
chooses the linkA − B as a special link, else it choosesC − D. During the first
time step, the adversary generatesk requests fromA to C andk from B to D. The
adversary does not do anything for the nextk − 1 time units. Then for the nextk2

time units the adversary generates one request per time unit over the speci

Lemma 8. The expected flow time of any online algorithm on this sequence mu
Ω(k3), even if preemption is allowed and the online algorithm is allowed to use fract
capacities. Further, the optimum flow time for this sequence isO(k2) even without using
fractional capacities and preemption.

Proof. During the firstk time units, the algorithm can send onlyk units of data over the
edgeB − C. Hence,k units of data remains unsent at timek. Since the special edge
picked randomly by the adversary and not known to the algorithm, the expected amo
unsent data which needs to traverse the special edge is at leastk/2. During the nextk2 time
units, even if the special edge is kept continuously busy, the expected amount of
data waiting to cross the special edge is at leastk/2. Therefore the expected flow time
the algorithm is at leastk2 · (k/2) = Ω(k3). The adversary on the other hand will sched
all the requests that need the special edge during the firstk time units to obtain a total flow
time ofO(k2). ✷
Since the number of jobs isn = 2k +k2, the competitive ratio of any online algorithm mu
beΩ(

√
n) which does not depend on the network size.

Max-stretch: Again, the adversary first tosses an unbiased coin. If the outcome is “H
it chooses the linkA − B as a special link, else it choosesC − D. During the first
time step, the adversary generates 1 request fromA to C and 1 fromB to D, each
of sizek; for the nextk − 1 time units the adversary does nothing. Over the n
k2 time units the adversary generates one request of size 1 every time un
the special link. The proof of the following lemma is similar to the previous o
and is omitted.
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Lemma 9. The expected max-stretch of any online algorithm on this sequence m
Ω(k), even if preemption is allowed and the online algorithm is allowed to use fract
capacities. Further, the optimum max-stretch for this sequence is2 even without using
fractional capacities and preemption.

The ratioP = pmax/pmin for this sequence isk. Since the number of jobs isn = 2+ k2,
the competitive ratio of any online algorithm must beΩ(min{P,

√
n}) which does not

depend on the network size. A lower bound ofΩ(P 1/3) for the competitive ratio o
an online algorithm for the minimum max-stretch problem in the context of mac
scheduling was presented in [7].

3.3. Lower bounds on the amount of resource augmentation

In this section we give lower bounds on the amount of resource augmentation n
for any randomized online algorithm to achieve a constant competitive ratio. These
bounds require an adaptive adversary, and assume that the online algorithm is not a
to preempt requests or change the rate at which a request is being serviced. All ou
bound algorithms work against adaptive adversaries, and do not preempt requests.

Theorem 10. Against an adaptive adversary, any randomized online algorithm
achieves constant competitiveness for max-stretch must useΩ(min{n, logP/ log logP })
resource augmentation.

Proof. The adversary uses a one link network with capacity 1. Letu be the resourc
augmentation that the online algorithm uses and letk be a parameter chosen suitab
below. The sequence of requests created by the adversary consists of subse
A0,A1, . . . ,Af , for somef � 0. The beginning of a new subsequenceAi is called a
restart. Initially i = 0. Each subsequenceAi consists of requests of sizeLi , one every
Li time units whereLi = (16uk)3u−i . Define ani-phaseto be a time interval between th
ith and thei+1st restart during which no new jobs ofAi arrive and no old jobs ofAi are
completed by the online algorithm. Since the algorithm is not allowed to vary the rate
adversary can determine at the beginning of ani-phase how long thei-phase would las
if no new job arrived. The adversary also knows the bandwidth utilization of the o
algorithm during thei-phase. If the adversary encounters ani-phase that would last a
leastLi/(8u) time units and where jobs ofAi use more than 1/3 units of bandwidth, the
adversary incrementsi and it restarts. If the adversary does not encounter such ani-phase,
it stops whenAi consists ofk jobs.

Note that whenever the adversary restarts, the bandwidth available to the
algorithm for jobs created after the restart is reduced by at least 1/3. Thus the adversar
restarts at most 3u times, i.e.,f � 3u. It can be shown inductively that the optimu
algorithm can schedule all jobs in

⋃
l>i Al (i.e., all jobs of size less thanLi ) in time at

mostLi . Hence delaying the last job of each size by its size gives an algorithm with
stretch at most 2.

We show next that the max-stretch of the online algorithm is at leastk. Let Lf =
(16uk)3u−f be the size of the shortest jobs generated by the adversary. When the ad
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creates jobs of sizeLf no f -phase exists of length at leastLf /(8u) where jobs ofAf use
more than 1/3 units of bandwidth. Sincek jobs of sizeLf are created, there are at mo
2k f -phases. The total amount of data of jobs inAf transferred duringf -phases where
the jobs inAf use more than 1/3 units of bandwidth is at most 2k · Lf /(8u) · u = Lf k/4.
We consider nextf -phases where the jobs inAf use at most 1/3 units of bandwidth
During the first 2kLf time units of thesef -phases at most 2kLf /3 data of jobs inAf

is transferred. Therefore the total amount of data of jobs inAf transferred by the onlin
algorithm during the first 2kLf time units since the last restart is at most 11kLf /12. Hence,
there are some jobs ofAf left unfinished at time 2kLf and therefore, there must be som
job with a stretch ofk.

It follows that the competitive ratio is at leastk/2. Note that the ratioP of the maximum
job size to minimum job size is(16uk)f and that the numbern of jobs is at mostf k. Since
f � 3u, n � 3ku andP � (16uk)3u. If the competitive ratio is a constant, bothn/3u and
P 1/(3u)/(16u) must be a constant. The first condition translates tou = Ω(n) and the second
translates tou = Ω(logP/ log logP). Therefore

u = Ω
(
min{n, logP/ log logP }). ✷

Theorem 11. Let γ = min{n,P }. Against an adaptive adversary, any randomiz
online algorithm that achieves constant competitiveness for Total Flow Time mu
Ω(

√
logγ / log logγ ) resource augmentation.8

Proof. We define the adversary recursively. Choose a fixed constantδ < 1/6, and let
k > 2 be a parameter whose value we will specify later. Letu be the amount of resourc
augmentation; we restrict our attention to thoseu that are multiples ofδ. The network
consists of just a single link and the adversary generates requests which need to tra
unit of data over this link; we call these thelong jobs. Define a basic interval to be of th
form [i/(2u), (i + 1)/(2u)), wherei is a nonzero integer. If the online algorithm schedu
a job over the duration[t1, t2), then we round upt1 and round downt2 to be multiples of
1/(2u) without altering the rate which was assigned to this job by the online algori
This can only help the online algorithm. Define a basic interval to be “bad” if the on
algorithm uses a capacity of more thanδ on the link during this interval.

The adversary generates a long request at time 0. Then, at timei > 0, the adversary
generates a long request only if the previous time unit[i − 1, i) did not contain a bad bas
interval. The adversary stops as soon as it seeskδ/u basic bad intervals or has genera
k long requests. Also, during each basic bad interval, the adversary recursively ge
the lower bound sequence for(u − δ) resource augmentation with time scaled down b
factor of 1/(4ku).

Let F ∗(u) denote the optimal flow time for the above sequence, andF(u) denote the
flow time obtained by the online algorithm. LetN(u) andP(u) denote the number of job
and the ratio of the largest to the smallest job generated by the adversary, respectiv

8 In a preliminary version of this paper [18] we claimed a slightly weaker lower bound
Ω(

√
logγ / log logγ ).
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use the lower bound example from Lemma 8 as a base case,9 whereu = 1. For the base
case, chooseN(1) = k. ThenF(1) = Θ(k1.5),F ∗(1) = Θ(k), andP(1) = 1.

The optimum way to schedule all the jobs generated by the adversary is to sche
long job during a time unit which does not contain a basic bad interval. There will nev
more than one long job waiting in the system. Further, since there are never more thakδ/u

basic bad intervals, the total duration of the schedule is at mostk + kδ/u < 2k. Therefore,
the total contribution of the long jobs to the flow time is at most 2k; this also ensures tha
all the jobs generated during the recursive procedure fit into the basic interval and
overflow. During each basic bad interval time is scaled down by a factor of 1/(4ku), which
implies the recurrence

F ∗(u) � 2k + 1

4ku
F ∗(u − δ)

kδ

u
< 2k + F ∗(u − δ).

Using the base case, we obtain

F ∗(u) < 2ku/δ + O(k) = O(ku). (1)

Also, P(u) � (4ku)P (u − δ), which simplifies toP(u) = (ku)O(u), and N(u) = k +
(kδ/u)N(u − δ) = kO(u).

We now provide a lower bound onF(u). First, we study the case in which the advers
terminated before findingkδ/u basic bad intervals. Since the capacity available to
algorithm isu, any job must originally be scheduled for at least 1/u time. By rounding
up the start and rounding down the end of an interval of length at least 1/u to multiples of
1/(2u), the length of the interval decreases by a factor of at most 2. Hence, the tota
transferred originally by the algorithm is at most twice the data transfer after the roun
If the number of bad basic intervals is less thankδ/u then the total data transfer during the
bad intervals is at mostkδ. Further, the bandwidth used during the good basic interva
at most 2kδ during the first 2k time units. Hence, the total data transferred originally
the algorithm is at most 2(kδ + 2kδ) = 6kδ during the first 2k time units. Therefore ther
is at leastk(1−6δ) amount of data left unsent at the end of the 2k time units; the flow time
because of this data must be at least(k(1 − 6δ))2/(4u) = Ω(k2/u). If on the other hand
the adversary terminates because it found enough bad basic intervals, then the flo
must be at least(1/4ku)(kδ/u)F (u − δ) = F(u − δ)/(4u2). Therefore,

F(u) = min
{(

k(1− 6δ)
)2

/(2u),F (u − δ)/
(
4u2)}.

For largek, the second term is always smaller than the first (inductively) and we obta

F(u) = k3/2/uO(u).

Now, the competitive ratio isC(u) = √
k/uO(u). For C(u) to be constant,k must equal

uO(u). We now lower boundu in terms ofn = N(u) andP = P(u), given thatk = uO(u).
We can increasek as long as neither of the two conditionsN(u) = kO(u) and P(u) =
(ku)O(u) is satisfied; hence for a constant competitive ratio eithern = kO(u) = uO(u2),

9 Lemma 8 uses a length three path as opposed to a single edge network used in the current theorem
to see that the proofs in the current theorem go through even for a length three path.
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or P = (ku)O(u) = uO(u2). In other words, ifγ = min{n,P }, thenγ = uO(u2), or u =
Ω(

√
logγ / log logγ ). ✷

4. Online algorithms for makespan and total completion time

In contrast to the flow and stretch metrics studied in the previous section, sta
techniques can be used to obtain constant competitive online algorithms for mak
and average completion time for the online ftp problem without the use of res
augmentation. We outline the details below.

Makespan: Defineλ as the maximum amount of data that needs to be transferred ov
edge in the network. We rescale time so that one unit of data can be trans
over a link in one unit of time. LetaMAX be the time at which the last reque
arrives. LetL be the quantity max(aMAX , λ). L is a lower bound on the makesp
of any schedule. The online algorithm does the following:

It maintains a guess̃λ for the value ofL. We assume that the first request arrives
time 0. The initial value of̃λ is set top1, the amount of data transfer needed by the
request. Each time a request arrives, the algorithm recomputesL. If L > λ̃, λ̃ is reset to
max(L,2λ̃). The online algorithm schedules a newly arrived requestj to execute from
time λ̃ to 2λ̃, with a rate ofpj/λ̃. It is easy to see that the above algorithm does
violate capacity constraints. LetU represent the final value ofλ̃; by constructionU is
at most 2L. The makespan is at most 2U + U +U/2+ · · · < 4U . We cannow claim the
following result.

Theorem 12. The above algorithm is8-competitive.

If routes are given as input,λ̃, and henceL, can be computed efficiently and the abo
algorithm runs in polynomial time. Therefore, it is also an offline approximation algori
Moreover, an offline algorithm can compute the exact value ofL rather than maintain
guess. Hence, the offline algorithm can provide an approximation guarantee of 2.

If routes are not given as part of the input, computingλ̃ is equivalent to the intege
routing problem, and our approach does not result in anO(1) approximation algorithm
The above online algorithm still obtains an 8-approximation, but it cannot be implem
to run in polynomial time unless P= NP.

It is easy to obtain a lower bound of 1.25 on the competitive ratio of any algorithm f
minimizing makespan for the online ftp problem, even with given routes. Consider
the three link network used in Section 3.2. The adversary randomly chooses one
links A−B andC −D to be special. At timet = 0, the adversary generates a request f
A to C and one fromB to D, each requiring one unit of time to complete. At timet = 1
the adversary generates another unit request, this time over the special link. The op
makespan is 2, but the expected makespan of any online algorithm must be at lea.5.
Notice that the above lower bound assumes only an oblivious adversary, whereas th
bound is against an adaptive adversary.
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Total completion time: The general scaling technique outlined by Hall et al. [19,
directly results in a 4-competitive online algorithm for the total completion t
metric, regardless of whether routes are given as part of the input. Their tech
requires an offline algorithm that can pack an optimum number of requests
given interval. This problem is NP hard, and therefore, our online algorithm
not run in polynomial time. AnO(logm)-competitive polynomial-time algorithm
is outlined in Section 5.

The lower bound example outlined above for makespan gives a lower bound of 1.1; the
optimum total completion time for the above sequence is 5 whereas any online alg
must have an expected total completion time of at least 5.5.

5. Polynomial time approximation and online algorithms

In this section we give offline approximation algorithms for total completion ti
makespan, total flow time, average stretch, maximum flow time, and maximum s
that run in polynomial time. The algorithms for total completion time and make
approximate the optimum performance without resource augmentation. The algo
for the remaining metrics achieve optimum performance using either a constant
or a polylogarithmic-factor resource augmentation. We conclude the section by
polynomial-time algorithms with optimum makespan under two different relaxation
our model:

(1) We relax the condition that the rate of a job has to be constant: we give a polyno
time algorithm that varies the rates and achieves optimum makespan.

(2) We assume that the start timesj is part of the input and show that then the probl
can be solved in polynomial time.

Theorem 13. There exists an algorithm that achieves anO(logm)-approximation of the
total completion time for the online ftp problem in time polynomial inn andm, regardless
of whether routes are given as part of the input.

Proof. Consider the problem of maximizing the number of ftp requests (out of a g
set of requests, all of which have the same arrival time) that can be schedule
a given period of time. LetN∗ denote the value of the optimum solution. We fi
describe a polynomial-time algorithm that can schedule at leastN∗ requests in an interva
which is at most a factorO(logm) larger than the original interval. The algorithm us
multicommodity flow followed by randomized rounding [27] as described below:

Obtain the multicommodity flow relaxation by allowing requests to complete frac
ally. This relaxation is a linear program and can be solved in polynomial time. Letxi denote
the fraction of requesti completed in the optimum fractional solution. Round the fractio
solution by choosing̃xi = 1 with probability min{xi logm,1} andx̃i = 0 otherwise. Here
x̃i = 1 denotes that requesti will be chosen. If the number of requests satisfied by the i
ger solution is less than the fractional optimum, or if the integer solution exceeds ca
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on any edge by a factor greater than 4 logm, then repeat the rounding process, else use
currentx̃i as the integer solution and terminate.

Standard Chernoff bound arguments imply that the probability that the rounding pr
will be successful is 1− o(1) during each iteration; for our purposes it is sufficient
assume that the probability is at least 1/2. The expected running time of the algorithm
polynomial, and when the algorithm terminates, we are guaranteed to have sched
leastN∗ requests and exceeded capacities by at most a factorO(logm). Since the request
are malleable, exceeding capacities byO(logm) is equivalent to stretching the scheduli
interval by the same factor.

Plugging this into the general technique of Hall et al. [19,20] results in anO(logm)-
competitive polynomial-time online algorithm for the total completion time of
requests. ✷

A polynomial-time 2-approximation for the makespan of the ftp problem when ro
are given as part of the input follows from the discussion in Section 4; Theorem 13 r
in anO(logm)-approximation if routes are not provided as input. Hence, we obtain:

Theorem 14. There exists an algorithm that achieves a2-approximation for makespan i
time polynomial inn andm if routes are given as part of the input, andO(logm) otherwise.

We now describe how to implement algorithm MRHP in polynomial time. The only
of MRHP which might take super-polynomial time is step 2, finding the largest we
subsetAi of Si that can be completed between timest and t + 2i . To implement it in
expected polynomial time we need to add logm+2eK to the capacity of each edge, whe
K = logn + logP + 3.

We use first a linear programming relaxation of the problem, then round it probab
cally and finally show that with high probability no edge capacity constraint is violate

1. The linear program uses for each jobj a variablexj and maximizes
∑

j∈Si
wjxj under

the constraint that for each edgee,
∑

j usese xjpj/2i � 1 and that for eachj , xj � 0.
Let x∗

j denote the value ofxj in the solution.
2. We probabilistically round each jobj for each networki suchP(j ∈ Ai) = x∗

j . Let
Xe be the random variable denoting the load of edgee in G.

3. The expected valueµ of Xe is
∑

0�i<K

∑
j usese x∗

j pj /2i � K. Using Chernoff
bounds withδ = (logm + 2eK)/µ − 1 shows that

Pr(Xe > logm + 2eK) �
(

eδ

(1+ δ)1+δ

)µ

�
(

e

logm + 2eK

)logm+2eK

<
1

(m(nP)2e)

Thus, the probability that one of the edge capacities overflows is at most 1/(nP )2e in
which case we simply redo the rounding step.

Note that both MMF and MMS already run in time polynomial inn, m, and logP if
routes are given as part of the input. The same ideas that we outlined above for tot
time also result in polynomial-time algorithms for the max-flow and max-stretch prob
when routes are not given as input.
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Theorem 15. There exist(online and offline) algorithms that run in time polynomial inn,
m, and logP and

• achieve optimum total flow-time or average stretch with an expectedO(logn+ logP +
logm)-factor resource augmentation regardless of whether routes are given as p
the input;

• achieve optimum maximum flow time with a constant-factor resource augmen
if the routes are given as part of the input, and expectedO(logn + logm) resource
augmentation otherwise;

• achieve optimum maximum stretch with anO(logP)-factor resource augmentatio
if the routes are given as part of the input, and expectedO(logn + logm + logP)

resource augmentation otherwise.

We finally relax some of our conditions. Consider first the case that the rate of job
vary. Assume that the optimum makespan isM. We present a linear program that giv
M checks whether there exists a feasible solution. By performing a binary search ovM,
with 0< M � nP and assuming that time is rescaled so that the shortest job takes on
unit, we get a polynomial-time algorithm that finds the optimum makespan.

We assume w.l.o.g. that the first job arrives at time 0. Break the time from 0 toM into
intervals whenever a new job arrives and number the time intervals from 1 ton. Let li be
the length of intervali and letaMAX be the arrival time of the last job. Note that the len
of the last interval isM − aMAX . There is a variablexj,i for each intervali and each jobj .
The linear program checks whether there is a nonnegative assignment for the variabxj,i

such that

(1) for each jobj ,
∑

i xj,i li � pj ,
(2) for each edgee and intervali,

∑
j usese xi,j � 1, and

(3) for each jobj and intervali such thatj arrived afteri, xj,i = 0.

6. Conclusions

In this paper we considered theonline ftp problem. The goal is to service a sequen
of file transfer requests given bandwidth constraints of the underlying communic
network. For several metrics of interest (average flow time, max-stretch etc), it is pro
hard to obtain sub-polynomial competitive ratios. Hence, it is worthwhile trying to s
these problems in a resource-augmentation model. In this model, the online algor
given greater capacity than the offline optimum it is compared against. This correspo
the concept of “over-engineering” in real-life networks, where extra capacity is built
cope with inefficiencies in network protocols.

The main result of the paper is a technique that leads to algorithms that optimize s
natural metrics, such as max-stretch, total flow time, max flow time, and total comp
time. In particular, we show how to achieve optimum total flow time and optimum m
stretch if we increase the capacity of the underlying network by a logarithmic factor.
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We also gave polylogarithmic lower bounds on the resource augmentation
necessary in order to keep the total flow time and max-stretch within a constant
of optimum.
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