Proxy caching based on object location considering semantic usage.

Philippe Rochat, Stuart Thompson
Database Laboratory,
EPFL (Swiss Federal Institute of Technology)
{Philippe.Rochat | Stuart. Thompson} @epfl.ch

Abstract

With the Internet success leading to heavy
demands on network, proxies have become an
unavoidable necessity. In this paper we present a
new technique to improve caching services for an
Internet user group.

We propose an alternative to classical LRU, LFU
or similar algorithms. Our approach is based on
object wusage, cross-references and geographic
location. With our system we will not only
improve on storing performance taking into
account preferences and usage of specific user
groups, but we will also improve latency
performance with accurate pre-fetching.

In order to do this, we use three mechanisms: (1) a
normalised indexing tree based on the URL
semantic; (2) a graph representing inter-
documents references; (3) a Kohonen like
algorithm to bring out the real topology of the web
usage space.

1 Introduction

Due to the success of the Internet, and more
specifically the World Wide Web popular expansion,
the network is more and more loaded with traffic
volume and this leads to performance losses. In order
to increase response time and reduce network usage,
we have proxies that store document copies locally
(for a community) and thus closer to the user.
Usually, proxies are located on the same LAN as the
user and he has then fast access to it. More
information about proxies can be found in [1] [2] [3]
[4].

Internet is not only the technological communication
system inside of the global village but it has also
cultural aspects. Despite globalisation, linguistic and
cultural groups remains distinct with specific needs
and interests. As said in [11] “History, geography,
culture, language and economics are features that
shape the regional identity...”. It seems smart then,
to take into account these particularities for shaping
the proxy cache content.

As shown in [3] LRU (Least Recently Used) is a poor
policy, although LRU is relatively efficient for
caching memory in applications. This can be partially
explained by the objects size that vary a lot for

Internet documents, but it’s probably also related to
the virtually unlimited size of the Internet compared
to the limited space applications memory. LRU
simple variations can already significantly improve
performances [3], but all these algorithm are only
considering objects’ size. In [6] is also analysed an
algorithm that is not only based on object’s size but
also on load delay, load bandwidth and references to
a document'.

All these studies are concentrating their analysis on
the technical aspect to tune the proxy caching, and do
not take into account the possible connection between
users cultural needs and the objects. This what we
would like to develop here.

Ilustration

When a user surfs on the web, because data are
poorly classified, he will probably have an erratic
session.

In the web proxy usage, we could consider that we
have an infinite world that users want to explore. We
could use an analogy of ramblers in the countryside.
First, the distance is significant for the visitation of
certain locations. The further the distance, the less
probably a rambler will go there. When ramblers use
the same path many times, it becomes a path and later
a road. But when no ramblers use a path, the grass
grows again, and the path disappears. A path and
mostly a road means an easier route and so shorter
distances in time.

Now we would like to have the same behaviour for a
surfer group. The problem is that the distance concept
is quite difficult to represent on the web, and it’s
what we will try to do with the methodology
presented in this paper.

The rest of the document is organised as follows:
First we examine the elements we will take into
consideration for our web topology representation. In
the third section we will show exactly how we use
this description to build indexing structures inside our
cache. Section four presents the methodology used to
manage these data structures over time. Section five
is dedicated to the analytic aspect and section six
summarizes the benefits of the proposed approach.

' You also find in [6] discussions about LFU (Least
Frequently Used) usage.

2 Topology elements

Because we want to be able to evaluate distance
between objects on the web, we first have to
determine what parameters or dimensions will be
taken into account for this distance evaluation. We
could split objects properties we can see from the
proxy point of view into three main categories:

e The URL that gives us the exact location of the
object as an OID gives us also information about
the physical location of the document: server
address and file path.

¢ The HTTP_REFERER that is carried with each
query for a web document. This information
gives us the exact path followed by the user to
reach the document.

¢ The document content. This is probably the most
meaningful information about the document, but
also the most difficult one to extract. Ideally we
could find the most interesting information about
the document subject by mining into the content.
But we have to satisfy response-time
performance in a proxy, so we should not try to
do this, because mining into thousand of
documents on the fly for all the users would not
be possible.

Other information could be extracted from the HTTP

header, like the size, the type (mime type) and many

others. This information could also interact with what
we consider as the document location, but the
semantic value it have about the object itself is light.

So we will not take them, and for the many other

values, they are specific cases, that are not

systematically present and we could not build a

global topological function on these.

Presently we have chosen to base the topology of our
environment on the URL and the HTTP-REFERER
that a proxy can easily extract from each query made
through itself. We now examine these for their
information value:

URL signification

Even if the domains are badly defined in the Internet,
especially with exuberant usage of the .com for
example, we could have information about the
cultural context of a document by its URL. For
example, hosts located into .fr domains are very
probably French oriented. And for the misuse of
domains like .com, we still can hope that the situation
will evolve positively (Internic intends to work better
and give more accurate domains attributions). After
the country information, we have the domain itself,
that give us content information: for example
documents in a university domain are most likely
academic oriented. So the domain’s name gives us

contextual information and the same is true, at finer
scale, for the hostname.

The file-path in the URL gives us information at a
more precise scale. The most probable way
webmasters are using directories and subdirectories
to store documents on their server is directly bound to
the way they are put into categories and
subcategories.

HTTP-REFERRER

The http-referrer information gives us the exact link
followed from a document to another. This gives us
the connectivity of the web. Two documents, one
referring the other are connected, but the reverse is
not true because, we aren’t analysing the document
content, and the link may not exist. With this
information we could not only track the exact path
followed by a user, but we could also determine the
frequentation of the web paths. With this information
we also have a precise proximity with the document-
to-document neighbourhood. Then, as mentioned in
our ramblers’ countryside, we could know, easily, if
the links between documents are paths, roads or
highways.

Now we have determined two topological
dimensions, respectively the URL and the http-
referrer values. The URL gives us the geographic
location, possibly, of the document on the web and
the http-referrer gives us an exact position in the
web-documents neighbourhood but an incomplete
position, because we will not have all documents
referred in our cache.

3 Indexing

Now from these two dimensions, we want to express
them into an index model representation.

3.1 URL representation

As we have seen before, the URL information can be
split into hierarchically significant lexeme (We
define a lexeme as a word composing the address.
Ex. epfl is a lexeme in http://www.epfl.ch). This
leads us directly to a tree structure with lexeme at the
nodes. This will give us an unbalanced tree (we could
accept this) with documents at the leaves. But as we
will see later, we need our tree to be normalised and
to have all leaves basically at the same distance from
the root.

In order of signification importance, we first
represent the server’s address in our tree. To
normalise it’s distance parameter we split it into three
lexeme, in order of signification: the tail being the
country, the domain (one lexeme preceding the
country), and the head is the server name (perhaps
followed by sub-domains). Each lexeme becomes an

address node. We then have the path. We can
consider this path has a depth: t, which is the number
of lexeme in the URL file path. Each lexeme, will
represent a path node in our graph. Then we associate
a weight for each edge in our graph with the
following rule:

Our tree Gugy, = (V, E) with V={vI1, v2, ..., vn} a set
of edges, E={el,e2,..., en} a set of nodes, t the depth
of the path, K constant values and ki a set of values
that we call the reference set (see below).

We have a weight function, c:E->R+ for each edge
ei with i={1,2,...,t} composing the path from the root
to the leaf, with i=1 for the first edge, and i=t for the
edge connected to the document:

(1) (&)= ki (If the edge does not exists!)

c(e)=K- Zc(ei) orc(er)=K-— Zk/

and Z ki < K constraint on the reference set.
i=

With this, we have a normalised tree (see Figure 1),
with all leaves at same distance from the root,
considering documents either in a flat server or in a
well-structured one with a deep tree structure. We
call this the URL-indexing tree.

As we will see later, the edge’s weight will evolve in
time, with edges being reduced proportionally to the
frequentation, so the weight function is only
applicable when creating new edges for a new object
to be inserted. If, at insertion, some edges already
exist, they are just left at their weight value, only new
edges are calculated.

This explain the two possible functions: the first will
always set the document at a distance K from the root
and the second will make new documents directly
benefit from their environment activity.

In the next paragraphs we will describe the functions
that will modify this URL indexing tree topology.

Reference set

The reference set is composed by a set of k; each k;
defines the default value of a new edge at rank n with
n the edge count from root. This default value has a
direct impact on later progression in the tree: the
greater the weight of an edge at creation, the more it
will climb the tree with activity, and the more it’s
sub-leaves will reduce their distance to the root. For
example, giving a big value to the hostname level
initialisation will signify that documents in the same
server will collaborate highly to improve their
distance to the root and document less active but in
the same server will also benefit somehow from this
collaboration.

k2
.domain .epfl
ks ks
flathost ‘(lbdwww
K ka ka
dirb1 Y dira1
ks
¥ dira2
k adocb.html A\ adoca.htm
http://Ibdwww.epfl.ch/diral/dira2 /ado ca.html
http:/ /flathost.domain.fr/dirb1/adocb.html

Figure 1 The URL tree indexing structure.

3.2 Referrer representation

Now we have the URL indexing tree, we superpose a
graph representing the referencing information. This
graph is a simple (no self connected node, we ignore
these auto-references) digraph (oriented). The
construction of this second graph is quite simple:
each time a document goes through the proxy we
seek out the referrer and if the referrer exists in the
cache (which is very likely), we store a link (an
oriented edge) from the referrer to the document. The
weight of a new edge is constant at creation. We
have:

Guep = (V,E), and C>>0 a constant value.

We have our weight function for oriented edges:

(2) c:E->R with c(e) = C from referrer to referred.
We call this graph the web graph and it represents the
path network that ramblers could follow. As we will
also see below, this graph will evolve in time and
edges will be modified. This graph will represent the
documents’ neighbourhood.

4 Graph Management

In this section we will present the way we modify our
graphs regarding proxy use.

4.1 Frequentation representation

We have these two graphs, we want to modify them
according to the hits on a page in the cache. The
basic thing we take is that we will modify the relative
position of a document according to how often it is
accessed. For the URL tree we would like to have
documents accessed many times to be close to the
root and the documents accessed rarely to be further
away. That way documents accessed many times will
be closer to the user group, depending on hits and
geographic location.

For the web graph we would like to have frequently
used paths to be shortened and that way we will have
a relevant neighbourhood.

Furthermore, we would like to have converging
zones (around an implicit topic, the meaning of a
zone has a semantic of use) of cross-referenced
pages, which represent the real distribution of the
pages on the web.

With this representation we will be able to easily
clean out of the cache documents away from the root,
and we will be able to pre-fetch documents
considered likely to be linked to.

To achieve this we will modify some edges of the
two graphs each time an object in the cache is
queried (each time a hit occurs).

URL tree reduction function

We want to move a hit document closer to the root.
This means reducing edges composing the path from
the document to the root. We can easily show that
edges around the root will be reduced really more
often, because they are partitioning web space with
larger amount of documents below them whereas
subdirectories partition smaller spaces. Therefore, we
will reduce less the edges around the root.

Each time a hit occurs, we will reduce the edges
composing the path from the document to the root
with the following function:

(3) c(ei)=r,c(ei) withr, <1 a constant reduction
factor.

Web graph reduction function

We want the neighbourhood of the two elements to
be reinforced.

Each time an existing link between two documents is
used, we will reduce this path with the following
function:

(4) c(ei)=ry.c(ei) withr, <1 a constant reduction
factor.

Combination

The above functions reinforce the proximity and
bring hit documents closer to the root, but they do not
reinforce the regional activity (intensity of usage). To
represent the influence zone around a hit, we will use
a Kohonen auto-organisation like
algorithm[14][16][17]. This means that each time a
hit occurs, we will also bring the neighbourhood
closer to the root and reinforce this neighbourhood
proportionally to the function called Mexican-Hat, as
shown in Figure 2.

A= NP
- _Qozst

Figure 2 The Mexican Hat function

We define a neighbourhood V={n,,...,n;} around the
activated node (hit document) such that for each node
n the path P={e,,...,ej} to the hit node (respecting
the orientation of sides) is less than the distance D:

J
(5) de = cler)
p=l
V={m,...,n}| O OV, dk < D}
We, thus, apply the Mexican Hat function f() on the
distance to obtain a factor x; applicable to a node ny:

(6) xk = f(dr)

We then modify the web graph by applying on the
last edge ¢; of the path connecting n, a modified (4):
(7 c(gf) = (1-(x, m)e(gf) with m < 1 a
moderating factor.

And we also modify the url tree by applying on the
path from the root to the leaves ny a modified (3)

(®) c(er) = (1-(xi(1-ry))e(e).

Operations (7) bring closer together the nodes
(documents) of the neighbourhood, pushing apart the
documents less closely related and (8) elevating the
position in the URL tree of those documents in the
immediate neighbourhood and descend the lower
position of those further away. Documents over a
certain distance are considered to be outside V and
are not altered.

4.2 Refreshing

The above functions will lead to the shrinking of the
two graphs to the point where they can not shrink
further. With this consideration, we have to add a
function that will counterbalance the reduction effect.
We will take inspiration from Mother Nature and
make our tree grow during it’s life time.

URL tree growth

After N queries have been made through the proxy,
every edge in the tree e;, has a constant value added
to it’s weight:

9) c(ei)=c(e)+M.

This spreads out all nodes from each other and from
the root.

Web graph growth

For this graph we want to impose an average edge’s
weight value. Let’s call this average A (with
A OC). We will then periodically do the following:
Let E={el, e2, ..., en} the set of edges in the graph.
We have:

An
(10) x = ———— the reduction factor we have to

Z c(e)

apply for each edge ei: c(ei) = x.c(ei)
Applying this, the web graph distances remain
always accurate for our pre-fetching function.

Removal

When an object is removed from the cache, as well as
being removed from the cache storage, the related
node is left in the URL tree and the web graph, but
the edges applicable to the removed node are marked
as being dead. Dead edges are not refreshed.

5 Analysis

Before trying to make use of the index structure let’s
consider it. As we said, we have a topological
representation of the web, with the neighbourhood
represented by the connectivity of documents stored
in our web graph and the distance from the root that
could be considered as the topological altitude”.

With this we describe the web space as hills grouping
together neighbouring documents. The following of a
path through a referrer will move the documents
closer together and the hit to a known document will
make its altitude grow, and also the environment (i.e.

? For the understanding we will represent altitude as
the reverse of the distance. Thus documents near the
root will be represented higher, just like if frequently
hit documents get closer to the sun !

documents on the same hill) will be also brought
higher.

5.1 Kohonen Aspect

We now briefly come back to the Kohonen model, to
better understand the functionality of our system
through analogy. In a Kohonen network we have two
levels: the level of introduction of the signal (plastic
level), and the level of reoccurring lateral inhibitions.
The first level has the task of determining the exit
function of a introduced signal. The second level
creates a bubble of activity in the neighbourhood of
the activated node[16].

In our model, the first level largely corresponds to the
URL tree. The activated node is determined
immediately and without ambiguity. The second level
corresponds to the web graph, all the nodes are not
interconnected, but the edges oriented away from the
node represent the links with other documents,
determining its neighbourhood. Also, the
frequentation of these links equally influences the
weighting on the edges, whereas in a Kohonen
network the auto-organisation part of a random state
is without exterior influence. In spite of this we
observe as in the Kohonen network:

”The algorithm’s result is that the density of stimuli
space converge towards a discrete image, such that
the elements of this image respect the topology of the
entry space.” [16]. And this is exactly what we want.

Figure 3 Resulting topology

From Figure 3, we can intuitively consider:

- Below an altitude, let’s call this sea altitude,
documents are not frequently queried, and
therefore are not pertinent to be cached.

- Hills represent documents grouped by usage and
thus grouped by user interest.

- When a user lands on a hill for a walkthrough, he
will very probably journey on the hill, and will
also probably try to reach the top.

Relating these consideration to our proxy, we see

now how we can easily define:

- Cache clean-up strategy.

- Pre-fetching strategy.

- Presenting to the user documents related to what
he is looking for and that way helping him to
find information.

5.2 Tree evolution

When we observe the evolution over time of our
URL tree we observe that the documents move
towards the root of the tree, in proportion to their
frequentation. The documents collaborate, this means
that documents affect how related documents move
up the tree, this may not be true representation of the
number of times they have been "hit".

However we note that documents that are strongly
and importantly related to a "hit" document are
influenced to climb the tree towards the root. This
means that documents stored structurally on a server
will be advantaged in comparison of documents
stored flatly.

It is inevitable that in the collaboration affect
between the documents is made automatically
because of the sharing of edges. Thus the hit
document favours not only inactive documents but
also active documents.

In view of this, the updating of the reference set has
great importance, we make a point of giving a value
relatively weak to the directories of the file path and
privileging the server addresses that have stronger
semantics.

Validation

We tested the idea with a proxy shared by people in
our lab. The results was clearly showing that
documents located in same geographical space (i.e.
sharing common lexemes in their address) were
advantaged and by that way we got cultural groups
being reinforced. In our tests, documents hosted in
countries speaking the same language (in our
example it was French, related to .fr addresses) had
distance values 40% shorter than for example german
speaking countries (.de or .nl addresses). This means
the url tree has a strong coherent impact on the
cultural cartography of the web.

6 Benefits

With these graphs indexing the documents carried
through our proxy, we have now a more usage-
oriented representation of the documents positions
and interrelations. From this representation we will
get natural management functions for cache clean-up,
pre-fetching and we could later bring up a search
engine based on our community habits.

Cache clean-up

All proxies have a limited cache space for storing
documents, and because the web is almost unlimited
it will occur that the cache size is reached by filling
objects carried through the proxy. When this limit is
reached, we then have to perform a cache clean-up to
free some space for new documents coming through
the proxy. The smartest way to do this is to remove
from the cache space documents that have low
probability to be queried.

Considering our URL address tree indexing, we have
documents with such a low probability being moved
away from the root by the trees growth though
documents with high probability are moved near the
root. The document’s distance to the root is quite
simple to calculate in our tree. Then for cache clean-
up we could calculate this distance for documents,
and removing documents either past some distance,
or the most distant.

Comparing to LRU algorithm, our function respects
the frequentation for documents that could be queried
many times during a short period and are then
ignored for some time. This kind of document would
be removed with a LRU algorithm if the clean-up
occurs at the end of non-usage period, even if
considering a large scale they are statistically highly
used.

Pre-fetching

We can find immediately in the web graph, the
document or documents that are within a certain,
given, distance. By this observation we obtain
immediately which documents are the most probable
to be consulted next. We can therefore implement
extremely easily a mechanism of pre-fetching relying
on the topology of our system.

The observation of user habits on the Internet shows
us those users who are often using the same paths in
the research of documents. Any user illustrates this in
seeking a document already visited but who has not
memorised the address, they follow their original
path.

Search engine & classification

As our representation emphasises a natural
classification, developing itself in the course of use, it
would appear obvious that this classification has
important semantic value. Thus our relief represents a
relief with a semantic pattern that will show itself
resulting from the use of the web from a user group.
By consequence we could equally examine the relief
for finer patterns of the user groups, orientating them.
Thus when a user consults a document we could
support navigation very powerfully by identifying the
most probable links that will be followed and give a
list of those documents being in close proximity,

indicating the sites that are semantically related, like
the "What's related" list of current web browser.

7 Conclusion

The system that we propose is an adaptive system
that evolves as a function of usage. As with most
systems of this type it implies a relatively complex
algorithm for sequential systems. We can see very
easily the calculation of the neighbourhood and the
modification of the weightings is a relatively heavy
operation. The refreshing of the two graphs to
compensate the increasing proximity of the nodes is
equally a very heavy operation since it is necessary to
regularly traverse all the edges to readjust the
weightings. In the case of the URL tree it is a
question of simple addition, however for the web
graph it is necessary to carry out multiplication. Also,
all the edges have weightings being a real number,
which is an important consideration in terms of
space. However we believe this cost will bring
distinct advantages, such as managing itself correctly
and not penalising the web users. When the user
requests a cached document, the page can be given to
the wuser immediately, independently of the
readjustments involved by the hit. Also, to readjust
the graph we put the system to work when the
network is at low usage. The advantages that our
system offers are:

A better strategy of caching leading to better output
from the cache.

* The possibility to provide instant pre-fetching
without having to analyse the contents.

* An indexing which takes into account the topology
of the web, which is at the beginning anarchistic
but structured by use.

This last part seems to us to be crucial to put in place

the functions like "what's related" which correspond

to a particular cultural group.

The ““ smart proxy” is a domain that still calls for a

number of developments, we are sure that new

statistic modelling techniques are still to come.

8 Bibliography

[1] C.C.Aggarwal and Ph.S.Yu. “On disk Caching
of Web Objects in Proxy Servers”, CIKM, Las
Vegas, 1997.

[2] Peter B. Danzig, Richard S. Hall, and Michael F.
Schwartz. “A case for caching file objects inside
internetworks.”, Proceedings of the SIGCOMM
'93, pages 239--248, September 1993.

[3] A. Chankhunthod, P. Danzig, C. Neerdaels, M.
F. Schwartz, and K. J. Worrell. “A hierarchical
Internet object cache.”, In USENIX 1996 Annual
Technical Conference, January 1996.

[4] M. Abrams, C. R. Standridge, G. Abdulla, S.
Williams and E. A. Fox. “Caching Proxies:
Limitations and Potentials”, in Proc. 4th
International World-Wide Web Conference,
Boston, Dec. 1995.

[S] M.Makpangou and E.Bérenguier “Relais: Un
protocole de maintien de cohérence de caches
Web coopérants”, NoTeRe '97 colloquium, Pau
(France), 4--6 nov 1997.

[6] R.P.Wooster and M.Abrams “Proxy Caching
That Estimates Page Load Delays”, 6"
International WWW Conference Proc. Santa
Clara, CA. April 1997, pp. 325-334

[7] M.Kurcewicz, W.Sylwstrzak and A.Wierzbicki
“A Filtering Algorithm for Proxy Caches”,
CIKM, Manchester (UK), 1998.

[8] I.Marshall and C. Roadknight “Linking Cache
Performance to User Behavior”, CIKM,
Manchester (UK), 1998.

[9] M.Reddy and G.P.Fletcher “Intelligent web
caching using document life histories: A
comparison with existing cache management
techniques”, CIKM, Manchester (UK), 1998.

[10]E.A.Brewer, P.Gauthier and D.McEvoy “The
Long-Term Viability of Large-Scale Caching”,
CIKM, Manchester (UK), 1998.

[11]V.F.Almeida, M.G.Cesario, R.C.Fonseca,
W.Meira Jr. and C.D.Murta “Analyzing the
Behavior of a Proxy Server in Light of Regional
and Cultural Issues”, CIKM, Manchester (UK),
1998.

[12]B.Williams “Transparent =~ Web Caching
Solutions”, CIKM, Manchester (UK), 1998.

[13]A.Ortega, F.Carignano, S.Ayer and M.Vetterli
“Soft caching: Web Cache Management
Techniques for Images”, Workshop on
Multimedia Signal Processing, Princeton (New
Jersey, USA), 1997.

[14]E.Davalo and P.Naim “des
Neurones”, éditions Eyrolles, 1990.

[15]C.Jacquemin “Logique et mathématique”,
éditions Masson, 1994.

[16]M.Cottrell and J.-C. Fort “Aspects théoriques de
I’algorithme d’auto-organisation de Kohonen”
Annales du groupe CARNAC No2, Lausanne,
1989.

[17]1F.Blayo “Réseaux
Lausanne, 1995.

Réseaux de

Neuronaux”, EPFL,

