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Abstract .  A conceptual model provides the best
support for federating heterogeneous datastores into a
unified framework and elaborating a global consistent
description of all available data. It therefore plays a
central role for exchange of information within the
coming information society. This paper introduces a
conceptual model for applications using spatio-temporal
data. We discuss in particular the features which support
spatial and temporal modeling. An example of
conceptual design is given using a pedology application.
Advantages of our approach for database design are
assessed through comparison with traditional
geographical information systems modeling techniques.
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1. Introduction

The number of applications using spatial or geographic
data has been ever-increasing over the last decade.
National as well as local governments are faced with the
high complexity of long term decision making
processes, where ad hoc issues are to be evaluated in the
context of more general policies concerning land,
population, resources and environment management, just
to mention a few factors to be taken into account. The
demand is high for such decision support applications
based on factual geographical data.

The technical response from the computer science
perspective, in terms of application support, is rapidly
evolving. On the one hand, the new object-oriented
paradigm materializes an approach which substantially
improves understandability as well as system
functionalities and even performance. On the other hand,
new small scale geographical information systems (GIS),
often termed desktop GIS, are coming to the market to
challenge traditional dinosaur GIS, i.e. huge software
systems so complex that only specialists can really use
them. It is therefore foreseeable that the GIS market will
rapidly evolve to desktop GIS directly used by
application-oriented people, e.g. geographers,
economists, managers. By the time these new GIS
become available, people as well as application programs
will be familiar with using the Web to access distant
information. This should also be the case for GIS, as the
geographical information of relevance to an application
is normally spread over a number of different locations
and into heterogeneous data stores. Using the Web as a

communication channel is likely to be the easiest way to
get data from the heterogeneous stores.

However, for this vision to become reality, GIS
technology still needs to achieve a substantial progress
in terms of interfaces, which includes in particular the
data modeling features they are built on. Current user
interfaces are mostly based on the form-filling paradigm.
While this approach is very simple for users, it implies
that only pre-planned interactions (data acquisition,
queries, updates) are possible. Such a fixed pattern for
data usage is well suited for the development of
applications, where these have to be planned in advance,
designed, implemented, tested. Rigidity, on the contrary,
is not at all well suited for interactions with casual users,
whose requests are abruptly determined and call for on the
fly execution. All forms of exploratory data
investigation, where users navigate through unplanned
paths, also need maximum flexibility in their interface to
the GIS.

From the data modeling perspective, while the object-
oriented approach represents a significant step forward, it
still is not the ultimate response users can expect. More
than thirty years of experience in database design have
clearly shown that user requirements are best satisfied by
conceptual modeling tools and formalisms. With respect
to implementation oriented modeling techniques as used
in relational and object-oriented design, conceptual
modeling has two significant advantages: it allows
designers to focus on the problem (i.e. the representation
of application data and processes) without any concern
for technical constraints, and it provides a long lasting
result, where implementation oriented models become
obsolete as soon as the techniques evolve. Moreover,
conceptual models provide the best support for visual
user interfaces. Entity-Relationship (ER) [Spaccapietra
92] or Unified Modeling Language [UML 97] diagrams,
for instance, allow users to visualize and easily
understand the content of the information systems. These
diagrams also support direct manipulation techniques so
that users can browse the database or express queries and
updates without the burden of obeying the difficult
syntax of a textual language [Dennebouy 95]. A
conceptual model also provides the best support for
federating heterogeneous datastores into a unified
framework and elaborating a global consistent description
of all available data [Saltor 91]. It therefore plays a
central role for exchange of information within the
coming information society.
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While conceptual modeling has received a great lot of
attention in the database community, little effort has
been put up to now into the development of a conceptual
model for GIS applications. Three major design
methodologies have been proposed for GIS, all based on
the discrete view of space. MODUL-R [Caron 93, Bédard
96] is the oldest proposal. It extends the original ER
formalism [Chen 76] with pictograms representing the
geometry and temporality of spatio-temporal objects. It
inherits from the ER source its strong limitations in data
structuring capabilities, as objects with a complex
structure cannot directly be represented and have to
normalized into flat structures identical to first normal
form relations in the relational model. MODUL-R also
suffers from a lack of formal definitions. MECOSIG
[Pantazis 96] is a recent proposal. Its object oriented data
model is very powerful (and complex): a list of more
than 30 different spatial object types is proposed with
associated topological integrity constraints.
Unfortunately, it does not support any kind of spatial
relationship, nor any concept for temporal modeling, a
feature of uttermost importance for most spatial data
applications. POLLEN [Gayte 96] is an object-oriented
design methology based on OMT [Rumbaugh 91] for
spatio-temporal information systems. The data model
supports five predefined classes: point, line, area, time-
interval and time-instant from which users' classes will
inherit. POLLEN however does not offer a conceptual
model, rather a method to implement a spatio-temporal
database on an object-oriented DBMS.

This paper proposes a conceptual model for spatio-
temporal data, called MADS, which offers an object-
based modeling of data structures enriched with spatial
features (a rich variety of geometries), explicit
description of topological relationships (whose scope has
been extended to apply to objects with complex
geometries), and temporal specifications. MADS is
supported by formal definitions, establishing a
theoretical basis to build manipulation operations, and is
being implemented as a visual user interface independent
from any underlying GIS. We briefly present the main
characteristics of MADS in the next section. Section 3
discusses a concrete application to show an example of
conceptual modeling with MADS. Section 4 assesses the
benefits of conceptual modeling by reporting results
from an experimentation. Section 5 concludes the paper.

2. MADS: a Model for Application Data
with Spatio-temporal features

As a conceptual model, MADS aims at supporting the
expression of information requirements independently of
technological and otherwise computer related concepts,
thus facilitating man-machine communication. This is in
contrast with the current situation where users must
adapt to the inherent technological constraints of a
particular GIS and transform their intuitive specifications
until they conform with the underlying system.
In addition, MADS aims at achieving the following
general modeling objectives:
• Completeness (thematic, spatial and

temporal information) : the model must include a
set of concepts allowing to describe every type of

spatio-temporal application, integrating traditional and
spatio-temporal data. Spatial data may be represented
through either a continuous view of space –altitude and
type-of-soil are typical examples of continuous
informations– or a discrete view where spatial objects,
e.g. roads, rivers or lakes, are localized in space by
their coordinates. Temporal data may include
instantaneous events as well as facts lasting over some
period of time.

• soundness: every concept must rely on a formal
definition, to avoid ambiguities due to incomplete or
imprecise specifications.

• user-orientation: the model must allow easy
communication with users, preferably with the support
of schema diagrams. It must be understandable with
reasonable effort, thanks to a limited number of not
too sophisticated concepts.

• orthogonality: constructs in the model have to be as
independent as possible from each other, to make the
model easy to use and easy to implement.

• implementabil i ty : the model must be directly
translatable into logical data models of existing GIS,
so that no redesign is needed and the model can be
effectively used as the common, pivot data model in a
federation of heterogeneous systems.

• full operationality : the model must include an
associated data manipulation language, so that users
can use the data through the same paradigm they use to
define the data. In a federation, this manipulation
language will act as the common language between the
GIS.

The following subsections review the data modeling
capabilities of MADS in terms of spatial or temporal
features. Process modeling is out of the scope of this
paper. As for the conceptual modeling of traditional data
structures, MADS supports the nowadays usual set of
basic concepts: objects, relationships, attributes, is-a
links, aggregation links. As these concepts are well
understood, we need not recall their definitions. Let us
just express a few remarks on attributes and on
aggregation:
• an attribute  represents a real world property of

interest. Both object types and relationship types may
be described by attributes. Attributes themselves may
be described by component attributes. Attributes are:
• either complex (composed of other attributes) or

simple (intended to bear atomic values).
• either monovalued (one single value admitted) or

multivalued (bearing an unspecified number of
values).

• either mandatory (must be valued in every instance)
or optional (may be valued or not).

The mono/multi valuation and optional/mandatory
characteristics of an attribute are expressed using the
minimum/maximum cardinality concept.
Cardinalities also apply to roles in relationship
types, to define how many instances of a relationship
type may link an object of the associated type.
Values for an attribute may be derived from values
existing in some other attribute(s) which can belong
to the same owner (entity or relationship) or to other
objects (objects or relationships). Attributes whose
value is automatically computed by the system are
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called derived attribute. The derivation function may
use both computations and navigations through the
database.

• an aggregation l ink  is a peculiar directed binary
relationship whose specific semantics is to express
that objects of the first type, called composite objects,
correspond to aggregations of objects of the second
type, called component objects. Figure 2 shows an
example of aggregation on spatial object types.
Alternative terms for aggregation in object-oriented
models include composition link and part-of
relationship.

2.1. Spatial Object Types

Current GIS support either one (or both) of the
traditional ways of describing the objects/space
relationships: the discrete view (also termed vector view),
where the database consists of objects whose location in
space may be defined, and the continuous view (also
termed raster or field view), where the database consists
of space regions over which variables are defined as
continuous fields of values.
For purely pragmatic reasons, MADS takes the discrete
view, while providing facilities for expressing a
continuous view if needed. For the same pragmatic
reasons MADS is currently limited to the representation
of two-dimensional data. An object whose description
includes spatial features is called a spatial object:
• a spatial object represents an entity that is perceived
as spatial by the application, i.e. that is represented by a
point, line, area or by any set of points, lines and/or
areas. This spatial description of the object is called its
geometry.
• a spatial object type is an object type which bears

an additional specific characteristic: the spatial type of
its instances (point, line, area, ...). Diagrammatically
speaking, a spatial object type includes the icon
associated to its spatial type.

As shown in Table 1, MADS supports all usual simple
spatial types: point, line, oriented line, area. It also

supports set types: set of points, set of lines, set of areas
(complex areas with holes and islands). Finally, it
supports three generic types:
• simple geo, which stands for any simple type. Objects

in the population of a simple geo object type may be
of any one of the simple spatial types.

• complex geo, which stands for any set type.
• geo, which stands for any type.
All spatial types are abstract data types, i.e. they provide
the associated methods to define and manipulate objects
of the type. Is-a links among spatial types are illustrated
in Figure 1.

Generic types allow users to define spatially
heterogeneous object types, where some instances are of
a given spatial type and some other instances are of
another spatial type. For example, a River object type
whose spatial type is simple-geo, can have instances
(small rivers) described as oriented lines and other
instances (large rivers) described as areas. Heterogeneous
object types are very much likely to appear in integrated
schema of federated GIS, because of the diversity of
representations of the same objects in different
component databases. From a design methodology
perspective, generic types represent a way for users to
define the spatial type approximately, whenever at the
current design stage they do not know exactly which type
they want. For example, using the geo type a designer
may just denote an object type as being spatial, and leave
for a later design step a more precise definition.

2.2. Spatial Relationships

Spatial relationships among spatial objects are an
essential part of the information needed by applications
managing spatial data. These relationships include:
topological relationships (e.g., two countries are
neighbors), orientation relationships (e.g., a town lies
north of a river), metric relationships (e.g., a town lies at
65 km from a state boundary), aggregation relationships
(e.g., a state is composed of a set of counties).

spatial type icon dimension definition

geo  0, 1 or 2 any spatial type

  simple geo  0, 1 or 2 any simple spatial type (point, line, oriented line or simple
area)

point  0 a point

line 1 any line, whether straight, arc, polyline, closed or not,
oriented or not

oriented line  1 any oriented line

simple area  2 any area without holes or islands

  complex geo 0, 1 or 2 any set of simple spatial types

point set  0 a set of points

line set  1 a set of lines

oriented line set  1 a set of oriented lines

complex area  2 any area, eventually with holes or islands

Table 1. Spatial types for objects.
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Figure 1: Generalization hierarchy of spatial types for objects.

The current trend in GIS is that information on spatial
relationships is automatically computed by the system,
on demand, based on the absolute geometry (coordinates)
of objects. To GIS users spatial relationships appear as
built-in functions. There are, however, several reasons
which motivate an explicit description of spatial
relationships in a conceptual schema:
• spatial relationships sometimes convey information

which is essential to a proper representation and
understanding of the data structure of the application. If
such is the case, they should appear in the schema. For
example, given that a state is composed of a set of
counties, it would be misleading for a user to see a
conceptual schema in which states and counties are
represented as unrelated objects.

• if explicitly defined, spatial relationships can be
denoted using semantically meaningful names, e.g., a
crossing relationship among route segments.

• properties can be added to such spatial relationships:
attributes, methods, integrity constraints. For
example, adjacency constraints on components are
common on spatial aggregations (e.g., the route
segments composing a route must be connected).

• stating explicitly the spatial relationships allows to
verify the coherence and non redundancy of the schema.

• while topological built-in functions provide derived
information, explicit spatial relationships define an
integrity constraint on the geometry of related objects.

Beyond traditional generic relationships, MADS supports
explicit definition for a set of predefined topological
relationships. The choice not to include all possible
spatial relationships is based on the aim to keep the
model reasonably simple.

2.2.1. Topological Relationship Types

As previous theoretical work has shown [Egenhofer 91,
92, Champoux 92], more than a hundred topological
relationship types can be defined. This is by far too
much for a conceptual model to be used in practice.
Fortunately, it has been demonstrated that all these
relationships may be meaningfully merged into a few
classes [Clementini 93]. Relying on Clementini's
classification, MADS supports six elementary
topological relationships. These are easy to understand
by users and formally defined, based on the concepts of
boundary, interior, exterior and dimension. Their
definition is given in Table 2.

spatial type icon  definition

disjunction no sharing (objects from the related object types must have spatially disjoint
geometry)

adjacency sharing without common interior
crossing sharing of some part of the interior, such that the dimension of the shared part

is strictly inferior to the higher dimension of the linked objects
overlapping sharing of some part of the interior, such that the dimension of the shared part

is equal to the dimension of the linked objects
inclusion the whole interior of one object is part of the interior of the other object
equality sharing of the whole interior and of the whole boundary (valid for spatial object

types of the same dimension)

Table 2 : Spatial types for topological relationships.
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2.2.2.  Spatial Aggregat ion

Figure 2 shows an example of aggregation relationship
involving spatial objects: a country as an aggregation of
districts. Since spatial aggregation is a relationship,
cardinalities can be defined for each role (composite,
component) and attributes and methods can be attached to
the aggregation. As shown in the figure, a country is
composed of 10 to 1000 districts and one district is
component of exactly one country. A join-date attribute
records the date at which the district joined the country.

Spatial aggregation is usually complemented with a
spatial constraint forcing a consistency rule between the
geometry of the composite object and the geometries of
its component objects. If the consistency criterion is
stated through an equality, the geometry of the
composite object is likely to be a derived attribute.
Derivation functions may also link thematic attributes.
Usual derivation functions include: sum, average,
minimum, maximum, union... For example, area and
population of each country are derivable from areas and
populations of its districts, the country-name for each
district is derivable from the name of its country.
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Figure 2: Example of a spatial aggregation.

2.3. Spatial Attributes

Every GIS comes with a set of spatial types which are
used to characterize the spatiality of object types. As we
have seen, MADS improves over current GIS by
allowing generic spatial types for object types and by
supporting spatial relationship types as a data model
construct. Another important new functionality is
provided in MADS: the support of spatial attributes .
This means that attributes of object/relationship types
may have their own spatiality, beyond the one, if any, at
the object/relationship level. Thanks to such a facility,
spatiality appears to be orthogonal to the choice of a
modeling construct to represent a given piece of reality.
This gives maximum flexibility to application designers.

One more feature in MADS is the possibility of defining
a continuous view ot the part of space covered by either
the geometry of a spatial entity or by a spatial attribute,
provided that their dimension is not null. This
continuous view is provided by the concept of
continuous attribute , whose value is a function of
the location within the geometry of the spatial object.
The geometry is partitioned by a user defined grid, which
cuts a line into segments and an area into elementary
cells. The function maps each segment or cell into a
value from the domain associated to the attribute.
Continuous attributes are visually marked using a
specific icon  . MADS solution is similar but more
general than the one proposed in [Camara 94]. With
respect to GIS, it is more flexible as it allows the
designer to choose the spatial domain on which the
continuous attribute will be defined.

2.4. Temporal features

When modeling real-world applications designers are
likely to be confronted to time-varying information.
Recording the temporal evolution of data often provides
an interesting insight into the dynamics of real-world
phenomena. Over the last years there has been an
extensive research effort in the area of temporal databases
[Tansel 93, Clifford 95]. Many different models have
been proposed, mainly for relational databases, although
some work has been done for entity-relationship and
object-oriented models. In particular, an extension of the
SQL language, called TSQL2, has been proposed as a
consensus language by the research community
[Snodgrass 95] and similar ongoing work is being
realized to add temporality to the forthcoming standard
SQL3.

Three complementary ways of recording time have been
identified. Transaction-time consists of system-generated
timestamps recording when a fact was actually stored in
the database. Values for valid-time are user-provided and
represent the actual time when a fact occurs or is valid in
the real world. Valid-time may span over the past, the
present, and the future. User-defined time refers to a data
type whose domain codes time values, e.g. a DATE
domain, but does not have any temporal semantics for
the DBMS. Valid-time and transaction-time are two
orthogonal time dimensions over which the data evolves
independently. MADS approach to temporal modeling
stems from the following principles:
• focus is on valid-time, since it is the most common

requirement for geographical applications, but the
approach should be easily extensible to transaction-
time;
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• both snapshot (non temporal) and time-varying
(temporal) information should be representable;

• orthogonality: temporality can be attached to each
construct of the model, i.e., to objects, relationships,
and attributes (at any level);

• consistency rules enforcing a correct semantics of
temporality have to be defined;

• temporal facts include both instantaneous events and
facts lasting over some period of time;

• adopt TSQL2 recommendations whenever applicable
and appropriate.

The granularity of a temporal specification defines the
time unit to be used to record changes, e.g., hour, day,
year. Temporal DBMSs provide the necessary functions
to convert a temporal specification from one unit to
another one.
A temporal specification either defines an instant or an
interval or a temporal element. An instant or chronon
typically represents the time an event happens. An
interval is a time slice, typically used to specify when a
fact is valid. An interval is usually defined by a start
chronon and an end chronon, and contains all chronons in
between. A temporal element is the union of a set of
intervals, intended to represent the set of time slices

where a fact is valid. A temporal element may also be a
set of non consecutive time instants. This is useful for
all kinds of discrete events like measures done by discrete
instruments, or photographs ...

MADS temporal features are briefly described hereinafter.

2.4.1. Temporal Attributes

Temporal attributes keep the history of their values. For
example, if rate of flow is defined as a temporal attribute
in a River object type, for each river object the DBMS
will maintain the set of all values of rate of flow which
have been (or are planned to be) valid at some time. This
may be seen in general as the association of a temporal
element to each value of a temporal attribute. The set of
these temporal elements can be contiguous or disjoint,
but they cannot overlap. For example, assuming that the
granularity for rate of flow is the day, it could be
specified that rate of flow of a given river had value
1300m3/second from April 4, 1996 to April 12, 1996
and from June 18, 1996 to June 22, 1996. The value of
an attribute is assumed to be undefined (unknown) for the
points in time not explicitly specified by the set of
temporal elements.
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Figure 3: temporal attributes.

As shown in Figure 3, the spatiality of an object type
can also be temporal. This means that, in particular, the
geometry of objects may vary in time and its history be
recorded.
Figure 3 also shows that, since attributes can be
complex, i.e. composed of other attributes, the
temporality can be defined at any level of the
composition. For example, rate of flow is defined in
Figure 3(a) as a temporal complex attribute composed of
minimal rate, maximal rate, and average rate. Thus, the
value of rate of flow will be a set of triples (minimal,
maximal and average rates). Each triple bears a temporal
element defining the time periods at which the triple is
valid. On the contrary, if only the component attribute
average rate is temporal, as in Figure 3(b), then the value
of rate of flow will contain one value for minimal rate,
one for maximal rate and a set of couples (value,
temporal element) for average rate.

2.4.2. Temporal Objects

When associated to object/relationship types, temporality
has not to do with values  but has to do with the
existence of the object/relationship instances within this
type. Indeed, objects are created as instances of an object

type, but can migrate to another object type, be
temporarily suspended as instances of this object type, be
resumed in their membership of the type, and eventually
be deleted. Relationship instances can be created,
suspended, resumed and deleted.
Defining an object type as temporal instructs the DBMS
to keep track of the lifecycle of its instances, as defined
by the events (creation, suspension, deletion) happening
during their lifespan. This information, together with
object values, remains available even after the deletion of
the object. To that extent, each temporal object is
associated with a temporal element stating the validity of
the object as member of the type. For example,
specifying an object type Flood as temporal may be used
as a way to store the information about when each flood
occured.

The definition of an object type as temporal is
orthogonal to defining some of its attributes as temporal.
For a temporal object having no temporal attributes, its
lifespan is stored as well as one value (the last one) per
attribute. On the other hand, for a non temporal object
with temporal attributes, its lifespan is not recorded but
the history of attribute values is recorded for each
temporal attribute, and this history is kept up to the
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deletion of the object. Whenever a temporal object type
has temporal attributes, it is usually suggested that the
temporal elements associated to attribute values must be
included in the lifespan of the object they belong to. For
example, the valid time associated to attributes values for
a flood (e.g., rate of flow) must be included in the
lifespan of the flood.

2.4.3. Temporal Relationships

As for object types, temporality of relationship types
allows to keep track of the lifecycle of its relationship
instances. Assume, for example, a temporal relationship
type IsInCharge linking the RiverSegment and
LegalEntity object types. Temporality of the relationship
type implies that we want to keep track of past, present,
and future couples of (river segment, legal entity), e.g.,
to be able to determine at any point in time who was
responsible for each river segment.
Notice that a temporal relationship type can only link
temporal object types, since otherwise there might be
dangling references, i.e., a relationship linking objects
for which no information is anymore kept in the
database. In addition, the lifespan of a relationship must
be included in the intersection of the lifespans of the
participating objects.

3. A Pedology Application in MADS

This section provides an example of application
modeling with MADS. The application for which a
spatio-temporal schema was needed concerns the study of
the evolution of alluvial soils in a Swiss floodplain
ecosystem. To capture the present spatial distribution of
soils, their diversity and their degree of evolution, a soil
survey was realised on the whole site. This soil survey
was based on 277 points of observation where a number
of soil parameters were recorded and samples taken for
further analysis. Clustering analysis have subsequently
been used to group observation points into similarity
groups. Observation points representing each similarity
group were described with more details: their complete
soil profiles have been physically and chemically
analysed.
Altogether, the input data consists in:
• a set of orthogonal aerial photos of the river taken in

1930, ‘43, ‘55, ‘69, ‘80 and ‘92
• a corresponding set of maps of land cover derived from

the aerial photos
• a 1988 vegetation map at the scale 1:10,000
• data about the rate of flow of the river
• data about the floods (dates, duration, rate of flows)
• data about the projects of embankments, as well as a

map of the different embankments realised along the
century

• data about soil properties (pedological analysis), soil
profiles and laboratory analysis, for the field survey
points.

Figure 5 contains a simplified MADS schema of the
application. Attributes are omitted. The object types
definitions are:
• River: a stream of water. Since the river channel has

evolved over time, and past locations of the channel
have