
Mental Vision: a Computer Graphics teaching platform

Achille Peternier1, Daniel Thalmann1 and Frédéric Vexo1

Virtual Reality Laboratory (VRLab), École Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Switzerland

Abstract. We have developed a learning platform to simplify and improve teach-
ing and practice of Computer Graphics for beginners and advanced students. Our
goal is to offer a set of tools to help students having a better mental vision of
the abstract notions introduced during the course. Our platform is composed by a
pedagogical-oriented, intuitive and user-friendly graphic engine, offering a pow-
erful amount of features with an extremely easy and comfortable interface, and
a set of interactive and collaborative applications (called modules) to use during
lessons and workshop sessions to present complex concepts in an easy and clear
way. In this paper we expose how we have built our platform, what it offers and
which role will play in our courses.

1 Introduction

Computer Graphics (CG) can be, like modern physics or advanced mathematics, a dif-
ficult and non intuitive topic to explain from a teaching point of view. It is extremely
complex to illustrate spatial concepts or multi-dimensional geometric operations by
only recurring to words or static images. The help of videos is also often limited and
approximative because of their lack of interaction and the impossibility to modify in
real-time the parameters of the algorithms.

During practical works or student projects, a concrete application of such concepts
on micro computers requires knowledge related to specific hardware/software initializa-
tion and access, through complicated libraries and API which are time-expensive to get
comfortable with, diverting student attention from practicing with CG. Such time ex-
pensive tasks are also unavoidable when students of advanced classes practice with Vir-
tual Reality (VR) topics and need to resort to a graphic engine (or have to build one from
the scratch) to apply and experience more high-level concepts like humanoid animation,
inverse kinematics or virtual agents interacting in a 3D space. There is a good amount
of open-source or free graphic engines and libraries, like Ogre (http://www.ogre3d.org)
or Crystal Space (http://www.crystalspace3d.org), which offer an important set of func-
tionalities. Unfortunately, such engines are still quite difficult to handle and require a
good amount of learning time to start mastering them, so they are not well suited for a
semester project. Furthermore, they are mainly oriented to game-development and tar-
geted to developers used to CG programming (as pointed by Coleman and al. in [1]).
Finally, if practical sessions are teamwork oriented, the lack of a unique, common and
shared platform may lead to confusion and reduce or even obstruct cooperation between
students and students and between students and assistants. The experience we gathered
with master and undergraduate student projects in [2] showed us that offering original



and funny project topics was motivating for learners but the amount of different tools
and libraries they used to build their solutions was a really nightmare for assistants and
teachers. Finally, a lot of problems also occurred during public presentations of their
works, because of the need to run the demos on different computers, often wrongly
configured or non compatible with their code.

To avoid such kind of problems, we have created a set of software tools to improve
the quality and comprehension of our CG and VR courses and to simplify and unify
student works, offering them a simple but complete and robust graphic engine to use
during the practical sessions and projects. To break the lack of dynamism and interactiv-
ity given by slides, images and videos during the teaching class, we have developed a set
of applications featuring real-time and dynamic demonstrations of the presented topics.
Our demonstrators allow students to directly act on parameters and algorithms, offering
a dynamic cause-effect explication, unavailable through static methods. These demon-
strators are a set of interactive compact applications (modules) which show in a clear
and simplified way complex notions like sweeping surfaces, Bézier patches, camera
clipping planes, etc. Some of them also feature collaborative support by sharing their
interface on a network-based client-server architecture. These modules are extremely
lightweight software which can seamless be distributed over internet, included in pre-
sentations or executed on handheld devices: in facts, thanks to their versatility, they can
also be executed on laptops or Personal Digital Assistants (PDA), thus be brought and
used directly during the lessons.

For the workshop sessions, to improve focus on the concepts instead of the corol-
lary frameworks, we have developed a pedagogical-oriented generic graphic engine
(named MVisio), with a learning curve of few minutes, allowing beginner students to
immediately and efficiently deepen in their exercises without having to care about out
of topic operations like hardware initialization, system configurations et similia, and
offering to advanced learners a set of functionalities currently used in Virtual Reality
related projects (like direct support for VR devices such as stereographic head-mounted
displays, multi-screen environments, motion trackers, etc.). Finally, such an engine is
extremely well known by assistants who can offer immediate and competent support to
students experiencing problems during their projects done with it.

In this paper we show why we decided to create this platform, what other researchers
did in the past in this domain and what are the new contributions brought by our work.
We will present the details about the content and technical aspects of our solution, both
for the creation of the modules and the design of the graphic engine. We conclude
then with a report of the first experience we gathered by using our platform on student
projects and public presentations.

2 Related work

Computer Science (CS) education is constantly evolving and requires both teachers,
documentation and tools to be continuously updated. Computer Graphics, as a subset
of CS, follow this rule as well. Different approaches have already been tested in the past
to reinforce the support for CG courses and/or to offer development platforms for CG
teaching purposes.



Towle and De Fanti first identified in 1978 with GAIN [3] the interest to offer in-
teractive applications to use at home as an option to practical work sessions, done in
cooperation with other students, and as a more intuitive way to learn than with just a
manual or a workbook. We extended this idea with our modules, by integrating them
directly with the class documentation and by adding multi-user interactivity to them.
The benefits offered by multimedia contents for CG teaching purposes are also shown
by Song and al. in [4]: interactive modules reduce learning time and improve use and
diffusion of contents over the web, potentially targeting more people without additional
costs. Many CG topics can also be taught by recurring to games: for example Hill and
al. used in [5] puzzles and games to reinforce the learning objectives. Similarly, Becker
in [6] used video-games as motivator for programming applications on Computer Sci-
ence classes. We already had a positive feedback by offering gaming projects during
the course of advanced Virtual Reality in [2]: with MVisio, we want to provide to the
learners a tool allowing them to more benefit from this option, by giving them all the
instruments they need in an easy and comfortable way.

About the creation of pedagogical oriented graphic engines, when 3D graphic ac-
celerator cards for micro computer weren’t available, Clevenger and al. developed a
graphic engine to supply students with a learning platform (called TUGS) in [7]. Their
goal was to offer a support to students to immediately render some images and to allow
them to substitute parts of code of the TUGS engine with their own later in the semester,
in order to have a full working platform since the beginning of the class. Their approach
was particulary useful before the large introduction on personal computers of graphic
APIs based on 3D hardware acceleration like OpenGL and DirectX, which substituted
the expensive need to develop a custom rasterizer. Coleman and al. created Gedi [1],
an open-source game engine for teaching videogame design and programming in C++.
Based on the same principle to create a pedagogical engine, with MVisio we want to
provide a more generic software that can be used not only for games but also for Com-
puter Graphics and Virtual Reality applications, by adding for example support for VR
devices like head-mounted displays or trackers.

Finally, all these lectures showed that interactive applications and specific graphic
engines were generally an advantage and an improvement to the quality of the CG
courses. This motivated us to deepen in this way by creating a set of tools utilizing all the
hardware and software improvements of the last few years, as Owen did consequently
to the evolution of 2D graphic hardware for micro-computer in [8], in order to offer
an updated and modern platform for the teaching of Computer Graphics. In the next
sections we will present all the details about our work.

3 Teaching platform

Our teaching platform is built by two separate entities: a set of compact applications,
showing selected techniques and algorithms of Computer Graphics, and a pedagogical-
oriented graphic engine to be used for student projects and practical works. We de-
fine our solution as a platform because we use the same tools during the whole class,
from practical works to documentation, thus our framework covers the entire process
of teaching, from the presentations to the student projects.



3.1 Pedagogical modules

Our pedagogical modules are compact applications which are used to illustrate in a plain
and simple way complex Computer Graphics topics like sweeping surfaces or Bézier
patches. Every module presents a single topic, in order to avoid confusion and simpli-
fying interaction and comprehension. A module is typically composed by an intuitive
interface allowing to dynamically modify the parameters of the exposed algorithms, in
order to clarify how they work and change. A screen-shot of the related class slide is
usually included as well.

Fig. 1. Modules: Bézier surfaces (left) and sweeping surfaces (right)

The Poseidon project is a promotion done at our school to offer new personal com-
puters at extremely interesting prices to our students (http://poseidon.epfl.ch). Thanks
(also) to this project, an increasing amount of listeners brings a laptop PC or a PDA
during the lessons. Consequently, we decided to introduce an interactive interface, al-
lowing student computers to act like a remote controller enabling them to modify the
parameters shown on the room wall display during the class lesson, offering them a way
to directly interact with the teacher and other attendants. Typically the teacher computer
works like a privileged module which can offer and receive control requests from client
(student) PCs or PDAs. Of course, this option must be explicitly activated on the server-
side to avoid request spam or unwanted modifications during teaching explanations. A
common scenario suitable for this feature is either when students desire to ask some-
thing and can benefit of the interactive interface to better explain and share their doubts
with the rest of the auditorium or when teachers ask students to solve a problem and
then to show publicly their results.

Technical overview Modules are built on the top of the MVisio engine (see next sec-
tion) which allows an high recycle of piece of code and data, minimizing sizes, sys-
tem requirements and bandwidth when downloaded from the course homepage. Thanks
to their compactness, modules are also suited to be directly included in presentations
(PowerPoint) and to be started from the slide describing the technique they show: in
facts, the goal of this software is to act as an interactive slide-show. Moreover, being



based on MVisio, modules can also be executed on several platforms (Windows family,
Linux, MacOS) and devices (PC and PDA).

The shared interactive interface is based over a simple TCP/IP protocol. Fortunately,
our class rooms are covered by a WiFi network allowing PCs and PDAs within the au-
ditorium to be connected to the web. When started, modules look for a connection with
a remote server acting as a broadcaster of messages. Two levels of users are recog-
nized by the server: teachers and students. When launched, modules allow to specify a
command-line password used to determine the rights of the connecting client. Teacher
and student modules are exactly the same: features exposed by the interface are deter-
mined during the login. Typically teacher modules send a copy of every operation done
to the server, which stores the information. On demand, client modules can synchro-
nize their interface by a simple click. This allows students to play with the modules but
still offering them to revert their clients to the state shown by the teacher on the wall
display. Teacher modules can also allow student clients to act as a teacher client, in or-
der to share the current state of their modules with the rest of the class. This operation
requires an authorization and works in this way:

– the teacher enables remote controlling by clicking on a special button on his/her
module interface. This button is available only on teacher modules when correctly
logged to the server.

– the server sends an invitation message to every student connected client.
– students receive a pop-up window asking them if they want to accept the invitation.
– when a student accepts, pop-up windows on other clients disappear and only the

client that accepted the invitation can now forward its modifications to the server.
– the student can now show his/her parameter modifications on the wall display and

the other clients can synchronize with his/her parameters on demand (as if the stu-
dent client were now a teacher client).

– after this, the teacher clicks on another button and gets back full control.

Fig. 2. Hermite interpolation and Kochanek-Bartels spline module: listeners can bring their PDAs
during the class to directly play with modules and interact with the auditorium

A typical use of this option is for example when a student has a question and can
benefit of this client-server architecture to explain more clearly his/her doubts with



a graphic support and without having to go to the blackboard. Because modules are
available both on PCs and PDAs, it is more and more a common thing to see students
bringing their notebooks or handheld during the lessons.

Case of study: camera handling In this section we show how our module about cam-
era handling and clipping planes works. In concrete, this application splits the screen in
two panels, one (right) showing the point of view of the camera, the other (left) display-
ing the full scene from a remote third-person viewpoint. A movable window displays
both current camera model view and projection matrices. Some slides allow to modify
the distances of the near/far plane and the angle of view. Modified parameters directly
affect the rendering on the right panel. Both near/far planes are displayed as transparent
yellow rectangles on the left window. By moving the cursor on the right panel, objects
selected by the mouse start blinking: with a click on them, they become the current
camera target. The camera can then be moved by clicking and dragging the mouse on
the left panel: the camera still keeps its view locked in the current selected object on
the right panel (fly-by). The scene loaded as example for this module is an high de-
tailed pub interior. This scenario allows students to see how clipping planes and field
of view parameters affect the rendering. They can freely move the camera and see how
the model view and projection matrices change, tracking at the same time what visually
and mathematically happens when they play with the parameters.

Fig. 3. Camera handling: third-person overview of the scene (left) and rendering from the current
camera viewpoint targeted on a wall poster, as requested by the exercise (right)

As an exercise for students, we have added some posters on the pub’s walls. Be-
cause of the complex architecture of the scene, such images are often hidden behind
other objects and cannot be easily spotted. We asked our students to answer to some
questions by retrieving the requested information by zooming and spotting the different
posters. For this, students had to learn how to move the camera within the scene, to
track objects by selecting them, to use the angle of view slider, to zoom in or out and to
move the near/far planes to remove objects obstructing the camera. After this exercise,
the students were able to show their results to other people thanks to the shared interface
moderated by the teacher.



3.2 MVisio graphic engine

MVisio (Mental VISIOn) is a lightweight, stable and user-friendly 2D/3D graphic en-
gine. The goals of MVisio are several: offering an extremely easy to use and an intuitive
interface to 2D/3D graphics, being able to run on almost every available desktop PC or
laptop by automatically adapting the rendering quality and settings, being also able
to work on other devices like PDAs and CAVEs, being compact in sizes and system
requirements and finally being fast and modern.

We developed MVisio in order to offer a common developing tool to advanced stu-
dents for their Virtual Reality related practical works and projects. In the advanced
classes, learners don’t have to take care anymore about low-level operations such as
rasterizing triangles or computing normals, but have to implement high-level appli-
cations like little videogames or virtual worlds (see [2] for a description of our old
projects). What students need is a platform allowing them to directly work with tex-
tured models and characters, cameras and lights, offering the opportunity to efficiently
animate models and dynamically modify the scene and the objects. Students also of-
ten need a 2D interface able to handle buttons, windows and text over a 3D rendered
scene. MVisio brings all this functionalities in an extremely easy way, allowing students
to deepen immediately into the lesson topics without wasting time learning things not
related with the course goal. We adopted few years ago a C++ object-oriented class
base code during our practical works: although our learners are usually IT engineers,
a good amount of students was not used to C++ and spent more time learning it than
using this language to solve the CG exercises we suggested. MVisio, even if strongly
based on an object-oriented architecture, exposes a Java-like interface which requires a
minimal knowledge of C++. Moreover, Java is a language largely taught in our school,
thus the step to MVisio for not skilled C++ programmers is less uncomfortable. Finally,
the included 2D GUI system is accessible, from a programming point of view, like a
simplified version of the Java windowing interface.

Technical overview MVisio is built in C++ and uses OpenGL (http://www.opengl.org)
on PC and OpenGL ES on PDA (http://wwww.khronos.org) as 3D rendering API.
We used Microsoft Windows CE 4.2 based PocketPCs. On WinCE, we worked with
two different versions of OpenGL ES: one in software mode distributed by Hybrid
(http://www.hybrid.fi) and compatible with almost every existing PDA, and a second
one working only on the Dell Axim x50v (http://www.dell.com), using an hardware
acceleration chip released by PowerVR (http://www.pvrdev.com). We also used Sim-
ple DirectMedia Library (SDL, http://www.libsdl.org) to initialize windows and ren-
dering contexts in order to improve code portability over different platforms. No other
library like Glu or Glut have been used to reduce sizes and dependencies of the engine:
the functions needed for perspective computing, mipmap generation or image loading
have been directly included into MVisio and extremely optimized for speed (e. g. our
mipmap generator is about five times faster than the Glu one). Actually, a release .dll
only weights 132 KB (compiled under Visual .NET 2003).

The internal architecture of MVisio is extremely object-oriented based: this allowed
us to further reduce code sizes by reusing long portions of code and to develop an



extremely simplified interface. MVisio entities like lights, cameras, fonts etc. are created
in a Java-like way and don’t need to be released once used: MVisio manages with that.

Complex tasks like scene-graph handling or mesh instancing (a same mesh dis-
played many times in the same scene with different parameters at several locations) are
transparently and automatically performed by MVisio: the user simply declares which
objects have to be rendered and announces them in a way similar to the OpenGL glBe-
gin/glEnd methods. For every frame, the user can move, modify objects and then pass
them to MVisio, which stores a reference to the entities in an internal list. Once all the
objects announced, MVisio performs several operations on that list (like transparency
sorting, clipping, HSR, ect.) and renders the final image.

One of the most interesting features for students is that we developed a plugin for 3D
Studio Max which allows to export with just some clicks complex scenes, with textures,
lights, hierarchical scene-graphs, animations, etc. All this information is transparently
converted, stored on the right places to be loaded and accessed through MVisio with
just few lines of code (in facts, you can load and rotate the pub scene in fig. 3 with only
7 lines of MVisio calls, included the engine initialization and release). We have a good
amount of 3D models in our database: students can simply choose since the beginning
of the semester the meshes they want and then modify and use them on their projects.

Case of study: MVisio used on projects We observed in [2] that proposing little
games as projects for the course of Virtual Reality motivated students and produced a
good feedback, both from the quality of the final products and the satisfaction of the par-
ticipants. Creating video-games by using advanced VR interfaces was an amazing task
for students and an excellent practice from a pedagogical point of view, too: they used
data-gloves, head-mounted displays, motion capture and our haptic workstation, which
are all complex devices to deal with. With the introduction of MVisio, we dramatically
simplified all the aspects related to the rendering and handling of the 3D content, al-
lowing learners to furthermore and immediately focus on other activities more related
to Virtual Reality than to Computer Graphics.

For example, a student has recently developed for his master project a virtual jug-
gler. The idea was to use the haptic workstation to simulate juggling with three balls
using two hands. The haptic workstation provided hands and fingers tracking as well as
force feedback on fingers and wrists. A head-mounted display with head-tracking was
also used to provide an immersive environment. The student used MVisio as graphic
engine to put the user in a virtual pub and to animate the balls. MVisio also managed
the stereo rendering system required by the HMD. On a four months project, he spent
less than a week working on the rendering part of his virtual juggler, investing the rest
of the time on difficult topics like implementing a good physic system for simulating
ball animations, force feedback and dealing with the complex use and calibration of the
haptic workstation.

Benefits resulting from the device independency and portability of MVisio were
largely used in another student project aiming at tracking on PocketPC the position
of a real mini-blimp. The goal was to display on the PDA screen a 3D model of our
school with the blimp correctly localized. Blimp position was gathered through a WiFi
connection and a GPS system. At the beginning of this project, the PDA version of



Fig. 4. HMD stereographic rendering (top); a user in the haptic workstation (bottom)

MVisio was in development and not available. Students worked on MVisio for PC and
switched to the PocketPC just at the end of the project, in a matter of hours, without
needing to modify their code or their models. These options have also been extremely
useful on other student projects that worked on the PDA platform: even if learners
did’nt have a PocketPC at home, they still could develop on PC and usually move their
code, without any modification, on PDA. An overview of other projects achieved in our
laboratory is available at [9].

As a direct confirmation of the versatility and user-friendliness of our engine, MVi-
sio has also been largely used by assistants and member of our laboratory during its
developing phase on several research projects (like in [10] to display steering lines to-
ward oriented targets). Thanks to its auto-tuning system and stability, MVisio is a good
choice as rendering engine for distributions and demonstrations.

4 Conclusions

After several months of work spent to design and develop both modules and the graphic
engine, we are actually using them concretely on the ongoing course this semester. So
far we tested our platform in vitro, on internal projects done by assistants and some pilot
student projects. Modules have been introduced during public presentations but have
been added to the class documentation only since October 2005. Even if we need to wait
the end of the semester to obtain a more complete feedback about the usefulness and
further improvements required, first student impressions are extremely positive, mainly
about the good ratio between the features offered by MVisio and the time required to
access them. The multi-device support of MVisio also spontaneously motivated some
learners to create cross-device projects, supporting both PC and PDA. Some modules,
like the ones about curve generation and sweeping surfaces, rose interest of teachers
coming from other institutes as well, involved in mathematics and physics. We are also
exploring the idea to bring modules on mobile phones: last generation mobile phones



have enough computational power to support basic 3D graphics. Despite of the good
amount of students bringing their laptops or PDAs during the lessons, mobile phones
are still more widespread than notebooks and PocketPCs.

In the near future, some more modules with advanced topics like skeletal anima-
tion, inverse kinematics and walking models will be added, as well as a set of simple
tutorials about how to use MVisio. We will also insist on the development of MVisio
for the CAVE (actually in an early stage), in order to allow students to practice with
this device too, typically difficult to access because of its network and multi-computer
based architecture.

5 Acknowledgements

Many thanks to the Centre de Recherche et d’Appui pour la Formation et ses Tech-
nologies (CRAFT, http://craft.epfl.ch) for supporting the Mental Vision project and to
Renaud Ott for his precious contribution in helping us improving and debugging the
graphic engine.

References

1. Ron Coleman, Stefen Roebke, and Larissa Grayson. Gedi: a game engine for teaching
videogame design and programming. J. Comput. Small Coll., 21(2):72–82, 2005.

2. M. Gutierrez, D. Thalmann, and F. Vexo. Creating cyberworlds: Experiences in computer
science education. In Proc. International Conference on Cyberworlds, 2004.

3. Tom Towle and Tom DeFanti. Gain: An interactive program for teaching interactive com-
puter graphics programming. In SIGGRAPH ’78: Proceedings of the 5th annual conference
on Computer graphics and interactive techniques, pages 54–59, New York, NY, USA, 1978.
ACM Press.

4. Wen-Chai Song, Shih-Ching Ou, and Song-Rong Shiau. Integrated computer graphics learn-
ing system in virtual environment - case study of bezier, b-spline, and nurbs algorithms. In
Proc. Fourth Internation Conference on Information Visualisation, 2000.

5. John M. D. Hill, Clark K. Ray, Jean R. S. Blair, and Jr. Curtis A. Carver. Puzzles and games:
addressing different learning styles in teaching operating systems concepts. In SIGCSE ’03:
Proceedings of the 34th SIGCSE technical symposium on Computer science education, pages
182–186, New York, NY, USA, 2003. ACM Press.

6. Katrin Becker. Teaching with games: the minesweeper and asteroids experience. J. Comput.
Small Coll., 17(2):23–33, 2001.

7. John Clevenger, Rick Chaddock, and Roger Bendig. Tugs a tool for teaching computer
graphics. SIGGRAPH Comput. Graph., 25(3):158–164, 1991.

8. G. S. Owen. Teaching introductory and advanced computer graphics using micro-computers.
In SIGCSE ’89: Proceedings of the twentieth SIGCSE technical symposium on Computer
science education, pages 283–287, New York, NY, USA, 1989. ACM Press.

9. Virtual Reality Laboratory (VRLab EPFL). Student Projects Repository.
http://vrlab.epfl.ch/public/students projects.

10. R. Boulic. Proactive steering toward oriented targets. In Eurographics Short presentation
program (to appear), 2005.


