
Sharing Attractions on the Net with VPARK

Chris Joslin, Tom Molet, Nadia Magnenat-Thalmann
MIRALab – University of Geneva

{joslin,molet,thalmann}@cui.unige.ch

Joaquim Esmerado, Daniel Thalmann
Computer Graphics Lab, EPFL
{jle,thalmann}@lig.di.epfl.ch

Ian Palmer, Nic Chilton, Rae Earnshaw

University of Bradford, UK
{i.j.palmer,n.chilton,r.a.earnshaw}@bradford.ac.uk

Abstract

In this paper we present the Virtual Park (or VPARK)
system. This includes a Networked Virtual Environment
(NVE) System, called W-VLNET (Windows Virtual Life
Network) and an Attraction Building System, able to
create and modify attractions used in the NVE System.
Both systems have been developed in the Windows NT
Operating System (OS). The paper details the
techniques for communication, scene management,
facial and body animation, and general user
interaction modules. The use of VRML97 and MPEG-4
SHNC is overviewed to stress the compatibility of the
system with other similar Virtual Reality systems. The
software provides realistic virtual actors as well as sets
of applicable high-level actions in real-time. Related
issues on obtaining actor models and animating them
in real-time are presented.
The creation process of an attraction incorporates
assembling animation units through a timeline. Using
this software, users are then able to introduce their
own scenario-based applications into a shared virtual
environment.

Keywords
Network Virtual Environment, Advanced Interaction,
Attraction, Planning, Building, Motion Tracking

1. Introduction

Many virtual environments have been dealing with
moving objects [1] and articulated human-like 3D
characters [2]. Several attempts have been made to
provide powerful tools for scripting complex
movements and behaviors [3,4,5]. However, coming up
with realistic virtual humans or actors still remains a
challenge.

Realistic virtual humans (and Avatars) are as important
as the virtual environment they reside in. This has been
one of the main goals of most “Virtual Reality”
systems. Numerous methods of real-time rendering
[6,7,8], natural ways for interaction and communication
[9] and providing virtual characters with intelligence
[10,11] are related techniques for presenting true
complexity and realism to all aspects of Virtual
Environments.
For many years it has been possible to visit virtual
worlds using a real-time interactive system, to interact,
and share experiences with people only connected via a
simple network. However, due to the computing power
required by such systems it has only been possible until
recently to use high-end computers, based on the UNIX
OS. This has recently changed with high-end machines
being available to the general consumer market and
high-performance graphics cards being inexpensive
enough to be put into home computers. These complete
systems have enabled the once UNIX dominated NVE
Systems to be designed and implemented on a
Windows OS system, using only a few techniques to
maintain rendering speeds.
In this paper we present VPARK, which is composed
of two systems, the W-VLNET Networked Virtual
Environment (NVE) System and the Attraction Builder
system used to build attractions. The Attraction Builder
enables the creation and editing of animations for use
within the NVE System. Both systems are running
under the Windows NT OS. Those attractions created
by the Attraction Builder are then loaded and managed
by W-VLNET as a complete networked attraction. The
system is designed in a way that it is able to efficiently
handle multiple attractions as well as multiple users. In
general, the design requirements for an NVE system
include [12]:

• Participant Embodiment

• Network Topology specific to Virtual
Environments

• Data and task distribution scheme for scalability
• Dedicated Communication protocol

We have put considerable efforts to develop and
integrate several modules into a system capable of
animating realistic virtual humans in a real-time
performance. This includes modeling and representing
virtual humans with high realism and the simulation of
human face and body movements in real-time [13].
The feature of realism becomes even more important in
NVE’s, where the communication among participants
is crucial for their sense of presence.
In the following section, we introduce our Attraction
Builder software to describe the creation process as
well as the framework for real-time animation of virtual
actors, incorporating nonverbal and verbal animations.
Section 3 describes the NVE System, W-VLNET, and
how the attractions are integrated. Section 4 outlines
the practical trials of the Attraction Builder and Section
5 Concludes on the work.

2. The Attraction Builder

2.1. Introduction

One of the main goals for this research was to develop
a complete tool for the creation of attractions in virtual
environments where virtual actors play the main parts.
In this system, the users are provided with a set of
powerful functions to direct highly realistic virtual
actors. High-level actions are provided in order to
avoid low-level descriptions for each movement of an
actor. An attraction is defined as a set of geometrical
and temporal descriptions of the virtual actors and
objects in the virtual environment. In this work, we
focus on a number of issues related to creating and
animating virtual actors in attractions:

• Avatar model and animation data acquisition
• Real-time performance in rendering and animation
• Control on virtual human actions
• Effective and easy-to-use way of attraction

creation
• Support for standards (VRML, MPEG-4) for

scalability and flexibility

2.2. Virtual Avatars

The representative and behavioral realism of virtual
humans is the key feature of our system. Virtual
Humans are given crucial functions to aid their visual
perception and allow them to perform normal tasks
(such as walking, speaking and generally interacting).
The Avatars are realistically represented as can be seen
in Figure 1, Avatars and Actors (Virtual Humans that

are autonomous and acting out a part) co-exist in the
same environment. We consider face, body and speech
animation as an essential set of virtual human
simulations since they play an important role in our
everyday communication. Facial expression and
animation play an essential role in human
communication concerning the speakers’ emotions. At
the same time, speech animation and the corresponding
lip movement is even more important to aid in
communication.

Figure 1. In VPARK system, representative

avatars and virtual actors co-exist.

2.2.1. Face and Body Models

Textured polygonal mesh representations of virtual
actors from different sources are used. Face models are
either from our in-house modeling tool [13] or from the
automatic method of generating clones from two photos
[14]. The latter allows participants to represent
themselves in an effective way. In any case, face
models are generated from the modification of a
generic model, which is given with animation structure
that they can be animated with the face animation
module.

Bodies for virtual actors are represented using
VRML97 for their segments. By supporting H-ANIM
[15], users can reuse available models from the
Internet. The generation of H-ANIM individualized
body models from two photos is on going.

2.2.2. Face Animation

The MPEG4 Facial animation standard is based on the
feature points located at several key places on the facial
mesh geometry (e.g. tip of nose, corner of lips etc)
There are 68 Facial Animation Parameters (FAPs), 66
of those are low-level parameters affecting these
feature points directly. The animation is achieved by

specifying the displacement of these feature points with
respect to their neutral position. These displacements
are specified in the terms (units of) of certain feature
distances of the facial model e.g. FAPs related to eye
movement are expressed in terms of the horizontal
distance between the pupils, whereas those related to
lips are specified in terms of the distance between the
corner lips. These feature distances are called Facial
Animation Parameters Unites (FAPUs). The 2 high
level FAPs are visemes and expressions (sadness,
happiness, etc.). Figure 2 shows some of the predefined
expressions applied to one of our face models.

Figure 2. Predefined facial expressions applied
to a virtual actor (anger, surprise, hilarity,

disgust and happiness)
2.2.3. Body Animation

Virtual human body animation is achieved by applying
a set of degree of freedom values to each part of the
body joints over time. To comply with VRML97 and
independence with respect to proprietary embodiments,
it was chosen to directly animate H-ANIM compliant
models. These models can be obtained from a number
of sources and tend to increase in number thus greatly
enhancing representation flexibility for the end-user.
The compliance with MPEG-4 is also assured by the
usage of Body Animation Parameters (BAPs) for
animation. A BAP specifies the relevant body joint
degree of freedom at a given instant in time. At the
users’ level, however, some preliminary gestures are
available from the user interface so that they have
rather high-level control over virtual actors (Figure 3).

Figure 3. Predefined body actions applied to a
virtual actor (welcome, sit and talk, curious)

2.2.4. Speech Animation

We obtain text-to-phonemes by using a module
developed by Microsoft [18]. From the generated
phonemes, corresponding visemes (the visual
counterparts of phonemes) are generated which are
described as a set of FAPs so that they can be processed
by our face animation engine. Generated visemes are
moved to a buffer to be synchronized with phonemes.

2.3. Adding Scenarios to an Attraction

With a powerful set of animation engines, providing
effective and easy-to-use user interface to control,
manipulate and animate objects and virtual humans
remains a challenge. A script language based interface,
though powerful, has been dropped since it requires
specialized computer programming expertise from the
user. We chose graphics user interface in combination
with a high-level action specification. In this approach,
the user can direct an actor by simply choosing an
action from the menu. The selected action is then
simulated by any of the engines provided.
Here, an action may be an emotion, a gesture, or a
sentence. Each high level action is considered to be a
basic unit of animation. Collections of basic units are
then assembled into an animation sequence, which
composes an attraction together with geometric
description of the scene. Users are aided with tools that
enable them to adjust the duration time of the
animation, move in the timeline, edit animation units,
play back to see current status of the animation at any
time, and load predefined animations as well as save
current ones. Figure 4 shows an animation sequence on
a timeline that is composed of six basic action units.
Note that several action units are applicable
simultaneously to an actor.

Actor1 : (smile)

T0

Actor2 : Hi.

Object1 : (start moving)

Actor2 : (curious)

T1

Actor2 : Do you sell this?

Actor1 : Hi, welcome to the virtual park.

T2

action0

action1

action2

action3

action4

action5
Figure 4. Timeline based scenario

representation
The key to linking the entire animation sequence and
the animation engines lies in a timer that maintains the
synchronization of actions to feed them into an
animation engine at the correct point in time, as shown
in Figure 5.

Face Animation
Engine

Body Animation
Engine

Speech Animation
Engine

Animation
Data

Timer

Actors and
objects

Keyframe
Animation

Engine

User
Interface

Figure 5. Animations through time management

Building actions on a single timeline maintains the
system’s ease-of-use by allowing users to visualize
what might happen at any one point on the timeline.
The order in which the timeline is run is not limited to a
linear start-to-finish order and control points may be
added to the timeline to change its sequence. These
control points allow interactivity to be added to the
timeline and are as follows:

• Breakpoint – This just stops the animation, the

user can continue at the same time or choose
another time to continue.

• Trigger Points – These allow interaction with the
scene to control the timeline. They can be set either
by selecting a specific object or by moving inside
the proximity range of the object.

• Index Points – These are labeled points on the
timeline. Index points allow, for instance, multiple-
choice dialogs for users to select an option to
continue (perhaps an answer to a question). Figure
6 shows an example course through the timeline
when control points are activated.

Actor1 speaking Actor2 speaking Actor1 Actor2

Proximity
sensor
triggered

User
choice
selection

Actor1 Actor2 speaking

t

Figure 6. A course through the timeline

The adding of scenarios to an attraction is done using
the Attraction Builder to combine all the separate
elements into a single scenario. Figure 7 shows how the

various applications combine to produce the final
scenario.

Modelling Software

Custom VPARK
animation tools and
body creation software

Attraction Builder
Event triggers

Actor animation
Object animation VPARK

server

Animation
database

VPARK
client VPARK

client

VPARK
client

Figure 7. The software components used to build

a scenario.
The process of building a scenario is performed in three
stages:

• Combining graphical elements. The first stage is

simply importing the separate files into Attraction
Builder. These are VRML files exported from a
standard modeling package. The objects are then
manipulated to set up the scene.

• Adding the animation. The animation files can be
added in two ways. The first via the key-framing
feature of Attraction Builder that allows the
positioning and orientation of objects and the
recording of those positions. The second way is via
the import of pre-recorded animation files, which
is the case for both body animation and facial
animation.

• Incorporating the interaction. Adding the
interaction to the scene involves adding control
points, as described above, into the timeline.

3. The W-VLNET NVE System

VPARK is a framework for distributed VE applications
where human-like embodiments represent real humans.
While Attraction Builder is devoted to the creation or
description of permanent attraction components
including self-animated virtual actors, the W-VLNET
system is responsible for loading and managing these
attractions for connected users joining the attractions as
their embodiments.

3.1 Overall System Architecture

The W-VLNET system is based on a previous
architecture [16] implementation running on the UNIX
OS (specifically IRIX, from Silicon Graphics). The
previous system, also called VLNET, was written and
optimized for UNIX and uses a multi-process/shared
memory architecture. A shared memory protocol was
used as the communication medium for processes (each
process performing a different task). Although the W-
VLNET system is similar, the underlying
communication architecture was redesigned, due to the
fact that the Windows OS does not utilize the Shared
Memory architecture fully enough. Therefore the
architecture was implemented using a special
communication system and the concurrent task
management was done using threads instead of
processes.
Threads are more dominant in the Windows OS and
there are fewer restrictions imposed upon the design, as
they do not require the use of shared memory to
communicate. The control and execution of threads was
combined with the communication architecture to
create a faster communication mechanism. The
communication is performed using a First In First Out
Buffer (or FIFO Buffer) this allows flow control over
the communication, whilst maintaining a fast transfer of
data. The FIFO Buffer basically allows each thread to
communicate with any other thread.
The Thread Manager itself creates a thread for each
task that has to be executed. Depending on the task
type, a priority value is assigned to each thread to
enable tasks that should be executed quickly, not to be
blocked by simple tasks (such as GUI Control). The
Thread Manager also controls the termination of
threads, as too many concurrently running threads
would cause a system to slow down, the Thread
Manager limits the number of executing threads. In
practical tests the upper limit is much greater than
required.
The remaining control for each thread is left to the
module to determine and manage, as it is unrealistic for
the Thread Manager to be too specific to ask task.
These control tasks include mutual exclusion, global
memory control and wait states. As threads are capable
of running on multi-processor systems, and being
distributed across these multiple processors, the only
requirement of the individual modules themselves is to
be separated enough that the multi-processor
architecture is made use of, but singular enough that it
doesn’t create dependencies. Figure 8 shows the
communication between the main modules running
through the System Manager (which is the collective of
the Thread Manager and the FIFO Buffer)

Figure 8. System Communication

3.2 Plugins

The entire system was designed and built around
plugins; even the communication/thread managers were
both designed with plugins in mind. The system was
designed to be expandable, this being a key issue in the
previous system (i.e. the inability to expand easily).
The plugins used in this system are much the same as
any other plugins; they enable the addition, changing
and editing of any module without the need for
recompilation. Also as all the main components are also
plugins, the system can be upgraded without the user
requiring major changes to the software. Users are
allowed and actively encouraged to design plugins for
the system to do a specific task they might require. An
SDK is available, which is designed to aid users in
understanding the plugin concept specific to this
system.

3.3 Scene Manager

In the same way that the System Manager (Section 3.1)
controls the System, the Scene Manager controls all the
aspects of the Scene. The Scene itself is quite complex
and although OpenGL Optimizer controls the actual
Scene Graph, there are many additional interactions
that need to be taken care of. The Scene Manager is
very similar, in its basic form, to the one used in the
Attraction Builder. However, as there are multiple
Clients with multiple Avatars, the database used to
manage this is more complex. The system is no longer
controlling, for example, Avatar 1,2,3 etc, it is in
control of Avatar 1 on Client 1 and Avatar 1, 2 and 3
on Client 2 for instance. This causes more
complications in the overall design, especially as the
Attraction Builder is an effectively linear, single
threaded system, whereas the W-VLNET system has
highly concurrent tasks being processed throughout its
architecture.

3.3.1 Database Control

The database used has two layers: The Client Layer and
the Item Layer. The Client layer contains a very simple
reference to the Client. The Item (an Item being either
an Object or an Avatar) Layer, which is below this,

contains the references for all Objects and Avatars in
the system. This includes their name, scene graph
reference(s) and locking switches. It is important to
keep track of these objects and avatars in a very strict
fashion as many complex things can happen (e.g. a
Client could leave/join, crash, get disconnected etc) and
this can have a very adverse effect if not handled
correctly. Secondly, as mentioned in Section 3.1,
concurrent tasks can be performed at once on the same
Object or Avatar, and hence it is necessary to keep
track of whether an Object/Avatar is being interacted
with. The inability to keep track of these events will
also have strange outcomes (such as strange
animations, or objects/avatars ending up in different
positions on different Clients).

3.3.2 Avatar Loading and Animation

HANIM/MPEG4 compatible bodies are used in
conjunction with MPEG4 compatible faces. These are
exactly the same as the ones used in Attraction Builder
(See Section 2.2.x). Each Client is expected to load at
least one representative avatar, which also has to be
uploaded to the Server and distributed to the other
connected Clients (See Section 3.4). The Avatar files
themselves are compressed into zip files, which makes
the transfer to the Server lighter in comparison with
uncompressed files (normally 7-8 times larger), but
even these files are between 600K and 1M and hence a
caching mechanism was also implemented to reduce
wait times and bandwidth utilization. The caching
mechanism works two-fold, firstly it acts in the normal
way, which is to check if a copy of the file exists
locally (this caching mechanism also works for object
files) and then just transfer the basic information (like
posture/position), which is extremely small in
comparison. The second caching mechanism is used if
the user has a small network connection to the server; it
basically uses a default avatar representation (also
stored locally) for all avatars, hence reducing the
requirement to download other client’s representative
avatar.
Animation is also more complex on the NVE System as
it is done completely on a frame/frame basis. Each
frame (of either BAPs and FAPs) is compressed using a
simple loss-less compression technique, and using a
sequential numbering system is sent directly to the
Server and distributed to other clients. This means that
a Client can stop its animation at any time, or adjust it
accordingly; there is no set time for which an animation
can last. This works equally well for both file
animations (animation streams stored in files) and for
Motion Tracking Units (see Section 3.4). The loss-less
compression is used to reduce the overall packet size of
a body animation (as the animation of all the joints can
produce up to 296 values that are 4 bytes in size),
combine this with other necessary data and the packet
is almost 1Kbytes in size. As the normal Maximum

Transmission Unit (MTU [17]) is 556 bytes, this is
rather too large for normal Internet Transmissions
(where the restricted MTU size of 576 bytes is often
observed). The loss-less compression uses the upper
and lower limits of each of the 296 values and reduces
the sizes of each value to the maximum bit value
required. Also even in the worst case conditions only a
maximum 110 values are used. Hence the packet can be
compressed to roughly within the MTU restriction. A
Quantizer value could be used to reduce this value,
with the cost of reducing the accuracy of the
animations, but a better approach would be to use either
Huffman or Arithmetic Coding to produce better loss-
less compression. Quantizing the values produces (in
reality) very little reduction to the packet size, at the
cost of very poor animations.

3.3.3 Picking and Object Manipulation

To really interact with virtual environment, it is
necessary to use object picking and manipulation. Also
as system uses a collaborative environment then the
object on one Client must be seen moving on all other
Clients.
Picking is done on the basis of the Clients
representative Avatar. The Avatar moves towards an
object and then all objects within the View Frustum and
within a specific range (variable, with default of 1
meter) are then selected as being pickable objects. The
database of pickable objects is dynamically changed as
the Avatar moves around. The pick mode then cycles
through all pickable objects stored in the picking
database and once the user has selected an object, it is
then picked (selecting is done either by a button press,
or by moving when the object is picked). The object is
then moved with the Avatar as it moves (much in the
same way as an object is moved in real life). The object
can be deselected to unpick the object. All object
movements are sent to the other Clients so that their
database is completely up-to-date.

3.3.4 Proximity, Collision Detection and Gravity

In order to provide greater interaction within the virtual
environment proximity detection is available. The
proximity function is actually a collaboration of several
common functions (which can be turned on or off as
necessary, according to requirements and computing
power). The functions that are coordinated together are:
Proximity, Collision Detection and Response and
Gravity. Although gravity is not directly combined into
the same task, it does work hand in hand with Collision
Detection and Response. Gravity is applied to each and
every object/avatar apart from the basic scene (as
defined by the Server as the default object); each
object/avatars speed is stored in the database (as
specified in Section 3.3.1) and a simple gravitational
equation is applied to each object/avatar. This equation

is designed to be fast (real time) and to move each
object/avatar a large finite distance each time the
equation is applied.
Proximity and collision detection is done in the same
loop. The reason for this is that the collision detection
function checks for all impending collisions of
objects/avatars with other objects/avatars and then
implements the response mechanism to prevent the
actual intersection of the two objects or avatars.
Proximity does the former part of this calculation also,
although more with respect to checking whether an
object or avatar is less than a set distance away. The
Proximity detection is mainly used in conjunction with
the Attraction Player (Section 3.7), which plays files
outputted from the Attraction Builder on the local
Client. As proximity triggers are specified in the AB,
then they must be present in the NVE System, which is
more complex as any user can trigger sensors and this
event has to be handled correctly (outlined in Section
3.7). The Attraction Player (according to its input file)
specifies a proximity sensor to be applied either to an
Object or an Avatar and a set of trigger conditions (can
be triggered by Object only, Object/Avatar or the local
Users representation) plus the proximity distance, see
Figure 9.

Figure 9. Proximity Triggers

Collision Detection and Response at this time is
extremely simple (to preserve the real-time aspect).
Collision detection is performed by placing a Bound-
Box around each individual object and then detecting
simple intersections. The response mechanism is
currently designed only to stop an object/avatar from
causing an intersection. This response mechanism and
the application of gravity work in conjunction with
each other. When the gravity mechanism is used, then
the response mechanism must be implemented. More
complex response mechanisms are expected in the
future.
3.4 Real-Time Motion Tracking

3.4.1 Body Posture and Tracking

The real-time motion capture engine is based on a set of
fourteen magnetic sensors (Figure 10). These sensors
measure the motion of the major human limbs (head
and spine, shoulders, elbows, hips, knees and ankles).
Optionally, two digital gloves are used to track the
wrists and fingers movements. The sensors’ raw
measurements are converted into anatomical angles
suited to skeleton hierarchies using an efficient
technique [21]. This converter is driven by orientation
measurements to remove as much as possible
dependencies on the distorted (non-linear) position
measurements of magnetic sensors. Only one sensor
position is used to recover the position of the virtual
human. The key features of this engine are:
• Automatic instant sensors calibration procedure.
• Human specific optimizations such as dedicated

evaluation for shoulders and hips twisting, floor
and anti-skating corrections

• Control of the whole spine using three sensors
(Figure 11)

Figure 10. Magnetic sensor locations

The motion capture engine exists as a dedicated
external application that sends Body Animation
Parameters to the W-VLNET core, which in turn
applies the posture to the virtual human before final
scene rendering. That way, we can spread the
computational load on separate processors. This
introduces a slight lag (~0.5s) between the performed
movement and the rendered related posture, but we
found it is worth it in comparison to the pipelining
solution where all steps are performed within the same
application. In the latter solution, the lag varies
between 0.3s and 0.7s depending on the rendered scene
complexity.

Head

Shoulde

Elbow

Spine base Pelvis

Hip

Knee

Spine

Ankle

Head

Spine base

Spine

L5
L3

L1

T1

T6

T1
C4
C2

Figure 11. Control of the spine using three
sensors

3.4.2 MPEG-4 Body Animation Parameters

The human motion capture process is built on top of a
proprietary skeleton structure [22] modeling joints
using Euler angle sequence decompositions. These
angles are very similar to the MPEG4 body animation
parameters. In order to animate MPEG-4/HANIM
hierarchies, we just translate the joint angles from our
internal hierarchy to the MPEG-4 body animation
parameters. These computations basically consist of
finding the MPEG4 counterparts (or indexes) for each
joint angle, and applying simple data encoding (our
internal angles are float values and MPEG4 parameters
are encoded as long int). In few cases (e.g. fingers
parameters), there is a slight posture difference between
our internal model and the MPEG-4 default postures.
Consequently, we need to account for this default
posture difference by adding angle offsets prior to
encoding. These offsets are identified by setting the
proprietary hierarchy in the MPEG4 default posture
using key framing.
After encoding all parameters, the new posture
information is sent to the client application using TCP
for Communication (Figure 12). A simplified virtual
human representation can be displayed within the
external motion capture application to provide a
diagnostic level feedback. This feature is mainly used
to determine incorrect sensor positioning and other
hardware related problems.

Figure 12. External Motion Capture application
processing pipeline.

3.5 Networking

3.5.1 Overview

The network topology that is used for this NVE System
is based on the Client/Server approach, as shown in
Figure 13. This approach assumes all the Clients
connect to one Server that require common interaction.
Each Server hosts one or more Attractions and Scenes
and it contains the master scene database and controls
the distribution of data to all Clients.

Figure 13. Client/Server Architecture

3.5.2 Client Connection

Each Client connects to the Server via a single entry
port. As soon as the connection is established the
Server moves the Client to another port to keep the
entry port free. The new port is then established as the
control port between the Server and the Client and is
used as a secure data exchange for network interaction.
This connection uses TCP protocol.
The Server then exchanges information with the Client
to establish its identity, the channels it wishes to
connect to and it also tests the data connection to
determine a rough estimate of the bandwidth. The
Server then sets up several channels according to the
Clients request; these are as follows:

• Stream – Used for data that needs to be

transmitted rapidly and at a steady rate. It also
requires no retransmission of data, in case of loss
or error. The port is connectionless using the UDP
to transfer data.

• Update – This is similar to the Stream Channel,
requiring only UDP connectionless port, but it has
error control (using re-transmission), so data sent is
treated with more care.

• File – Using a TCP connection-orientated port,
File data (or very large data > 1K bytes) is
transferred over this port. Complete Error Control
and Packet re-send are implemented for this
Channel.

• Control – Also using TCP, this channel is the one
used during the Server/Client phase and stays
connected until the end of the session.

The Client generally will need the Update Channel and
it has no option for the Control Channel. However it
can deny connection for the Stream and File Channels.
This might be to preserve bandwidth, or CPU
processing time (or perhaps for the application if it is
not required). The Update Channel transfers data such
as Object/Avatar transforms and Avatar Animations.
The Stream Channel is mainly used for Audio/Video
Connections that might be required, for instance in
sending real-time voice communication.
Disconnection is done in reverse order, the Channels
are disconnected first and then the Control Port sends a
command to the Server to disconnect completely. The
Server can force disconnection in the same way, which
allows for a clean disconnection of ports and allows the
Server to accept new connections without restarting.

3.5.3 Scene Graph Initialization

Once the main network connection has been established
the Scene can be sent to the Client. The Scene is
actually split into two sections, the World and
Attraction. The world is just a single object (normally a
grass plane) that is used as an absolute reference for the

remaining objects and avatars (especially when using
gravity). The Attraction is a complex set of Objects and
Avatars that is placed directly on the world (with an
offset if desired), the overall control the of Attraction is
handled by the Attraction Player Plugin, but the loading
of actual objects/avatars is handled as normal; by the
Scene Graph.
All objects/avatars (as explained in Section 3.3.2) are
checked against using caching mechanism to avoid
unnecessary downloads. Both the Attraction and World
files are compressed to obtain maximum transfer and
uncompressed directly into the cache.

3.5.4 Server Database

After the Client connects and downloads the main
World and Attraction, and once the main static Objects
and Avatars (common throughout the Servers online
status) have been downloaded into the Scene Graph,
the Server Database is consulted to determine all the
dynamic Objects/Avatars in the Scene. Each Client has
the ability (at any time during connection) to add there
own Avatar(s), and Object(s) into the Scene to enable
greater interaction.
The Scene Database contains the information on
Objects and Avatars that have been uploaded by
Clients, their transformation matrices, and the file
reference in the Servers local Cache (which works in
exactly the same way as the Client Cache). This
information is distributed to each Client when a Client
uploads the information. This information is also
referenced when a Client connects for the first time, the
Database is searched and all details are sent to the
connecting Client to enable it to be completely up-to-
date with the current state of the Scene. Avatars also
have an extra field that stores the Avatars body posture.
Both Audio and Video streams are not stored in the
database as it is not required.
When a Client disconnects all uploaded Avatars are
removed from the database (and corresponding
messages distributed to all Clients), however as Objects
may still be in use by other Clients, the Objects move
their ownership to the Server (which is Client 0) to
avoid problems with later connecting Clients.

3.5.5 Communication Protocol

A Common Communication Protocol is used over the
Update Channel to enable simple message passing to
exist. This protocol uses a generic packet that contains
fields for common data types, and three generic fields
provide access for other units.

• Message Type – Identifier for Message Packet,

declares contents
• Animation Stream – 400 Bytes used for different

types of animation and data (FAP, BAP, Text etc).

• Message String – 32 Byte Text Identifier (e.g.
Filename)

• Message Value 1,2,3 – Used for general values
and references.

• Transformation Matrix – 4 by 4 float value.
Used because most objects/avatars will require
transformations in nearly every packet.

The Stream Channel uses a simplified version of this,
with a Message Identifier and a Transformation Matrix
for each packet, then 500 Bytes of compressed data.
The File Channel splits all data into manageable
packets and then sends it directly over the channel.
Waiting for an acknowledgement from the receiving
end that all data was received correctly, otherwise a
packet-by-packet re-send message is transmitted to the
sending end. The Control Channel receives undefined
messages regarding the state of the Server
(connections, load, Client status etc). The Client then
has a rough database of the connected clients (to reduce
network load, the updates of the Client database are
done on very large time steps).

3.6 Multimedia Objects

As can be seen from the Channel distribution, different
types of data can be exchanged between Clients (using
the Server as a network switch). The list of currently
added data types/streams is as follows:

• Audio Stream – The basic stream of audio is

transferred at 16Kbits/s and compressed using the
G.728 Audio Compression Codec. However for
larger bandwidth systems, or systems with less
bandwidth but greater CPU power, the G.711
(64Kbits/s) and G.723.1 (5.3Kbits/s and
6.4Kbits/s) audio codecs both function on the same
audio channel. Each audio stream is given a
reference object in order that 3D Audio can be
created.

• Speech – Speech communication over this type of
system is useful for Clients connected over very
low bandwidth connections. The Speech itself is
transmitted as plain ASCII text and this is passed
to a Text-to-Speech Engine. This converts the text
not only into the Audio equivalent, but it creates
the corresponding visemes (See Section 2.2.4).

3.7 Attraction Playing/Management

To make the system completely clear and
comprehensible, not only for the design of the system
but the plugins that might be added later, the Attraction
itself belongs to the Server. The Server acts as another
Client, and therefore has a Client ID as well as a Server
ID making it easy to add Avatars and Objects to the
Database. Once the Client has connected to the Server
the Attraction Player Plugin loads the Attraction into

the Scene Graph. This is done using APIs provided by
the Scene Manager. The Attraction Player uses the
same Caching mechanism and compression techniques
as the Scene Manager. Loading an Attraction consists
of loading the Autonomous Avatars, the animated
Objects, the Script and the Proximity/Touch Sensors
placed around the scene. The Server then sends the
Attraction Player Plugin timing information to enable it
to synchronize itself with the other connected Clients.
As the time-line is set according to a linear time
placement (although not necessarily linear when
playing) the time reference applies to a specific set of
postures and placements for Avatars and Objects
respectively. This timing signal is sent to all Clients
every one second (by default) to enable Clients to
maintain synchronism (although each Client maintains
its own timer).
The Scene Manager sends the Attraction Player
information about the scene (such as Proximity Sensors
that have been triggered) and therefore the Attraction
Player controls the Attraction itself without any
intervention by the Scene Manager. If a generic NVE
system is required, the Attraction Player Plugin can be
removed without affecting the rest of the system,
likewise the Server attempts communication with the
Attraction Player and if there is no response it
continues regardless.

4. Attractions

4.1 Virtual Theatre

The first of two case study Attractions, the Virtual
Theatre [19] supports users who can interact with the
production and in a real sense [20] join the cast. This
results in a form of real-time, dynamic theatre, where
the production is changing in time according to the
interactions of the digital actors and the participants
within a predefined framework. An area of great
interest and significance is where aspects of the
performance relate to the interaction of participants.
This includes work on collaborative set design, virtual
rehearsal and presence in the virtual theatre.
The theatre supports interactive drama. Up to three
digital actors perform a predefined script in the absence
of any users’ avatars. When a user's avatar enters the
scene they are able to either watch the drama unfold as
predefined or, by causing their avatar to approach on
the digital actors they are able to affect the progress of
events (as shown in Figure 14). This is through
proximity triggering of the script, causing the digital
actors to cease their current activities and to interact
with the user's avatar.

Figure 14. Interactive Theatre

Lewis Carroll’s Alice in Wonderland provides the basic
script and scenario, based upon Carroll’s photographs
from the 1860s of Alice herself in the collection. As a
character-driven rather than plot-based scenario, Alice
provides a wide variety of immediately recognizable
characters, representing different ages, genders, shapes
and social types. All of the Museum’s1 visitors should
therefore be able to identify with one or more of the
characters. Alice’s episodic narrative allows for a non-
linear storyline to be enacted without contradicting
expectations of the basic scenario. The emphasis on
imaginative imagery in the story allows features only
possible within animation, whether computer-based or
cell. The non-naturalistic setting also gives license to
free experimental play of words and actions.
Carroll’s text has been adapted to provide opportunities
for interaction between avatars and virtual actors, as
well as between avatars. This causes the timeline of the
piece to be broken, returning to a linear nature when
the users cease their interaction. In this way, the scene
can progress without users being present, allowing
people to join the theatre at any time. As an exhibit, it is
proposed that visitors could choose from Alice, the
Queen of Hearts and Tweedledee, or experience the
different perspectives of all three. The Museum has
worked with a theatrical production company to
research ways of making the attraction lively and
accessible. It is also conducting visitor research into
how the exhibit will best function to provide maximum
engagement between the participants, fluency with the
proposed interface and understanding of the storyline.
With the education department, we are also researching

1 National Museum of Photography, Film and Television, Bradford,
UK

the potential uses and applications of the virtual theatre
with schools and in live-link events.

4.2 Virtual Dance

The second case study is an Attraction for a Teacher
(attached to a motion tracking system at one location)
to teach dance to a student (also attached to a motion
tracking system in another geographically remote
location). Both teacher and student were cloned by our
in-house cloning system, to obtain a virtual copy of
both humans, and attached to a motion tracking system,
as shown in Figure 15 (one at University of Geneva and
the other at EPFL, Switzerland). An overlaid musical
sequence is used to enable the teacher and student to
synchronize with each other, both teacher and student
can see each other (virtually) on a screen (as shown in
Figure 16) and therefore the teacher is able to see what
the student is doing wrong and the student can watch
the teacher to see what should be done.
The system is fully interactive, allowing each
participant the ability not only to see the exact
movements of their counterparts, but also to talk with
each other. This type of scenario is classical of an NVE
System being used to its maximum benefit and
certainly is difficult to replace with other conventional
systems (such as Video Conferencing). The scenario is
not limited to two participants; more users could join to
provide a teacher with a class of students, providing the
motion tracking equipment was available. To increase
the teacher sense of submersion and also to enable a
clearer perception of the situation a lightweight head
mounted display could be used, although as dance
typically uses great movement, the display should be
rugged and should secure to the teacher so that the
movement is not restricted.

Figure 15. Real Teacher and Student

Figure 16. Virtual Teacher and Student

5. Conclusion and Future work

In our work, various pieces of research have been
integrated to form a framework for the creation and
description of attractions where realistic virtual actors
exist. This powerful tool has been developed for
creation of attractions, which allows the user to build a
believable attraction in an effective and easy-to-use
way. Design decisions, as well as related issues on
creating and animating human-like virtual humans in
real-time, have been discussed.
We also presented the W-VLNET System, a powerful
multithreaded system that is capable of running not
only the attractions, but connecting two or more users
together in a Networked Virtual Environment. The
environment itself made more real by the integration of
an animation system that completely animates the users
virtual representation, and simple collision detection
and response. This was coupled with our real-time body
animation capturing system and full audio support for
both sound and music, that adds to the realism of the
experience. Both the W-VLNET System and the
Attraction Builder were done on a Windows OS.
Finally, both systems actively use the latest standards
for scene and virtual avatar representations (VRML97
and MPEG4) to enable greater inoperability between
the two systems presented here and other commercial
products.
To complete the work we have designed, created and
tested two Attractions. This allowed us to visualize
problems, prove the work in a real situation and finally
to self-regulate ourselves and focus our research.
In future work we aim to augment the overall
experience of the virtual environment by improving the
collision models and improving the depth of the
multimedia inputs (including video and improving the
audio perception in the environment). We also aim to
improve the transmission rates for the system in real

time using better compression methods and Server
filtering.

6. Acknowledgements

The VPARK project (ACTS project Number AC353) is
funded by the European Community and the Swiss
Partners are sponsored by the “Federal Office for
Education and Science”.

7. References

1. K. Lee, C. Sul and K. Wohn, Virtual Stage: A

Scenario-Based Karaoke System in Virtual
Environment, Proc. of Pacific Graphics '97, 1997,
pp. 159-167.

2. J. Piesk and G.Trogemann, Animated Interactive
Fiction: Storytelling by a Conversational Virtual
Actor, VSMM ’97, 1997, pp. 100-108.

3. K. Perlin and A. Golberg, Improv: A System for
Scripting Interactive Actors in Virtual Worlds,
Proc. of SIGGRAPH ’96, 1996, pp.205-216.

4. Carnegie Mellon University, Alice,
http://www.alice.org

5. D. M. Shawver, Virtual Actors and Avatars in a
Flexible User-Determined-Scenario Environments,
Proc. Virtual Reality Annual International
Symposium (VRAIS) ’97, 1997, pp. 170-177.

6. J. Cohen, A. Varshney, D. Manocha, G. Turk and
H. Weber, Simplification Envelopes, Proc.
SIGGRAPH ’96, 1996, pp. 119-128.

7. S. J. Teller and C.H. Séquin, Visibility
Preprocessing for Interactive Walkthroughs, Proc.
SIGGRAPH ’91, 1991, pp. 61-69.

8. G. Schaufler, Exploiting Frame-to-Frame
Coherence in a Virtual Reality System, Proc.
Virtual Reality Annual International Symposium
(VRAIS) ’96, 1996, pp. 95-102.

9. L. Emering, R. Boulic and D. Thalmann,
Interacting with Virtual Humans through Body
Actions, IEEE Computer Graphics & Applications,
Vol.18, No.1, 1998, pp. 8-11.

10. D. Thalmann and H. Noser, Towards Autonomous,
Perceptive, and Intelligent Virtual Actors in:
Artificial Intelligence Today, Lecture Notes in
Artificial Intelligence, No 1600, Springer, pp. 457-
472.

11. R. M. Jones, J. E. Laird, and P. E. Nielson, Real-
Time Intelligent Characters for a Non-Visual
Simulation Environment, Proc. of Computer
Animation ’99, 1999, pp. 11-18.

12. T. K. Capin, I. S. Pandzic, N. Magnenat-Thalmann
and Daniel Thalmann, Avatars in Networked
Virtual Environments, Weiley, 1999.

13. P. Kalra, N. Magnenat Thalmann, L. Moccozet, G.
Sannier, A. Aubel and D.Thalmann, Real-time
animation of realistic virtual humans, IEEE
Computer Graphics and Animation, 1998.

14. W. Lee, N. Magnenat-Thalmann, From Real Faces
To Virtual Faces: Problems and Solutions, Proc.
3IA'98, Limoges (FRANCE), 1998.

15. H-ANIM Humanoid Animation Working Group,
Specification for a Standard Humanoid Version1.1,
http://ece.uwaterloo.ca/~h-anim/spec1.1/

16. I. S. Pandzic, T. K. Capin, N. Magnenat-Thalmann
and D. Thalmann, VLNET: A Networked
Multimedia 3D Environment with Virtual Humans,
Proc. Multi-Media Modeling MMM`95 (World
Scientific Press), Singapore, 1995.

17. W. Richard Stevens, TCP/IP Illustrated, Volume 1,
1994, pp. 29.

18. Microsoft Speech SDK.
19. C. Reeve and I. Palmer, Virtual Rehearsals over

Networks, Digital Convergence: The Information
Revolution, J.Vince & R.Earnshaw (eds.),
Springer-Verlag, London, 1999, pp. 101-115.

20. C. Reeve, Presence in Virtual Theatre, Presence
(Special edition), MIT Press, forthcoming.

21. T. Molet, R. Boulic and D. Thalmann, Human
Motion Capture Driven by Orientation
Measurements, Presence, MIT, Vol.8, No.2, 1999,
pp. 101-115.

22. R. Boulic, T. Capin, Z. Huang, L. Moccozet, T.
Molet, P. Kalra, N. Magnenat-Thalmann, I.
Pandzic, K. Saar, A. Schmitt, J.Shen and D.
Thalmann, The HUMANOID Environment for
Interactive Animation of Multiple Deformable
Human Characters, Proc. Eurographics’95,
Maastricht, 1995, pp. 337-348.

