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Abstract 

In the past decade Networked Virtual Environments have been an increasingly active area of 

research, with first commercial systems emerging recently. Graphical and behavioral 

representation of users within such systems is a particularly important issue that has lagged in 

development behind other issues like network architectures, space structuring etc. In this 

paper we expose the importance of using Virtual Humans within these systems and provide a 

brief overview of several Virtual Humans technologies used in particular for simulation of 

crowds. As the main technical contribution the paper presents the integration of these 

technologies with the COVEN-DIVE platform, the extension of the DIVE system developed 

within the COVEN project. In conjunction with this, we present our contributions through the 

COVEN project to the MPEG-4 standard concerning the representation of Virtual Humans. 
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Importance of Virtual Humans for NVEs 

The participant representation in a networked VE system has several functions: 

• perception 

• localization 

• identification 

• visualization of interest focus 

• visualization of actions 

• communication 

Perception  and localization are the very basic functions of participant representation in 

NVEs. They allow us to perceive the presence of others in the environment and see where 

they are. Even a crude embodiment can fulfill these tasks.  

Identification  is an important function because we usually want to know who is in front of 

us. Means of identification can range from simple ones, like displaying the first letter of one’s 

name to complex body and face models resembling a particular person.  

Visualization of interest focus  can be achieved by any embodiment that somehow 

represents the direction of gaze - usually this means a graphical model that has eyes or 

symbols representing eyes, so we can see in which direction it is looking. 

Visualization of actions  requires the embodiment to have some end-effectors that perform 

actions. In a low-end implementation this might be a simple line reaching to the manipulated 

object, or it might be a virtual hand grasping the object. 

Communication  in real life is in many ways tied to our body - gestures and facial 

expressions (including lip movement that improves speech understanding) are natural part of 

our daily communication. If such communication is to be supported in NVEs, the participant 
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representation needs to be fairly sophisticated. 

Although many of these functions can be fulfilled with very simple embodiments, it is 

obvious that most can be fulfilled better using more sophisticated Virtual Humans, and some 

functions can absolutely not be fulfilled without them 

Virtual Humans can fulfill these functions in an intuitive, natural way resembling the way 

we achieve these tasks in real life. Even with limited sensor information, a virtual human 

frame can be constructed in the virtual world, reflecting the activities of the real user. Slater 

and Usoh (Slater and Usoh 1994.) indicate that such a body, even if crude, already increases 

the sense of presence that the participants feel. Therefore it is expected that a better and more 

realistic embodiment will have a further positive effect on the sense of presence and mutual 

presence. 

While there is already substantial work done on integrating Virtual Humans in NVEs 

(Capin et al., 1997., Pandzic et al.,1997., Capin et al., 1999.), in this paper we present an 

overview of the aspects of this research topic concerning the simulation of crowds: the crowd 

representation, crowd behavior, generating populations and Level of Detail management 

which is essential when large number of humans is simulated. We then describe the 

integration of these techniques in the Coven-Dive platform and present contributions to the 

MPEG-4 standard resulting from this work. 

Populating NVEs with crowds 

The goal of this section is to provide information about why and how populate NVEs using 

virtual human crowds. Several works have explored such importance of crowds in NVEs 

(Bouvier, 97) (Brogan and Hodgins, 97) (Reynolds, 87) among others. Imagine participants 

sharing a virtual museum existent in a NVE. Depending on the number of participants 

connected at a specific time, the virtual museum may be non-inhabited when a new 

participant gets connected. In this case, the degree of realism as well as the possibility of 

interaction with others is reduced. Assuming that NVEs can be populated using virtual 

crowds, the sense of presence provided during immersion in virtual environments like the 
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virtual museum is substantially increased. 

Moreover, the virtual crowd can act autonomously because its members are able to 

perceive the state of the virtual environment and interact with it. Anyway, the participants can 

be interested in interacting and/or guiding virtual crowds during the simulation. In order to 

deal with this variable level of autonomy (from autonomous to guided crowds) we have 

introduced ViCrowd model (Musse et al, 1999). The main goal of our approach is being able 

to built autonomous animated creatures for interactive virtual environments. 

Considering the needs of controling and interacting with the crowds at the same time that 

programming them, we decided to use a multi-level hierarchical model where crowds and 

agents can present different levels of autonomy. In this way, groups of agents can be 

programmed (before the simulation), act in a autonomous way as well as be guided by the 

user (during the simulation). Moreover, the hierarchical structures presented in ViCrowd like 

agents, groups and crowd aim to provide the simulation of families, leadership and other 

aspects which are not possible if the crowd is represented by one-level of agents' structure. 

These decisions have been taken into account in order to comply with the needs and 

requirements of our applications. 

The next sections describe succinctly how ViCrowd model is used to define the 

autonomous and guided behaviors of virtual crowds in NVEs, as well as the methods used for 

the generation of physical appearance of population.  

ViCrowd Model 

We defined a crowd as a set of groups composed of virtual agents. Our model distributes 

the crowd behaviors to the groups and then to the individuals. There are two ways for setting 

the parameters of ViCrowd: scripted and external control. Scripted control defines scripted 

behaviors of the crowd whereas external control specifies guided behaviors. Yet, ViCrowd is 

represented through a hierarchical architecture where the minor entity to be treated consists of 

groups. In this case, the groups are more “intelligent” structures, while individuals follow 

groups’ specification. This decision is due to real time requirements existing in NVEs 

applications and aims to optimize the information needed to provide intelligent agents. 
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At a lower level, the individuals have a repertory of basic behaviors that we call innate 

behaviors. An innate behavior is defined as an “inborn” way to behave. Goal seeking 

behavior, the way trajectories are processed and collision avoided, the ability to follow 

scripted or guided events/reactions are examples of innate behaviors of individuals. While the 

innate behaviors are included in the model, the specification of scripted behaviors is done by 

means of a script language where pre-defined commands are specified in order to model 

different behaviors of crowds. We call the groups of virtual agents <programmed groups> 

who apply the scripted behaviors and do not need user intervention during simulation. Using 

the script language, the user can directly specify the crowd or group behaviors. In this case, 

the system automatically distributes the crowd behaviors among the existing groups. Events 

and reactions have been used to represent behavioral rules. This reactive character of the 

simulation can be programmed in the script language (scripted control) or directly given by an 

external controller. We call the groups of virtual agents <autonomous groups> who apply the 

behavioral rules. Yet, externally controlled groups, that we call <guided groups>, no longer 

obey their scripted behavior, but act according to the external specification.  

Figure 1: Scenes of simulation of evacuation due to a panic situation. Up-left and up-right: 

before the panic situation, the crowd walks. Down-left and down-right: crowd reacts because 

an event generated when the statue becomes alive 
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For example, if a group’s intention is to visit a museum (scripted group behavior), but a 

panic situation occurs (event), this group can then perform the programmed reaction 

associated with the event. This reaction can either be externally specified (during the 

simulation) or pre-programmed in the script, e.g. exit the environment. Figure 1 shows a 

sequence of animation in a panic situation, where 100 agents react exiting the museum 

because a statue which becomes alive. 

Figure 2: Dialogue between the leader and the crowd. On the left, the leader talks and on the 

right, the crowd reacts. 

A script language has been used in order to program specific behaviors in ViCrowd  

(Musse et al, 1998). 

In addition to autonomous crowds, ViCrowd also supports externally guided crowds. The 

information concerning the entities that can be controlled are: motion, action, events, reaction 

and internal status. 

We integrated ViCrowd system in DIVE in order to provide a module responsible for the 

control of crowd behaviours. This module can provide autonomous crowds that have some 

knowledge about the virtual environment and are able to interact with it. Figure 3 presents 

some images of crowd simulation in world dive where a participant is observing autonomous 

crowds. 
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Figure 3: A participant observing the autonomous virtual crowds. 

In accordance with the parameter settings, which could be recognised by the guided 

crowds, DIVE may provide some information from the participants (e.g., location, direction). 

Afterwards, the guided crowd is able to recognise the information sent by DIVE and 

distribute it among groups behaviours.  

 Creating Populations 

Given the high number of elements in a population, we need a fast and efficient way to create a 

physical appearance for each element. Physical appearance of an agent should be realistic but also 

unique in order to differentiate the agent from other agents within a population. We divide the physical 

appearance into the face part and the body part. We will describe some methods allowing the 

automatic construction of an unlimited number of faces and a fast method for the construction of 

bodies. These constructed faces and bodies could be stored in a database allowing a user to choose 

whatever body and face he wants to assemble in order to create a complete physical appearance for an 

agent. 

Construction of faces 

Animators agree that the most difficult subjects to model and animate realistically are 

humans and particularly human faces. The explanation resides in the universally shared (with 

some cultural differences) processes and criteria not only for recognizing people in general, 

but also for identifying individuals, expressions of emotion and other facial communicative 

signals, based on the covariation of a large number of partially correlated shape parameters 
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within narrowly constrained ranges. Though some of this may be amusingly conveyed in a 

schematic manner by various 2D or 3D animation technologies, the results are easily 

identified as cartoons by the most naive observer, while the complex details and subtle 

nuances of truly realistic representation remain a daunting challenge for the field. 

Approaches to the realistic reconstruction of individuals, some of them with a view to 

animation, include the use of a laser scanner (Lee et al, 1996), a stereoscopic camera 

(http://www.turing.gla.ac.uk), an active light stripper (Proesmans and Gool, 1997), or a video 

stream (Fua, 1998) to reconstruct heads and natural expressions. Modeling has also been done 

from picture data (Kurihara and Arai, 1991) (Akimoto et al, 1993) (Ip and Yin, 1996) (Lee et 

al, 1997) detecting features, modifying a given generic model and then mapping texture on it. 

Not all of these, however, combine sophisticated and reliable shape deformation methods 

with seamless, high-resolution texture generation and mapping.  

 

(a) 

    

 

(b) 

 

(d) 

  

(c) 

Figure 4: (a) Modification of a generic head according to feature points detected on pictures. 

Points on a 3D head are control points for Dirichlet Free Form Deformation (DFFD). (b) 

Geometrical deformation for texture merging. (c) Multiresolution technique for texture. (d) 

Snapshots of a reconstructed head in several views. 
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2D photos offer cues to the 3D shape of an object. It is not feasible, however, to consider 

3D-points densely distributed on the head. In most cases, we know the location of only a few 

visible features such as eyes, lips and silhouettes. Figure 4(a) depicts an orthogonal pair of 

normalized images, showing the features detected. The two 2D sets of position coordinates, 

from front and side views, are combined to give a single set of 3D points. We use 3D feature 

points as a set of control points for the Dirichlet-based Free Form Deformation (DFFD) 

(Moccozet and Magnenat Thalmann, 1997). Thus the deformation of the whole surface is 

smoothly controlled by the control points. As shown in Figure 4 (a), the result is quite 

respectable considering the input data (pictures from only two views).  

To improve realism, we make use of automatic texture mapping. If the texture mapping is 

not correct, the accurate shape is useless in practice. We use information from the set of 

feature points detected to generate texture fully automatically, based on the two views. The 

main criterion is to obtain the highest resolution possible for most detailed portions. We first 

connect two pictures along predefined feature lines using geometrical deformations as shown 

in Figure 4 (b). Then to avoid visible boundary effects, a multiresolution technique (Burt and 

Andelson, 1983) is used as shown in Figure 4 (c)  . We then obtain appropriate texture 

coordinates for every point on the head using the same image transformation. Figure 4 (d) 

shows several views of the head reconstructed. 

From the population produced by this semi-automatic method, we can automatically 

produce much larger populations using methods such as morphing and statistical analysis.  

Construction of bodies 

The modeling of human body is an important but difficult problem. The human body shape 

is rather complex, it can have a variety of sizes and has 2 main types (male/female). A 

realistic modelisation comprises an articulated skeleton that can support various body 

elements such as skin and muscles that has to be deformed during an animation. Our goal is to 

make realistic body with animation and deformation capabilities without the need of physical 

prototypes or scanning devices. On Figure 5 are described the four elements that are used in 

the construction of our animated bodies: the skeleton, the deformation model, the skin and the 

texture. 
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Figure 5 a, b, c, d: The 4 elements used in the construction of body. 

 

Figure 6: bodies with metaball-based cloth 

For the construction of the deformation model, we use metaballs. Metaballs are geometric 

and ellipsoidal shapes that can be smoothly mixed together. A designer interactively positions 

metaballs around the skeleton in order to approximate the overall form of the set of human 

muscles (see Figure 5-b). A cross-sectional method combined with B-Spline merging 

techniques gives the body its final geometry that includes the skin (Figure 5-c). A texture is 
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finally applied on the body shape. Each metaball is attached to a skeleton joint and define a 

part of the body. The designer’s work consists mainly in varying the relative proportion, 

orientation and size of each metaball.  

Various transformations can be easily applied to an already constructed body such as 

global scaling that allows the creation of child body. Lateral scaling is another transformation 

that allows the construction of stronger bodies. The use of agent with different body 

proportion gives a more realistic appearance to a crowd. A further enhancement of the body 

shape is possible by using the metaball technique to simulate the cloth (Figure 6). This 

technique is suitable for jacket or pants but not for skirts for instance. The body has much 

more realism with the added cloth and still can be used in real-time animation. 

 

Level of Detail management for Virtual Humans 

In our system where participants are represented as highly realistic virtual humans, human 

models are the main contributors to the geometric complexity of the scene. In fact, each of our 

virtual human is made up of approximately 15000 textured polygons. Obviously acceleration 

techniques are necessary to reduce the amount of data for rendering and animating virtual 

humans in real time. This becomes more crucial as the number of virtual humans in the 

networked virtual environment increases.  

The basic idea of adopting LoD(Levels of Detail) techniques for virtual humans is more or 

less the same as for other objects in virtual environments : a detailed description of a virtual 

human is necessary only when it’s close to the viewpoint. A description of a virtual human 

includes both geometry and animation. However, virtual humans have some characteristic 

features. They are animated or deforming objects. LoD generation and control should 

incorporate both geometry and animation. Geometric importance (sharp edges, high 

curvatures, etc.)  may not be the only criteria for generating simplified models. In a face 

model, for example, some parts like lips move more frequently, attracting attention, thus are 

more important than other parts like ears, even though ears take much more triangles in an 

original model. 
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LoD on animated faces  

In our real time face animation system, high level actions like ‘smile’, ‘surprise’ are 

mapped to mid and low level actions (Kalra et al., 1998).The low level actions are composed 

of 64 MPAs(Minimum Perceptible Actions), each of which corresponds to a visible feature of 

the related region in the face model. A region is defined as a set of selected polygons in the 

mesh, where a muscle action is simulated using Rational Free Form Deformations (RFFD).  

The generation of different levels of detail on the geometry is done based on several 

observations on our face models to achieve the best visual effects possible. Ears, teeth are 

considered to be least important and are simplified at level1. On the other hand, lip 

movements are considered to be important and are preserved at level2.  

Figure 7 shows the hierarchical region management structure. Level 1 model is constructed 

by simplifying the extra(ears, teeth, and eyeballs) regions. In level 2 model, the extra region is 

simplified again or removed and upper_mask region is simplified. In level 3, simplification is 

applied also to the lower_mask, covering the whole head (Figure 8).  

By simply discarding animation parameters that correspond to simplified regions, the same 

hierarchy can be used for animation parameter filtering, too. We define an active tree as a set 

of regions currently being used by the animation system (Figure 7). 

 

Figure 7: Hierarchical region management structure and active tree  
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During runtime, the active tree on this hierarchy is managed to select an appropriate level 

as well as to filter some of animation parameters depending on the distance from the 

viewpoint Those regions below the active tree are simplified as well as corresponding 

animation parameters are excluded. As level changes from one to the other, the active tree 

either shrinks or expands.  

 

 

Figure 8: Different levels of a face model 

LoD on animated bodies 

Body models are more complex than face models and the most dominant objects in most of 

our applications. Similar to the face models, both geometric simplification and animation 

parameter optimization have been used for our body models. For geometry, 4 levels are 

generated by applying simplification (Figure 9). For animation parameters, frame data 

skipping factor is used to reduce the amount of data – different frame update rates are applied 

to the body model depending on its distance to the viewer. Also a similar hierarchical 

approach to face models is begin developed to efficiently cull out animation parameters. 
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Figure 9: Different levels of a body model 

Integration of Virtual Humans in the COVEN-DIVE platform 

Within the COVEN project, two already existing platforms were involved: a commercial 

solution represented by the work done by Division with the dVS system and an experimental 

one represented by SICS with the DIVE application. The goal of the COVEN project was to 

produce a final common platform that integrates major research and development made by 

each partner all linked to collaborative virtual environment technologies. 

The goal of the virtual human integration inside COVEN project, was to integrate in a 

generic way virtual human representation capabilities. It includes the definition of a hierarchy 

for the skeleton representation and an entire animation system in order to make the avatar 

walking, grasping objects, playing animation or reacting to a given event. The result should 

be a method that permits the integration of virtual humans in the two platforms present at the 

beginning of the project as well as inside the final COVEN platform. To be completely 

generic, this method should also permit the integration of virtual humans inside any kind of 

existing system based on collaborative virtual environment that generally needs a realistic 

representation of virtual humans. 

We will present this generic solution in the next section and its application to the user’s 
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avatar management but also to the crowd management inside a 3D shared world. 

A Generic Solution 

For embodiment, in order to avoid having to make the same work each time virtual humans 

are needed to perform a given set of task in a collaborative environment, it is important to 

take in account the actual technology at the collaborative virtual environment application 

level. By examining existing 3D shared world application (Dive, Capin et al., 1997., Pandzic 

et al., 1997.), it is obvious that all of them propose the plugin technology to developers using 

their systems. It permits to anybody to establish a connection between the kernel of the 

application and an external process. This process is then able to access internal information as 

well as it was a part of the application. The connection is usually established by following a 

given interface. Of course, from one application to another, this interface is different. This 

mainly means that if we want to perform a specific task within a set of different systems, we 

will have to write a specific plugin for each of them. So the plugin solution is a starting point 

but not a final one. We should be able to separate the common task to perform from the 

specific interface of each system. This can be done by using shared memory capability which 

is now available under all major operating systems. It permits to share a given memory 

segment by two independent processes: information can then be exchanged between the two 

processes through the memory segment. By combining the plugin technology and the shared 

memory technology, it becomes possible to reuse a process in charge of a given task from one 

system to another system by defining two sides: 

- The plugin side: it is specific to a given system and has to be written each time. 

The task of this part is to access any kind of 3D shared information (3D world, 

events, etc…) manage by the application. It also allocates a shared memory 

segment. 

- The external process side: it is written once and usable with any kind of system. 

This process is in charge of a given set of tasks. It has to establish a connection to 

the shared memory segment allocated by the plugin. 

The access to the shared memory segment is done through the use of a given interface. The 
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way the shared memory segment is allocated is explained in Figure 10 in the case of an 

external body controller. The COVEN Platform first loads the standard body definition (1). 

Then it allocates a shared memory segment (2) to be used for communication with the 

external body controller. This operation yields a shared memory ID number (3) that is passed 

to the external body controller as a parameter when the body controller process is spawned 

(4). The controller uses the ID to connect to the shared memory segment (5) and thus the link 

with the COVEN platform is established. The shared memory segment is used for all further 

communication. 

This system was tested to add realistic looking and behaving avatars as user’s graphical 

representation and for adding crowds to these 3D shared world. These two examples are 

presented in the following sections. 

The common part (the external process side), which is in our case the external body 

controller and the external crowds controller, is based on libraries developed in both labs 

LIG/EPFL and University of Geneva. These libraries basically permit us to perform several 

kinds of animation like walking motion (based on a parametrically walking motor), keyframe 

animation or real-time recorded animation (by using a set of magnetic sensors fixed on the 

body of a real user). In a more complex way, it is also possible to mix several animations and 

applying a notion of weight to animation (Boulic et al., 1997). A walking body can then play 

an animated sequence with his right arm while continuing to walk. Any COVEN platform 

developer can write their own body controller process, based on different libraries (to be able 

to make a direct interface between a specific device and the body animation for example) just 

by following the shared memory interface. 
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Figure 10 – The shared memory allocation system. 

As long as each application has different functionality, performances from one platform to 

another are different (mainly in network configuration). But, in terms of body animation, 

capabilities are the same whatever the platform. Another point is that the interface for 

animating the avatar or the crowds could be the same. This also permits the developer to 

avoid having to learn a new way to control virtual humans each time we move from one 

system to another. 

User’s Avatar Controller 

We will present the generic solution described in the previous section applied to user’s 

graphical representation. 

In the following graph (Figure 11), we have an overview of how the system is working. 

The plugin side has two major functions. The first set of functions will permit the detection 

and retrieval the body structure in the database of the main application. The second set will 

use network data distribution functions of the application to perform animation and send it to 

connected clients. 
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According to the kind of avatar used by the user (the body should be represented by a valid 

hierarchy (Boulic et al., 1995), the application will or will not allocate the shared memory. 

Once the shared memory is allocated, the external body controller process can be launched. 

When the connection with the main program is established, user’s avatar will be animated 

according to what he is doing in the 3D shared world.  
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World

Crowd Shared
Arena

External Body 
Controller

Updating 
Body Position

Updating 
Body Position

Coven 
Platform

feeback, user action => command

command
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ug
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Figure 11 The generic solution applied to avatar animation. 

The shared memory segment is used to transmit data in both ways from and to the COVEN 

application (Figure 11). Data flow coming out from the main application to the body 

controller (way 1) is composed of interactions performed by the user: outputs like speed 

change, direction change or object to pick are sent to the external process. The body 

animation is then adapted to the kind of action performed, displayed locally and sent to the 

network using the way back (way 2) to the application. The way 1 is also useful at the 

beginning of the connection to inform the external body controller about the structure of the 

3D shared world. As long as the body controller is not integrated at the level of the main 

application, it is not possible for this process to access to the world database to locate objects 

to avoid for example. This means that a set of information has to be sent to initialise the 

external process concerning the surrounding 3D world. The incoming data flow, from the 

external process to the main application (way 2), concerned only the body animation. These 
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animations are computed according to interactions received by the body process from the 

main application: resulting animations can be a mix between a walking movement and a 

specific arm animation asked by the user (Boulic et al., 1997). 

All clients who want to participate to an on-going session do not have to use the specific 

plugin. A default version of the application (which does not include the plugin) can also 

participate to the trial. This user will be able to see body animation from other clients but of 

course he won’t take benefit of the same kind of capabilities. 
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Figure 12 The generic solution applied to a crowd controller. 

Crowds Controller 

The second example of application of the generic method is linked to crowd animation. 

Here, we still have to animate virtual humans but with an autonomous behaviour. As 

described in the section specific to crowds, a crowd can react to user’s interaction as well as 

world events. This needs a specific set of information on the world as well as dynamic 
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information that will transit through the shared memory segment to the external crowd 

controller in order to adapt the crowd behaviour. An additional set of information concerning 

the static part of the world is given to the controller through a script file (Figure 12) 
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Figure 13 Overview of a network with two clients with a locally controlled crowd. 

The system is exactly the same than for the user’s avatar animation, except for the needed 

information for the external crowd controller. The shared memory segment is used to 

communicate in both directions between the COVEN platform and the crowd controller. In 

one direction, the COVEN platform sends to the crowd controller the user instructions and the 

world events. The crowd controller reacts to those instructions and events with respect to the 

crowd script which controls the crowd behaviour. As a result, the updated agents´ positions 

are communicated through the shared memory to the COVEN platform. 
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Whatever the structure of the 3D shared application, crowds can be controlled at the 

central server level or at the level of each client which permits to any participant to import a 

crowd in the world, running locally an external crowd controller (Figure 13). 

In the same way as for the avatar controller, a participant who does not have the needed 

plugin for crowd animation will still be able to see other crowds. 

     

     

Figure 14 A museum simulation involving 3 crowds in Dive application. 

Human representation in MPEG-4: COVEN contribution 

In an industry-wide effort beginning in mid-1990ies, the Moving Pictures Expert Group – 
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MPEG (ISO/IEC JTC1/SC29/WG11) has recently produced versions 1 and 2 of the MPEG-4 

International Standard (ISO/IEC 14496). In a world where audio-visual data is increasingly 

stored, transferred and manipulated digitally, MPEG-4 has set its objectives beyond ‘plain’ 

compression. Instead of regarding video as a sequence of frames with fixed shape and size 

and with attached audio information, the video scene is regarded as a set of dynamic objects. 

Thus the background of the scene might be one object, a moving car another, the sound of the 

engine the third etc. The objects are spatially and temporally independent and therefore can 

be stored, transferred and manipulated independently. The composition of the final scene is 

done at the decoder, potentially allowing great manipulation freedom to the consumer of the 

data. 

Video and audio acquired by recording from the real world is called natural. In addition to 

the natural objects, synthetic, computer generated graphics and sounds are being produced 

and used in ever increasing quantities. MPEG-4 enables integration of synthetic objects 

within the scene. It provides support for 3D Graphics, synthetic sound, Text to Speech, as 

well as synthetic faces and bodies. In this paper we concentrate on the representation of 

bodies in MPEG-4, and in particular the efficient coding of body animation.  

The following section provides the introduction to the representation of bodies in MPEG-

4. We explain how Body Animation Parameters and Body Definition Parameters are used to 

define the shape and animation of bodies. Then we present our approach for efficient coding 

of Body Animation Parameters and Body Definition Parameters which we contributed to 

MPEG-4 as part of the COVEN project.  

Body Animation in MPEG-4 

An FBA object in MPEG-4 is the representation of the face and body including their 

representation and animation. Conceptually the FBA object consists of a collection of nodes 

in a scene graph which are animated by the FBA object bitstream. The shape, texture and 

expressions of the face are generally controlled by the bitstream containing instances of 

Facial Definition Parameter (FDP) sets and/or Facial Animation Parameter (FAP) sets. Upon 

construction, the FBA object contains a generic face with a neutral expression and a generic 
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body with a default posture. This model can already be rendered. It is also immediately 

capable of receiving the FAPs and BAPs from the bitstream, which will produce animation of 

the face and body. If FDPs and BDPs are received, they are used to transform the generic 

model into a particular model determined by its shape and (optionally) texture.  

Upon construction, the Body object contains a generic virtual human or human-like body 

with the default posture. This body can already be rendered. It is also immediately capable of 

receiving the BAPs from the bitstream, which will produce animation of the body. If BDPs 

are received, they are used to transform the decoder’s generic body into a particular body 

determined by the parameter contents. Any component can be null. A null component is 

replaced by the corresponding default component when the body is rendered. Similar to the 

face, the BAPs can be transmitted also without first downloading BDPs, in which case the 

decoder animates its local model. 

No assumption is made and no limitation is imposed on the range of defined mobilities for 

humanoid animation. In other words the human body model should be capable of supporting 

various applications, from realistic simulation of human motions to network games using 

simple human-like models. 

Structure of the FBA bitstream 

A face and body object is formed by a temporal sequence of face and body object planes. An 

FBA object represents a node in an ISO/IEC 14496 scene graph. An ISO/IEC 14496 scene is 

understood as a composition of  Audio-Visual objects according to some spatial and temporal 

 relationships. The scene graph is the hierarchical representation of the ISO/IEC 14496 scene 

structure (see ISO/IEC 14496-1). 

Alternatively, an FBA object can be formed by a temporal sequence of FBA object plane 

groups (called segments for simplicity), where each FBA object plane group itself is 

composed of a temporal sequence of 16 FBA object planes 

Body Animation Parameters 

BAP parameters comprise joint angles connecting different body parts.  These include: toe, 
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ankle, knee, hip, spine (C1-C7, T1-T12, L1-L5), shoulder, clavicle, elbow, wrist, and the hand 

fingers. The detailed joint list, with the rotation normals, are given in the following section.  

Note that the normals of rotation move with the body, and they are fixed with respect to 

the parent body part. That is to say, the axes of rotation are not aligned with the body or world 

coordinate system, but move with the body parts. 

The hands are capable of performing complicated motions and are included in the body 

hierarchy.  

The unit of rotations is defined as 10-5 radians. The unit of translation BAPs (BAPs 

tr_vertical, tr_lateral, tr_frontal) is defined in millimeters. 

BAP Grouping 

In order to further decrease the bandwidth requirements and facilitate communication, the 

joints comprising the body can be partitioned into a finite set of groups with respect to their 

interrelationships and importance. For example, joints related to the spine can be grouped. In 

this way, if the motion affects only one part of the body, only the joints of that part of the 

body which change in the frame are coded and sent through the bitstream to the server, and 

then other clients. For example, if the virtual human is waving with their right arm, only joints 

involved in moving the right arm are sent through the network. 

We divide the body degrees of freedom into groups. Complete degrees of freedoms are 

given in MPEG-4 Version 2 (PDAM1) specification. The groups can be sent separately by 

introducing a mask for each group, and inserting this mask in the beginning of the message. 

The mask has the following format: 
 

<13-bit mask><4-bit mask><dofs for each group in mask>... 
 

For example, to send only arm joints, the message has the following format: 

<0000000011000><0000><5floats><7floats> 
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This decreases the size of the message from 408 bytes to 60 bytes. Thus, with an additional 

overhead of 3 bytes, we can decrease the message size significantly. 
 

BAP Coding 

For each joint in the state vector, the quantization module stores a quantum value. The 

quantum value indicates what the step size is going to be for that joint angle in the 

compressed representation of the joint angle parameter. Thus, a quantum value of 1 indicates 

the angle will be encoded with the most precision, and 255 indicates a lower precision. Note 

that each degree of freedom has a different precision requirement. Therefore different 

quantization step sizes are applied to each degree of freedom. The base quantization step sizes 

for each joint angle are presented in the next paragraph.  

The actual formula to obtain quantized state vector S'  from S is 

Quantized Value (i) =   StateVector(i)/(Quantum(i)*Global_Quantization_Value)  

→Rounded to the nearest integer     (for each joint angle i)    

During decoding, the dequantization formula works in reverse: 

StateVector' (i) = QuantizedValue(i) * Quantum (i)          (for each joint angle i) 
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Figure 15: Dataflow of scalable compression 
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The bit rate is controlled by adjusting the quantization step via the use of a quantization 

scaling factor called Global_Quantization_Value. This value is applied uniformly to all 

DOFs.  The magnitude of the quantization parameter ranges from 1 to 31. By modifying this 

value, we can control the bit rate requirements. For example, a global quantization value of 1 

requires higher bit rates, changing it to 31 gives less accurate quantized values, letting the 

next step, arithmetic coding, to compress for lower bit rates. We measure the precision 

requirement for Quantum(i)  

Conclusions 

In this paper we have presented an overview of some advanced aspects of Virtual Humans 

simulation for Networked Virtual Environments concerning the simulation of crowds: the 

crowd representation, crowd behavior, generating populations and Level of Detail 

management which is essential when large number of humans is simulated. We have 

described the integration of these techniques in the Coven-Dive platform and the 

contributions to the MPEG-4 standard resulting from this work. 
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