
Simulating Virtual Humans in Networked Virtual

Environments

Igor Pandzic+, Christian Babski*, Tolga Capin*, WonSook Lee+, Nadia

Magnenat-Thalmann+, Soraia Raupp Musse*, Laurent Moccozet+, Heywon

Seo+, Daniel Thalmann*

+ MIRALab, University of Geneva, Switzerland {Igor.Pandzic, WonSook.Lee,

Nadia.Thalmann, Laurent.Moccozet, seo }@cui.unige.ch
* Computer Graphics Lab, EPFL, Lausanne, Switzerland {babski, capin, soraia,

thalmann}@lig.di.epfl.ch

Abstract

In the past decade Networked Virtual Environments have been an increasingly active area of

research, with first commercial systems emerging recently. Graphical and behavioral

representation of users within such systems is a particularly important issue that has lagged in

development behind other issues like network architectures, space structuring etc. In this

paper we expose the importance of using Virtual Humans within these systems and provide a

brief overview of several Virtual Humans technologies used in particular for simulation of

crowds. As the main technical contribution the paper presents the integration of these

technologies with the COVEN-DIVE platform, the extension of the DIVE system developed

within the COVEN project. In conjunction with this, we present our contributions through the

COVEN project to the MPEG-4 standard concerning the representation of Virtual Humans.

 2

Simulating Virtual Humans in Networked Virtual

Environments

Igor Pandzic+, Christian Babski*, Tolga Capin*, WonSook Lee+, Nadia

Magnenat-Thalmann+, Soraia Raupp Musse*, Laurent Moccozet+, Heywon

Seo+, Daniel Thalmann*

+ MIRALab, University of Geneva, Switzerland {Igor.Pandzic, WonSook.Lee,

Nadia.Thalmann, Laurent.Moccozet, seo }@cui.unige.ch
* Computer Graphics Lab, EPFL, Lausanne, Switzerland {babski, capin, soraia,

thalmann}@lig.di.epfl.ch

Abstract

In the past decade Networked Virtual Environments have been an increasingly active area of

research, with first commercial systems emerging recently. Graphical and behavioral

representation of users within such systems is a particularly important issue that has lagged in

development behind other issues like network architectures, space structuring etc. In this

paper we expose the importance of using Virtual Humans within these systems and provide a

brief overview of several Virtual Humans technologies used in particular for simulation of

crowds. As the main technical contribution the paper presents the integration of these

technologies with the COVEN-DIVE platform, the extension of the DIVE system developed

within the COVEN project. In conjunction with this, we present our contributions through the

COVEN project to the MPEG-4 standard concerning the representation of Virtual Humans.

 3

Importance of Virtual Humans for NVEs

The participant representation in a networked VE system has several functions:

• perception

• localization

• identification

• visualization of interest focus

• visualization of actions

• communication

Perception and localization are the very basic functions of participant representation in

NVEs. They allow us to perceive the presence of others in the environment and see where

they are. Even a crude embodiment can fulfill these tasks.

Identification is an important function because we usually want to know who is in front of

us. Means of identification can range from simple ones, like displaying the first letter of one’s

name to complex body and face models resembling a particular person.

Visualization of interest focus can be achieved by any embodiment that somehow

represents the direction of gaze - usually this means a graphical model that has eyes or

symbols representing eyes, so we can see in which direction it is looking.

Visualization of actions requires the embodiment to have some end-effectors that perform

actions. In a low-end implementation this might be a simple line reaching to the manipulated

object, or it might be a virtual hand grasping the object.

Communication in real life is in many ways tied to our body - gestures and facial

expressions (including lip movement that improves speech understanding) are natural part of

our daily communication. If such communication is to be supported in NVEs, the participant

 4

representation needs to be fairly sophisticated.

Although many of these functions can be fulfilled with very simple embodiments, it is

obvious that most can be fulfilled better using more sophisticated Virtual Humans, and some

functions can absolutely not be fulfilled without them

Virtual Humans can fulfill these functions in an intuitive, natural way resembling the way

we achieve these tasks in real life. Even with limited sensor information, a virtual human

frame can be constructed in the virtual world, reflecting the activities of the real user. Slater

and Usoh (Slater and Usoh 1994.) indicate that such a body, even if crude, already increases

the sense of presence that the participants feel. Therefore it is expected that a better and more

realistic embodiment will have a further positive effect on the sense of presence and mutual

presence.

While there is already substantial work done on integrating Virtual Humans in NVEs

(Capin et al., 1997., Pandzic et al.,1997., Capin et al., 1999.), in this paper we present an

overview of the aspects of this research topic concerning the simulation of crowds: the crowd

representation, crowd behavior, generating populations and Level of Detail management

which is essential when large number of humans is simulated. We then describe the

integration of these techniques in the Coven-Dive platform and present contributions to the

MPEG-4 standard resulting from this work.

Populating NVEs with crowds

The goal of this section is to provide information about why and how populate NVEs using

virtual human crowds. Several works have explored such importance of crowds in NVEs

(Bouvier, 97) (Brogan and Hodgins, 97) (Reynolds, 87) among others. Imagine participants

sharing a virtual museum existent in a NVE. Depending on the number of participants

connected at a specific time, the virtual museum may be non-inhabited when a new

participant gets connected. In this case, the degree of realism as well as the possibility of

interaction with others is reduced. Assuming that NVEs can be populated using virtual

crowds, the sense of presence provided during immersion in virtual environments like the

 5

virtual museum is substantially increased.

Moreover, the virtual crowd can act autonomously because its members are able to

perceive the state of the virtual environment and interact with it. Anyway, the participants can

be interested in interacting and/or guiding virtual crowds during the simulation. In order to

deal with this variable level of autonomy (from autonomous to guided crowds) we have

introduced ViCrowd model (Musse et al, 1999). The main goal of our approach is being able

to built autonomous animated creatures for interactive virtual environments.

Considering the needs of controling and interacting with the crowds at the same time that

programming them, we decided to use a multi-level hierarchical model where crowds and

agents can present different levels of autonomy. In this way, groups of agents can be

programmed (before the simulation), act in a autonomous way as well as be guided by the

user (during the simulation). Moreover, the hierarchical structures presented in ViCrowd like

agents, groups and crowd aim to provide the simulation of families, leadership and other

aspects which are not possible if the crowd is represented by one-level of agents' structure.

These decisions have been taken into account in order to comply with the needs and

requirements of our applications.

The next sections describe succinctly how ViCrowd model is used to define the

autonomous and guided behaviors of virtual crowds in NVEs, as well as the methods used for

the generation of physical appearance of population.

ViCrowd Model

We defined a crowd as a set of groups composed of virtual agents. Our model distributes

the crowd behaviors to the groups and then to the individuals. There are two ways for setting

the parameters of ViCrowd: scripted and external control. Scripted control defines scripted

behaviors of the crowd whereas external control specifies guided behaviors. Yet, ViCrowd is

represented through a hierarchical architecture where the minor entity to be treated consists of

groups. In this case, the groups are more “intelligent” structures, while individuals follow

groups’ specification. This decision is due to real time requirements existing in NVEs

applications and aims to optimize the information needed to provide intelligent agents.

 6

At a lower level, the individuals have a repertory of basic behaviors that we call innate

behaviors. An innate behavior is defined as an “inborn” way to behave. Goal seeking

behavior, the way trajectories are processed and collision avoided, the ability to follow

scripted or guided events/reactions are examples of innate behaviors of individuals. While the

innate behaviors are included in the model, the specification of scripted behaviors is done by

means of a script language where pre-defined commands are specified in order to model

different behaviors of crowds. We call the groups of virtual agents <programmed groups>

who apply the scripted behaviors and do not need user intervention during simulation. Using

the script language, the user can directly specify the crowd or group behaviors. In this case,

the system automatically distributes the crowd behaviors among the existing groups. Events

and reactions have been used to represent behavioral rules. This reactive character of the

simulation can be programmed in the script language (scripted control) or directly given by an

external controller. We call the groups of virtual agents <autonomous groups> who apply the

behavioral rules. Yet, externally controlled groups, that we call <guided groups>, no longer

obey their scripted behavior, but act according to the external specification.

Figure 1: Scenes of simulation of evacuation due to a panic situation. Up-left and up-right:

before the panic situation, the crowd walks. Down-left and down-right: crowd reacts because

an event generated when the statue becomes alive

 7

For example, if a group’s intention is to visit a museum (scripted group behavior), but a

panic situation occurs (event), this group can then perform the programmed reaction

associated with the event. This reaction can either be externally specified (during the

simulation) or pre-programmed in the script, e.g. exit the environment. Figure 1 shows a

sequence of animation in a panic situation, where 100 agents react exiting the museum

because a statue which becomes alive.

Figure 2: Dialogue between the leader and the crowd. On the left, the leader talks and on the

right, the crowd reacts.

A script language has been used in order to program specific behaviors in ViCrowd

(Musse et al, 1998).

In addition to autonomous crowds, ViCrowd also supports externally guided crowds. The

information concerning the entities that can be controlled are: motion, action, events, reaction

and internal status.

We integrated ViCrowd system in DIVE in order to provide a module responsible for the

control of crowd behaviours. This module can provide autonomous crowds that have some

knowledge about the virtual environment and are able to interact with it. Figure 3 presents

some images of crowd simulation in world dive where a participant is observing autonomous

crowds.

 8

Figure 3: A participant observing the autonomous virtual crowds.

In accordance with the parameter settings, which could be recognised by the guided

crowds, DIVE may provide some information from the participants (e.g., location, direction).

Afterwards, the guided crowd is able to recognise the information sent by DIVE and

distribute it among groups behaviours.

 Creating Populations

Given the high number of elements in a population, we need a fast and efficient way to create a

physical appearance for each element. Physical appearance of an agent should be realistic but also

unique in order to differentiate the agent from other agents within a population. We divide the physical

appearance into the face part and the body part. We will describe some methods allowing the

automatic construction of an unlimited number of faces and a fast method for the construction of

bodies. These constructed faces and bodies could be stored in a database allowing a user to choose

whatever body and face he wants to assemble in order to create a complete physical appearance for an

agent.

Construction of faces

Animators agree that the most difficult subjects to model and animate realistically are

humans and particularly human faces. The explanation resides in the universally shared (with

some cultural differences) processes and criteria not only for recognizing people in general,

but also for identifying individuals, expressions of emotion and other facial communicative

signals, based on the covariation of a large number of partially correlated shape parameters

 9

within narrowly constrained ranges. Though some of this may be amusingly conveyed in a

schematic manner by various 2D or 3D animation technologies, the results are easily

identified as cartoons by the most naive observer, while the complex details and subtle

nuances of truly realistic representation remain a daunting challenge for the field.

Approaches to the realistic reconstruction of individuals, some of them with a view to

animation, include the use of a laser scanner (Lee et al, 1996), a stereoscopic camera

(http://www.turing.gla.ac.uk), an active light stripper (Proesmans and Gool, 1997), or a video

stream (Fua, 1998) to reconstruct heads and natural expressions. Modeling has also been done

from picture data (Kurihara and Arai, 1991) (Akimoto et al, 1993) (Ip and Yin, 1996) (Lee et

al, 1997) detecting features, modifying a given generic model and then mapping texture on it.

Not all of these, however, combine sophisticated and reliable shape deformation methods

with seamless, high-resolution texture generation and mapping.

(a)

(b)

(d)

(c)

Figure 4: (a) Modification of a generic head according to feature points detected on pictures.

Points on a 3D head are control points for Dirichlet Free Form Deformation (DFFD). (b)

Geometrical deformation for texture merging. (c) Multiresolution technique for texture. (d)

Snapshots of a reconstructed head in several views.

 10

2D photos offer cues to the 3D shape of an object. It is not feasible, however, to consider

3D-points densely distributed on the head. In most cases, we know the location of only a few

visible features such as eyes, lips and silhouettes. Figure 4(a) depicts an orthogonal pair of

normalized images, showing the features detected. The two 2D sets of position coordinates,

from front and side views, are combined to give a single set of 3D points. We use 3D feature

points as a set of control points for the Dirichlet-based Free Form Deformation (DFFD)

(Moccozet and Magnenat Thalmann, 1997). Thus the deformation of the whole surface is

smoothly controlled by the control points. As shown in Figure 4 (a), the result is quite

respectable considering the input data (pictures from only two views).

To improve realism, we make use of automatic texture mapping. If the texture mapping is

not correct, the accurate shape is useless in practice. We use information from the set of

feature points detected to generate texture fully automatically, based on the two views. The

main criterion is to obtain the highest resolution possible for most detailed portions. We first

connect two pictures along predefined feature lines using geometrical deformations as shown

in Figure 4 (b). Then to avoid visible boundary effects, a multiresolution technique (Burt and

Andelson, 1983) is used as shown in Figure 4 (c) . We then obtain appropriate texture

coordinates for every point on the head using the same image transformation. Figure 4 (d)

shows several views of the head reconstructed.

From the population produced by this semi-automatic method, we can automatically

produce much larger populations using methods such as morphing and statistical analysis.

Construction of bodies

The modeling of human body is an important but difficult problem. The human body shape

is rather complex, it can have a variety of sizes and has 2 main types (male/female). A

realistic modelisation comprises an articulated skeleton that can support various body

elements such as skin and muscles that has to be deformed during an animation. Our goal is to

make realistic body with animation and deformation capabilities without the need of physical

prototypes or scanning devices. On Figure 5 are described the four elements that are used in

the construction of our animated bodies: the skeleton, the deformation model, the skin and the

texture.

 11

Figure 5 a, b, c, d: The 4 elements used in the construction of body.

Figure 6: bodies with metaball-based cloth

For the construction of the deformation model, we use metaballs. Metaballs are geometric

and ellipsoidal shapes that can be smoothly mixed together. A designer interactively positions

metaballs around the skeleton in order to approximate the overall form of the set of human

muscles (see Figure 5-b). A cross-sectional method combined with B-Spline merging

techniques gives the body its final geometry that includes the skin (Figure 5-c). A texture is

 12

finally applied on the body shape. Each metaball is attached to a skeleton joint and define a

part of the body. The designer’s work consists mainly in varying the relative proportion,

orientation and size of each metaball.

Various transformations can be easily applied to an already constructed body such as

global scaling that allows the creation of child body. Lateral scaling is another transformation

that allows the construction of stronger bodies. The use of agent with different body

proportion gives a more realistic appearance to a crowd. A further enhancement of the body

shape is possible by using the metaball technique to simulate the cloth (Figure 6). This

technique is suitable for jacket or pants but not for skirts for instance. The body has much

more realism with the added cloth and still can be used in real-time animation.

Level of Detail management for Virtual Humans

In our system where participants are represented as highly realistic virtual humans, human

models are the main contributors to the geometric complexity of the scene. In fact, each of our

virtual human is made up of approximately 15000 textured polygons. Obviously acceleration

techniques are necessary to reduce the amount of data for rendering and animating virtual

humans in real time. This becomes more crucial as the number of virtual humans in the

networked virtual environment increases.

The basic idea of adopting LoD(Levels of Detail) techniques for virtual humans is more or

less the same as for other objects in virtual environments : a detailed description of a virtual

human is necessary only when it’s close to the viewpoint. A description of a virtual human

includes both geometry and animation. However, virtual humans have some characteristic

features. They are animated or deforming objects. LoD generation and control should

incorporate both geometry and animation. Geometric importance (sharp edges, high

curvatures, etc.) may not be the only criteria for generating simplified models. In a face

model, for example, some parts like lips move more frequently, attracting attention, thus are

more important than other parts like ears, even though ears take much more triangles in an

original model.

 13

LoD on animated faces

In our real time face animation system, high level actions like ‘smile’, ‘surprise’ are

mapped to mid and low level actions (Kalra et al., 1998).The low level actions are composed

of 64 MPAs(Minimum Perceptible Actions), each of which corresponds to a visible feature of

the related region in the face model. A region is defined as a set of selected polygons in the

mesh, where a muscle action is simulated using Rational Free Form Deformations (RFFD).

The generation of different levels of detail on the geometry is done based on several

observations on our face models to achieve the best visual effects possible. Ears, teeth are

considered to be least important and are simplified at level1. On the other hand, lip

movements are considered to be important and are preserved at level2.

Figure 7 shows the hierarchical region management structure. Level 1 model is constructed

by simplifying the extra(ears, teeth, and eyeballs) regions. In level 2 model, the extra region is

simplified again or removed and upper_mask region is simplified. In level 3, simplification is

applied also to the lower_mask, covering the whole head (Figure 8).

By simply discarding animation parameters that correspond to simplified regions, the same

hierarchy can be used for animation parameter filtering, too. We define an active tree as a set

of regions currently being used by the animation system (Figure 7).

Figure 7: Hierarchical region management structure and active tree

 14

During runtime, the active tree on this hierarchy is managed to select an appropriate level

as well as to filter some of animation parameters depending on the distance from the

viewpoint Those regions below the active tree are simplified as well as corresponding

animation parameters are excluded. As level changes from one to the other, the active tree

either shrinks or expands.

Figure 8: Different levels of a face model

LoD on animated bodies

Body models are more complex than face models and the most dominant objects in most of

our applications. Similar to the face models, both geometric simplification and animation

parameter optimization have been used for our body models. For geometry, 4 levels are

generated by applying simplification (Figure 9). For animation parameters, frame data

skipping factor is used to reduce the amount of data – different frame update rates are applied

to the body model depending on its distance to the viewer. Also a similar hierarchical

approach to face models is begin developed to efficiently cull out animation parameters.

 15

Figure 9: Different levels of a body model

Integration of Virtual Humans in the COVEN-DIVE platform

Within the COVEN project, two already existing platforms were involved: a commercial

solution represented by the work done by Division with the dVS system and an experimental

one represented by SICS with the DIVE application. The goal of the COVEN project was to

produce a final common platform that integrates major research and development made by

each partner all linked to collaborative virtual environment technologies.

The goal of the virtual human integration inside COVEN project, was to integrate in a

generic way virtual human representation capabilities. It includes the definition of a hierarchy

for the skeleton representation and an entire animation system in order to make the avatar

walking, grasping objects, playing animation or reacting to a given event. The result should

be a method that permits the integration of virtual humans in the two platforms present at the

beginning of the project as well as inside the final COVEN platform. To be completely

generic, this method should also permit the integration of virtual humans inside any kind of

existing system based on collaborative virtual environment that generally needs a realistic

representation of virtual humans.

We will present this generic solution in the next section and its application to the user’s

 16

avatar management but also to the crowd management inside a 3D shared world.

A Generic Solution

For embodiment, in order to avoid having to make the same work each time virtual humans

are needed to perform a given set of task in a collaborative environment, it is important to

take in account the actual technology at the collaborative virtual environment application

level. By examining existing 3D shared world application (Dive, Capin et al., 1997., Pandzic

et al., 1997.), it is obvious that all of them propose the plugin technology to developers using

their systems. It permits to anybody to establish a connection between the kernel of the

application and an external process. This process is then able to access internal information as

well as it was a part of the application. The connection is usually established by following a

given interface. Of course, from one application to another, this interface is different. This

mainly means that if we want to perform a specific task within a set of different systems, we

will have to write a specific plugin for each of them. So the plugin solution is a starting point

but not a final one. We should be able to separate the common task to perform from the

specific interface of each system. This can be done by using shared memory capability which

is now available under all major operating systems. It permits to share a given memory

segment by two independent processes: information can then be exchanged between the two

processes through the memory segment. By combining the plugin technology and the shared

memory technology, it becomes possible to reuse a process in charge of a given task from one

system to another system by defining two sides:

- The plugin side: it is specific to a given system and has to be written each time.

The task of this part is to access any kind of 3D shared information (3D world,

events, etc…) manage by the application. It also allocates a shared memory

segment.

- The external process side: it is written once and usable with any kind of system.

This process is in charge of a given set of tasks. It has to establish a connection to

the shared memory segment allocated by the plugin.

The access to the shared memory segment is done through the use of a given interface. The

 17

way the shared memory segment is allocated is explained in Figure 10 in the case of an

external body controller. The COVEN Platform first loads the standard body definition (1).

Then it allocates a shared memory segment (2) to be used for communication with the

external body controller. This operation yields a shared memory ID number (3) that is passed

to the external body controller as a parameter when the body controller process is spawned

(4). The controller uses the ID to connect to the shared memory segment (5) and thus the link

with the COVEN platform is established. The shared memory segment is used for all further

communication.

This system was tested to add realistic looking and behaving avatars as user’s graphical

representation and for adding crowds to these 3D shared world. These two examples are

presented in the following sections.

The common part (the external process side), which is in our case the external body

controller and the external crowds controller, is based on libraries developed in both labs

LIG/EPFL and University of Geneva. These libraries basically permit us to perform several

kinds of animation like walking motion (based on a parametrically walking motor), keyframe

animation or real-time recorded animation (by using a set of magnetic sensors fixed on the

body of a real user). In a more complex way, it is also possible to mix several animations and

applying a notion of weight to animation (Boulic et al., 1997). A walking body can then play

an animated sequence with his right arm while continuing to walk. Any COVEN platform

developer can write their own body controller process, based on different libraries (to be able

to make a direct interface between a specific device and the body animation for example) just

by following the shared memory interface.

 18

COVEN
Platform

External Body
Controller

Standard Body
Definition

1 Loading

2 Shared Memory Allocation

Shared
Memory
Segment

3Return Id
Number

4

Communicate
the Id Number

5
Link establishment

(body process connected to
main application)

Figure 10 – The shared memory allocation system.

As long as each application has different functionality, performances from one platform to

another are different (mainly in network configuration). But, in terms of body animation,

capabilities are the same whatever the platform. Another point is that the interface for

animating the avatar or the crowds could be the same. This also permits the developer to

avoid having to learn a new way to control virtual humans each time we move from one

system to another.

User’s Avatar Controller

We will present the generic solution described in the previous section applied to user’s

graphical representation.

In the following graph (Figure 11), we have an overview of how the system is working.

The plugin side has two major functions. The first set of functions will permit the detection

and retrieval the body structure in the database of the main application. The second set will

use network data distribution functions of the application to perform animation and send it to

connected clients.

 19

According to the kind of avatar used by the user (the body should be represented by a valid

hierarchy (Boulic et al., 1995), the application will or will not allocate the shared memory.

Once the shared memory is allocated, the external body controller process can be launched.

When the connection with the main program is established, user’s avatar will be animated

according to what he is doing in the 3D shared world.

New Body
Definition

Initialization

Coven
World

Crowd Shared
Arena

External Body
Controller

Updating
Body Position

Updating
Body Position

Coven
Platform

feeback, user action => command

command

Pl
ug

in

Figure 11 The generic solution applied to avatar animation.

The shared memory segment is used to transmit data in both ways from and to the COVEN

application (Figure 11). Data flow coming out from the main application to the body

controller (way 1) is composed of interactions performed by the user: outputs like speed

change, direction change or object to pick are sent to the external process. The body

animation is then adapted to the kind of action performed, displayed locally and sent to the

network using the way back (way 2) to the application. The way 1 is also useful at the

beginning of the connection to inform the external body controller about the structure of the

3D shared world. As long as the body controller is not integrated at the level of the main

application, it is not possible for this process to access to the world database to locate objects

to avoid for example. This means that a set of information has to be sent to initialise the

external process concerning the surrounding 3D world. The incoming data flow, from the

external process to the main application (way 2), concerned only the body animation. These

 20

animations are computed according to interactions received by the body process from the

main application: resulting animations can be a mix between a walking movement and a

specific arm animation asked by the user (Boulic et al., 1997).

All clients who want to participate to an on-going session do not have to use the specific

plugin. A default version of the application (which does not include the plugin) can also

participate to the trial. This user will be able to see body animation from other clients but of

course he won’t take benefit of the same kind of capabilities.

New Body
Definition

Initialization

Coven
World

Crowd Shared
Arena

External Crowd
Control

Updating
Agents Position

(output)

Updating
Agents Position

(output)

Coven
Platform

User defined Crowds
(Autonomous and/or guided)

At Any Time

Crowd
Script

Pl
ug

in

feedback: user interaction, world events

feeback

Figure 12 The generic solution applied to a crowd controller.

Crowds Controller

The second example of application of the generic method is linked to crowd animation.

Here, we still have to animate virtual humans but with an autonomous behaviour. As

described in the section specific to crowds, a crowd can react to user’s interaction as well as

world events. This needs a specific set of information on the world as well as dynamic

 21

information that will transit through the shared memory segment to the external crowd

controller in order to adapt the crowd behaviour. An additional set of information concerning

the static part of the world is given to the controller through a script file (Figure 12)

Local Host

Coven
Platform

Network

Coven
Platform

Coven
Platform

Network Connection

Network ConnectionNetwork Connection

Crowd
Controller

Crowd
Controller

Shared Memory Link

Shared Memory Link

Local Host - With Crowd

Local Host - With Crowd

Pl
ug

in

Pl
ug

in

Figure 13 Overview of a network with two clients with a locally controlled crowd.

The system is exactly the same than for the user’s avatar animation, except for the needed

information for the external crowd controller. The shared memory segment is used to

communicate in both directions between the COVEN platform and the crowd controller. In

one direction, the COVEN platform sends to the crowd controller the user instructions and the

world events. The crowd controller reacts to those instructions and events with respect to the

crowd script which controls the crowd behaviour. As a result, the updated agents´ positions

are communicated through the shared memory to the COVEN platform.

 22

Whatever the structure of the 3D shared application, crowds can be controlled at the

central server level or at the level of each client which permits to any participant to import a

crowd in the world, running locally an external crowd controller (Figure 13).

In the same way as for the avatar controller, a participant who does not have the needed

plugin for crowd animation will still be able to see other crowds.

Figure 14 A museum simulation involving 3 crowds in Dive application.

Human representation in MPEG-4: COVEN contribution

In an industry-wide effort beginning in mid-1990ies, the Moving Pictures Expert Group –

 23

MPEG (ISO/IEC JTC1/SC29/WG11) has recently produced versions 1 and 2 of the MPEG-4

International Standard (ISO/IEC 14496). In a world where audio-visual data is increasingly

stored, transferred and manipulated digitally, MPEG-4 has set its objectives beyond ‘plain’

compression. Instead of regarding video as a sequence of frames with fixed shape and size

and with attached audio information, the video scene is regarded as a set of dynamic objects.

Thus the background of the scene might be one object, a moving car another, the sound of the

engine the third etc. The objects are spatially and temporally independent and therefore can

be stored, transferred and manipulated independently. The composition of the final scene is

done at the decoder, potentially allowing great manipulation freedom to the consumer of the

data.

Video and audio acquired by recording from the real world is called natural. In addition to

the natural objects, synthetic, computer generated graphics and sounds are being produced

and used in ever increasing quantities. MPEG-4 enables integration of synthetic objects

within the scene. It provides support for 3D Graphics, synthetic sound, Text to Speech, as

well as synthetic faces and bodies. In this paper we concentrate on the representation of

bodies in MPEG-4, and in particular the efficient coding of body animation.

The following section provides the introduction to the representation of bodies in MPEG-

4. We explain how Body Animation Parameters and Body Definition Parameters are used to

define the shape and animation of bodies. Then we present our approach for efficient coding

of Body Animation Parameters and Body Definition Parameters which we contributed to

MPEG-4 as part of the COVEN project.

Body Animation in MPEG-4

An FBA object in MPEG-4 is the representation of the face and body including their

representation and animation. Conceptually the FBA object consists of a collection of nodes

in a scene graph which are animated by the FBA object bitstream. The shape, texture and

expressions of the face are generally controlled by the bitstream containing instances of

Facial Definition Parameter (FDP) sets and/or Facial Animation Parameter (FAP) sets. Upon

construction, the FBA object contains a generic face with a neutral expression and a generic

 24

body with a default posture. This model can already be rendered. It is also immediately

capable of receiving the FAPs and BAPs from the bitstream, which will produce animation of

the face and body. If FDPs and BDPs are received, they are used to transform the generic

model into a particular model determined by its shape and (optionally) texture.

Upon construction, the Body object contains a generic virtual human or human-like body

with the default posture. This body can already be rendered. It is also immediately capable of

receiving the BAPs from the bitstream, which will produce animation of the body. If BDPs

are received, they are used to transform the decoder’s generic body into a particular body

determined by the parameter contents. Any component can be null. A null component is

replaced by the corresponding default component when the body is rendered. Similar to the

face, the BAPs can be transmitted also without first downloading BDPs, in which case the

decoder animates its local model.

No assumption is made and no limitation is imposed on the range of defined mobilities for

humanoid animation. In other words the human body model should be capable of supporting

various applications, from realistic simulation of human motions to network games using

simple human-like models.

Structure of the FBA bitstream

A face and body object is formed by a temporal sequence of face and body object planes. An

FBA object represents a node in an ISO/IEC 14496 scene graph. An ISO/IEC 14496 scene is

understood as a composition of Audio-Visual objects according to some spatial and temporal

 relationships. The scene graph is the hierarchical representation of the ISO/IEC 14496 scene

structure (see ISO/IEC 14496-1).

Alternatively, an FBA object can be formed by a temporal sequence of FBA object plane

groups (called segments for simplicity), where each FBA object plane group itself is

composed of a temporal sequence of 16 FBA object planes

Body Animation Parameters

BAP parameters comprise joint angles connecting different body parts. These include: toe,

 25

ankle, knee, hip, spine (C1-C7, T1-T12, L1-L5), shoulder, clavicle, elbow, wrist, and the hand

fingers. The detailed joint list, with the rotation normals, are given in the following section.

Note that the normals of rotation move with the body, and they are fixed with respect to

the parent body part. That is to say, the axes of rotation are not aligned with the body or world

coordinate system, but move with the body parts.

The hands are capable of performing complicated motions and are included in the body

hierarchy.

The unit of rotations is defined as 10-5 radians. The unit of translation BAPs (BAPs

tr_vertical, tr_lateral, tr_frontal) is defined in millimeters.

BAP Grouping

In order to further decrease the bandwidth requirements and facilitate communication, the

joints comprising the body can be partitioned into a finite set of groups with respect to their

interrelationships and importance. For example, joints related to the spine can be grouped. In

this way, if the motion affects only one part of the body, only the joints of that part of the

body which change in the frame are coded and sent through the bitstream to the server, and

then other clients. For example, if the virtual human is waving with their right arm, only joints

involved in moving the right arm are sent through the network.

We divide the body degrees of freedom into groups. Complete degrees of freedoms are

given in MPEG-4 Version 2 (PDAM1) specification. The groups can be sent separately by

introducing a mask for each group, and inserting this mask in the beginning of the message.

The mask has the following format:

<13-bit mask><4-bit mask><dofs for each group in mask>...

For example, to send only arm joints, the message has the following format:

<0000000011000><0000><5floats><7floats>

 26

This decreases the size of the message from 408 bytes to 60 bytes. Thus, with an additional

overhead of 3 bytes, we can decrease the message size significantly.

BAP Coding

For each joint in the state vector, the quantization module stores a quantum value. The

quantum value indicates what the step size is going to be for that joint angle in the

compressed representation of the joint angle parameter. Thus, a quantum value of 1 indicates

the angle will be encoded with the most precision, and 255 indicates a lower precision. Note

that each degree of freedom has a different precision requirement. Therefore different

quantization step sizes are applied to each degree of freedom. The base quantization step sizes

for each joint angle are presented in the next paragraph.

The actual formula to obtain quantized state vector S' from S is

Quantized Value (i) = StateVector(i)/(Quantum(i)*Global_Quantization_Value)

→Rounded to the nearest integer (for each joint angle i)

During decoding, the dequantization formula works in reverse:

StateVector' (i) = QuantizedValue(i) * Quantum (i) (for each joint angle i)

Input
stream

Quantization Arithmetic
encoder

Output
streamCodesS: State

Vector
S':
Quantized
state
vector

Input
stream

Codes Arithmetic
decoder S'':

Quantized
state
vector

Dequantization Output
S''': State
vector

Encoder:

Decoder:

Minmax

Minmax

Figure 15: Dataflow of scalable compression

 27

The bit rate is controlled by adjusting the quantization step via the use of a quantization

scaling factor called Global_Quantization_Value. This value is applied uniformly to all

DOFs. The magnitude of the quantization parameter ranges from 1 to 31. By modifying this

value, we can control the bit rate requirements. For example, a global quantization value of 1

requires higher bit rates, changing it to 31 gives less accurate quantized values, letting the

next step, arithmetic coding, to compress for lower bit rates. We measure the precision

requirement for Quantum(i)

Conclusions

In this paper we have presented an overview of some advanced aspects of Virtual Humans

simulation for Networked Virtual Environments concerning the simulation of crowds: the

crowd representation, crowd behavior, generating populations and Level of Detail

management which is essential when large number of humans is simulated. We have

described the integration of these techniques in the Coven-Dive platform and the

contributions to the MPEG-4 standard resulting from this work.

References

Akimoto T., Suenaga Z., and Wallace R.(1993), Automatic Creation of 3D Facial Models,
IEEE Computer Graphics & Applications.

Boulic, R., Capin, T., Huang, Z., Moccozet, L., Molet, T., Kalra, P., Lintermann, B.,
Magnenat-Thalmann, N., Pandzic, I., Saar, K., Schmitt, A., Shen, J., Thalmann, D. (1995).
The HUMANOID Environment for Interactive Animation of Multiple Deformable
HumanCharacters. Computer Graphics (Proceedings of Eurographics’95), 337-348

Boulic, R., Becheiraz, P., Emering, L., and Thalmann, D. (1997). Integration of Motion
Control Techniques for Virtual Human and Avatar Real-Time Animation. Computer
Graphics (Proceedings of VRST '97), 111-118

Bouvier, E., Cohen, E., Najman, L. (1997). From crowd simulation to airbag deployment:
particle systems, a new paradigm of simulation. Journal of Electronic Imaging, 6(1), 94-107.

Brogan, D. and Hodgins, J. (1997). Group Behaviours for Systems with Significant

 28

Dynamics. Autonomous Robots, 4, 137-153.

Burt P., and Andelson E. (1983), A Multiresolution Spline with Application to Image
Mosaics, ACM Transactions on Graphics, 2(4):217-236.

Capin T.K., Pandzic I.S., Noser H., Magnenat Thalmann N., Thalmann D., (1997). Virtual
Human Representation and Communication in VLNET Networked Virtual Environments,
IEEE Computer Graphics and Applications, Special Issue on Multimedia Highways

Capin T.K., Pandzic I.S., Thalmann D., Magnenat Thalmann N. Avatars in Networked Virtual
Environments, John Wiley, June 1999.

Dive, http://www.sics.se/dive

Fua P.(1998), Face Models from Uncalibrated Video Sequences, In Proc. CAPTECH’98, pp.
215-228.

http://www.turing.gla.ac.uk/turing/copyrigh.htm

Guenter B., Grimm C., Wood D. (1998). Making Faces. Computer Graphics (Proceedings of
 SIGGRAPH’98), pp. 55-66

Ip H., Yin L.(1996), Constructing a 3D individual head model from two orthogonal views.
The Visual Computer, Springer-Verlag, 12:254-266.

ISO/IEC 14496-1: MPEG-4 PDAM1, available on MPEG official web
site:www.cselt.stet.it/mpeg

Kalra P, Mangili A, Magnenat-Thalmann N, Thalmann D (1992), Simulation of Facial
Muscle Actions Based on Rational Free Form Deformations, Proc. Eurographics’92, pp. 59-
69, NCC Blackwell.

Kalra, P., Magnenat-Thalmann, N., Moccozet, L., Sannier, G., Aubel, A., Thalmann, D.,
Real-time Animation of Realistic Virtual Humans, IEEE Computer Graphics and
Applications, Vol.18, No5, 1998, pp.42-55.

Kendall, M.G. and Stuart, A. Advanced Theory of Statistics, vol. 3. Griffin, 1976.

Kurihara T. and Arai K. (1991), A Transformation Method for Modeling and Animation of
the Human Face from Photographs, In Proc. Computer Animation’91, Springer-Verlag

 29

Tokyo, pp. 45-58.

Lee W. S., Kalra P., Magnenat-Thalmann N (1997), Model Based Face Reconstruction for
Animation, In Proc. Multimedia Modeling (MMM’97), Singapore, pp. 323-338.

Lee Z., Terzopoulos D., and Waters K. (1996), Realistic Modeling for Facial Animation, In
Computer Graphics (Proc. SIGGRAPH’96), pp. 55-62.

Moccozet L., Magnenat Thalmann N.(1997), Dirichlet Free-Form Deformations and their
Application to Hand Simulation, In Proc. Computer Animation’97, IEEE Computer Society,
pp.93-102.

Musse, S.R., Babski, C., Capin, T. and Thalmann, D. (1998). Crowd Modelling in
Collaborative Virtual Environments. ACM VRST ‘98, Taiwan, (pp. 115-123).

Musse, S.R., Garat, F. and Thalmann, D. (1999). Guiding and Interacting with Virtual
Crowds. Workshop on Computer Animation and Simulation of Eurographics’99 (pp. 23-33).

Pandzic I.S., Capin T.K., Lee E., Magnenat Thalmann N., Thalmann D., (1997). A flexible
architecture for Virtual Humans in Networked Collaborative Virtual Environments.
Proceedings Eurographics 97

Proesmans M., Van Gool L. (1997). Reading between the lines - a method for extracting
dynamic 3D with texture. In Proc. of VRST’97, pp. 95-102.

Slater M., Usoh M. (1994) Body Centered Interaction in Immersive Virtual Environments,
Artificial Life and Virtual Reality, N. Magnenat Thalmann, D. Thalmann, eds., John Wiley,
pp 1-10

Thalmann D., Çapin T.K., Magnenat Thalmann N., Pandzic I.S. (1995) Participant, User-
Guided and Autonomous Actors in the Virtual Life Network VLNET, Proc. ICAT/VRST '95,
Chiba, Japan, pp. 3-11.

