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ABSTRACT

In this paper, we show that, given video sequences of a moving person acquired with a multi-camera system, we can track joint
locations during the movement and recover shape information. We outline techniques for fitting a simplified model to the noisy
3—D data extracted from the images and a new tracking process based on least squares matching is presented. The recovered
shape and motion parameters can be used to either reconstruct the original sequence or to allow other animation models to
mimic the subject's actions. Our utlimate goal is to automate the process of building complete and realistic animation models
of humans, given a set of video sequences.
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1. INTRODUCTION

Synthetic modeling of human bodies and the simulation of motion is a longstanding problem in animation and much work is
involved before a near-realistic performance can be achieved. At present, it takes an experienced designer a very long time to
build a complete and realistic model that closely resembles a specific person. Digital photogrammetry offers a means to obtain
the necessary data faster and in a more realistic fashion. Our ultimate goal is to automate the process and to produce realistic
animation models given a set of video sequences. Eventually the whole task should be performed quickly by an operator who
is not necessarily an experienced graphics designer. We should be able to invite a visitor to our laboratory, make him walk in
front of a set of cameras, and produce, within a single day, a realistic animation of himself.

In this paper, we show that, given video sequences of a person moving in front of the camera, we can recover shape
information and joint locations, both of which are essential to instantiate the model. This is achieved with minimal human
intervention: to initialize the process, the user simply has to click on the approximate location of a few key joints in one
image triplet. The recovered shape and motion parameters can be used to reconstruct the original movement or to allow other
animation models to mimic the subject's actions.

We concentrate on a video-based approach because of its comparatively low cost and good control of the dynamic nature
of the process. While laser scanning technology provides a fairly good surface description of a static object from a given
viewpoint, videogrammetry allows us in addition to measure and track particular points of interest, such as joints, and to record
and track surface and point features around the object.

The problem to be solved is twofold: first, robustly extract image information from the data; second, fit the animation
models to the extracted information. In this work, we use video sequences acquired with three synchronized cameras to extract
tracking and stereo information.

We first introduce our approach to computing 3—D stereo information and 3—D surface trajectories. We then present the
animation model we use. Finally, we introduce our fitting procedure and show how we can handle the different kinds of input
information.

Authors' e-mail addresses:

a{thcola,aefl}@geod.e.ch
b{p1aeerfua,thalir}@lig.di.epfi.ch
Homepage: http:llwww.geod.ethz.ch/p02/projectslbody

Part of the IS&T/SPIE Conference on Videometrics VI • San Jose. California • January 1999

36 SPIE Vol. 3641 • 0277-786X/98/$1O.OO

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/01/2013 Terms of Use: http://spiedl.org/terms



frame 1 frame 5

Figure 1. Four frames of a sequence (only odd lines are processed)
left center nght

Figure 2. Arrangement of the three ('CD cameras

2. 3-D LSM TRACKING ALGORITHM

Our approach to tracking is based on multi-image recording. In previous work (Fua et al.1). we presented a tracking of
retroreflective points stuck on the skin. We have since developed an approach to tracking natural points using least squares
matching techniques.2 without using markers. To simplify the development, we have acquired sequences of the arm of a
person wearing a well textured sweater (see Figure 1). The texture of the clothes facilitates the establishment of conespondences
between the images of the different views and between images of subsequent frames. Flowever. our final goal is to handle a
wide range of textures. includeing bare skin.

2.1. Image Acquisition
Three CCD cameras are arranged in a line (left, center, right) as shown in Figure 2. l'hcy acquire 76S x 5768 bits synchronized
image triplets.

The CCD cameras are interlaced, i.e. a full frame is split into two fields which are recorded and read out consecutively. As
odd and even lines of an image are captured at different times, a saw pattern is created in the image when recording moving
objects. For this reason only the odd lines of the images are processed. at the cost of reducing the spatial resolution in vertical
image coordinate direction by 50 percent.

2.2. System Calibration and Orientation
For calibration and orientation, we use the reference bar method (Maas). A reference bar with two retroreflective target points
is moved through the object space and at each location image triplets are acquired. The image coordinates of the two target
points are measured with centroid operations for each triplet. The three camera system can then he calibrated and oriented
by self-calibrating bundle adjustment with the additional information of the known distance between the two points at every
location.

2.3. Surface Measurement
The first task of the tracking process is the measurement of the obiect surface at the beginning of the sequence. The algorithm
used for the measurement of the surface is analogous to the one presented by D'Apuzzo.' The stereo matcher is based on
the adaptive least squares method.2 It considers an image patch around a selected point. One image is used as template and
the others as search images. The patch in the search image is modified by an afline transformation (translations. sheerings and
scalings) and the gray levels are varied by multiplicative and additive parameters. The algorithm finds the corresponding point
in the neighborhood of the initial point in the search images by minimizing the sum of the squares of the differences between
the gray levels in these patches. Figure 3 shows the result of the least squares matching with an image patch of 13 x 13 pixels.

frame 9 frame 13
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Figure 4. Tracking process

The black boxes represent the patches selected (initial location in the search image) and the white box represents the atlinely
transformed patch

At the beginning of the process approximations for a few corresponding points have to he manually selected in the three
images. Starting from these seed points, the stereo matcher automatically determines a dense set of corresponding points in the
triplet.lhe 3—i) coordinates of the matched points are determined by forward intersection using the calibration and orientation
resu Its.

2.4. Tracking Process
The tracking process is based on least squares matching techniques. The spatial correspondences between the three images
of the different views and also the temporal correspondences between subsequent frames are determined with the same least
squares matching algorithm mentioned before.

2.4.1. Tracking single points
To start the process a triplet of corresponding points in the three images is needed. This point is tracked through the sequence
in the three images and therefore its 3—D trajectory can be computed. Figure 4 depicts the use of the least squares matching
algorithm to track the point.

In frame i, a triplet of corresponding points in the three images is established with the least squares matching algorithm
(spatial LSM). In each of the three images (left, center, right) a correspondent point is matched in the next frame i + 1 also
with the same least squares matching algorithm (temporal LSM). Figure 5 explains how the temporal correspondences are
established between subsequent frames.

For the frame i I a linear prediction of the position of the tracked point is made: it is assumed that the movement made
from frame i to frame i + 1 is the same as from frame i — 1 to frame i. Around this predicted position in the trame I + I. a
search box is defined. This box is scanned fi)r searching the position which has the best value of cross-correlation between the
image of frame i and the image of frame I + 1. This position is considered an approximation of the exact position of the point to
be tracked. The least squares matching algorithm is applied at that position and the result can be considered the exact position
of the tracked point in the new frame. This process is done independently for the three images of the different views. A spatial
LSM is executed at the positions resulting from the temporal LSMs and if no significant differences occurs between the two
matches, the point can be considered exactly tracked. Figures 6 and 7 show the results of tracking six single points through the

sequence.
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Figure 3. Least squares matching algorithm. Left: template image. right: search image
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Figure 5. Tracking in image space: at the position of best cross correlation is applied LSMtempoiaI

Figure 6. Tracking six single points

Figure 7. 2—D trajectories of six single points
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Figure 8. 3—D trajectories of six tracked points. Left: front view, right: side view

Figure 9. Vector field of trajectories of surface tracking

The 3—D trajectory of the tracked point is determined by computing the 3—D coordinates of the point through the sequence
by forward intersection. Besides, velocities and accelerations are also computed. Figure 8 shows the trajectories of the six
single points.

2.4.2. Tracking the surface

The tracking algorithm is applied to all the points measured on the surface at the beginning of the sequence. The result can
be seen as a vector field of trajectories (position, velocity and acceleration). An important advantage of this general tracking
scheme of all the points is that at the end the results can be checked for consistency and local uniformity of the movement.
Figure 9 shows the result after passing through two filters.

The first filter consists of thresholds for the velocity and the acceleration of the movement. The second filter checks for the
local (in space and time) uniformity of the movement. Since the human both can be considered an articulated moving object.
the resulting vector field of trajectories must be locally uniform. i.e. the velocity vector must he nearly constant in sufficiently
small regions at a particular time. To check this property, the single trajectories are compared to local tin space and tinle) mean
values of the velocity vector. If the differences are too large. the trajectory is considered false and it is truncated or removed.
The results of this filtering are not only trajectories without errors, but also surface measurement (in form of a 3—I) points cloudt
at each time instance without errors. The possible errors in the surface measurement done at the beginning of the sequence are
removed during the tracking process. since they probably generate false trajectories.

The tracking system starts with a set of points that constantly becomes smaller during the process, because erroneous
trajectories are removed or truncated by the filters and because points disappear from the scene during the sequence. 'To
improve the system, it is therefore essential to regenerate lost points and to create new ones as the' become visible. New
neighborhood heuristics will also be added to the filters.

3. MODELS

In this section. we first describe the complete model that we use for animation purposes. This model has too many degrees
of freedom to be effectively fit to noisy data without a-priori knowledge. We therefore introduce a simplified model that we
have used to derive an initial shape and position. In this work, we will use this knowledge to initialize the complete one before
refining it.

4()
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Figure 10. The layered human body model: (a) Skeleton. (b) Ellipsoidal metaballs used to simulate muscles and tit tissue. (c)
Polygonal surface representation of the skin. (d) Shaded rendering.

3.1. Complete Animation Model
Generally, virtual humans bodies are structured as articulated bodies defined by a skeleton. When an animator specifies an
animation sequence, he defines the motion using this skeleton.

A skeleton is a connected set of segments, corresponding to limbs and joints. A joint is the intersection of two segments.
which means it is a skeleton point where the limb linked to that point may move.

Our model' is depicted by Figure 10. It incorporates a highly effective multi-layered approach for constructing and animat-
ing realistic human bodies. Ellipsoidal metaballs are used to simulate the gross behavior of bone, muscle, and fat tissue; they
are attached to the skeleton and arranged in an anatomically-based approximation. The skin construction is made in a three step
process. First, the implicit surface resulting from the combination of the metaballs influence is automatically sampled along
cross-sections with a ray casting method.6'5 Second, the sampled points constitute control points of a B-spline patch tr each
body part (limbs, trunk, pelvis, neck). Third, a polygonal surface representation is constructed by tessellating those l3-spline
patches for seamless joining different skin pieces together and final rendering. The method, simple and intuitive, combines
the advantages of implicit, parametric and polygonal surface representation. producing very realistic and robust body detorma-
tions. B' applying smooth blending twice (metaball potential field blending and B-spline basis blending), the model's data size
is significantly reduced.

Since the overall appearance of a human body is very much influenced by its internal muscle structures, the layered model is
the most promising for realistic human animation. The key advantage of the layered methodology is that once the layered char-
acter is constructed, only the underlying skeleton need be scripted for animation; consistent yet expressive shape deformations
are generated automatically.

3.2. Skeleton and State Vector

The state of the skeleton is described by the combined state vector
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Sb0d [Smotion,Sskel] . (1)

The static or mit state of the skeleton Sskel consists of the rotations and translations from each joint to the preceding one.
It is fixed for a given instance of the body model. The variable or motion state vector Smotion contains the actual values for
each degree of freedom (DOF), i.e. the angle around the z-axis towards the next DOF. They reflect the position and posture of
the body with respect to its rest position. All DOFs have only a single-angle freedom, since more complicated articulations are
split into several, single DOF joints.

For any given limb or body part a partial motion state vector for its parentjoint can be written as Spart [Spre , ê,ç], where
Spre iS the state vector of the preceding joints, and ®, is a rotation angle around the z-axis of that joint.

The position of joints in a global world referential is obtained by multiplying the local coordinates by a transformation
matrix. This matrix is computed recursively by multiplying all the transformation matrices that correspond to the preceding
joints in the body hierarchy:

xi = [JD(S)*X , (2)

with = [x, y, z]T being joint local, resp. world global, coordinates and the homogeneous transformation matrices D,
which depend on the state vector S. ranging from the root articulation's first to the reference articulations's last DOF. These
matrices are split into static and motion matrices, according to the state vector. They are of the form

D = Drotz * . (3)

The rotation matrix Drotz is defined by the motion state vector. It is a sparse matrix allowing only a rotation around the local
z-axis (eK). The static transformation = (RX + sT) is a matrix directly taken from the standard skeleton. These matrices
translate by the bone length and rotate the local coordinate system from the joint to its parent. The matrix entries are calculated
using values s from the state vector Sskel . The variable coefficient s is necessary because the exact size of the limbs may vary
from person to person. For the first DOF of an articulation, is usually dense but the other DOFs have no translation and
the rotational part consists only of a permutation of the axes to ensure that the DOF rotates around the z-axis.

The articulations may consist of several DOFs, each having its own transformation matrix D. For example, the elbow joint
has two DOFs flexion and twisting: Detbow Drott,,ist * * Drot1z, * Dinif1,.

3.3. Simplified Model of a Limb

To be able to robustly estimate the skeleton's position and to reduce the number of DOFs, we replace the multiple metaballs of
Section 3.1 by only three metaballs attached to each limb. In an earlier approach,7'1 we used only one ellipsoid per limb. This
had the advantage of fast calculations but the errors introduced by the imperfection of the model, were big enough to lead to
unsatisfactory fittings. We therefore decided to use a slightly more complicated model which is capable of better modeling the
shape of human limbs. Figure 1 1 shows the model we have used to recover the shape and motion from the arm sequences of
Figure 1.

The metaballs are rigidly attached to the skeleton. They have a fixed orientation and a fixed position relative to the length
of the limb. Only their size, i.e. their radii, are subject to modification by the fitting process.

The different body parts are segmented before the fitting starts. This is simply done during the initialization phase where
the model takes an approximate posture which is good enough to assign a 3—D observation to the closest limb. Thus, we do not
have to wait for a motion of the person to split a limb such as the arm into two parts, upper arm and forearm, asis the case in
the work of Kakadiaris and Metaxas.8

More sophisticated models that include both global and local deformations, such as tapered superquadrics8 or evolving
surfaces,9 may be able to approximate more closely the exact shape of the limb. However, they require the setting of more
parameters and are thus harder to fit.
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Figure 11. Simplified model for fitting. Although the metaballs are displayed as distinct ellipsoids, they blend into each other
to form a sinele smooth surface.

3.4. Metaballs and their Mathematical Description
3.4.1. Definition10

In the basic formulation proposed by Blinn.'1 metaballs orb/ohs are defined by a set of points J(.r,, y. c) where each point
is the source of a potential field. Each source is defined by afield fiwction I ( :r, j, z) that maps E1 to (or a subset of E). At
a given point P(:r.y. z) of the Euclidean space, the fields of all sources are computed and added together. leading to the global
field function

F(.r. y. ) = F,(i. 1/.) . (4)

A curved surface can then be defined from the global field function I by giving a threshold value 1' and rendering the
following equipotential surface S for this threshold:

S = { (.r. .) E F ( .r. j. c) T }

Conceptually it is usually simpler to consider field function F1 as the composition of two functions the distance Junction

il, which maps to E. and the potential function f which maps to

F(x. i. z) = f(d(,r. ij, z)) . (6)

The function f1(d) characterizes the distance between a given point P(.r.y,c) and the source point 1'(.r,.y1, .). Iypicallv
d, is defined as a function of a user-provided parameter (called effective radius) which expresses the growing speed
of the distance function. The most obvious solution for d1(r.y. .) is the Euclidean distance, hut several other functions have
been proposed in the literature, especially when the potential source is not reduced to a single point or its field is not equally
distributed in space.
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Figure 12. Two metaball field functions. The solid curve is a typical piecewise function and the dotted curve is our exponential
function. rt is the visible size of the primitive which depends on the threshold Wtand the effective radius Ta.

3.4.2. Distance function

In this work, we only consider ellipsoids as primitives because they are relatively simple but, nevertheless, allow modeling of
human limbs with a reasonable low number of primitives and thus number of parameters. We represent the distance function
d by the I/O distance of the ellipsoid that is

I 2 \2 2(X\ I\
d(x,y,z)=(—J +(—) +(—) , (7)

\lxJ \tyJ \tzJ
where L = (l ,l,l ) are the radii of the ellipsoid, i.e. half the axis length along the principal directions.

3.4.3. Potential function

The field value at any point P in space is defined by the distances between P and the source points P. Figure 12 shows atypical
curve of a density distribution. The center of the primitive, its source, has the greatest density. The value of the primitive's
density, or weight, decreases toward the element's outer edge, or effective radius. The visible size of a primitive, called the
threshold radius, is determined by the effective radius and weight.

Field functions should satisfy two criteria:

1 . Extrema
The contribution at the source itself will be some maximum value w0 , and the field will drop smoothly to zero at a
distance Ta' the effective radius.

2. Smoothness
In order to blend multiple metaballs smoothly and gradually, f'(O) = f'(a) 0.

A single, lower degree polynomial cannot meet both criteria, hence either piecewise quadric or high order polynomials have
been proposed. Their disadvantage are a high complexity and thus high computational cost.

Shen'0 used a much simpler approach in his work on human body modeling: f = w ( 1 — d) , where d is defined as in
Equation 7 and w defines the maximum weight w0 for primitive i. This simplified field function satisfies only the first criterion.
The second criterion is satisfied by using cubic B-spline blending. The simplification used by Shen yields excellent results for
modeling purposes, as can be seen in Figure 10.

3.4.4. Usage in this work

However, here we are attempting to fit the model to 3—D data by minimizing an objective function. In order to do so, we
need to work on a well-defined mathematical basis and the smoothness criterion is essential when fitting a shape with multiple
metaballs. We therefore use an exponential field function:

= 12 = * exp(—2d) (8)
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with d also being defined as in Equation 7 and the weight being fixed for the moment (wo= 1, 'Wt = 0.5). We might leave
the weight as a parameter for the fitting in the future since it allows to easily reproduce sharper edges.

An exponential field function is also more effective in the least squares fitting framework because its derivatives are very
easy to compute. As shown in Figure 12, its equipotential surface S (Eq. 5) is only slightly different from the standard
representation and, more importantly, it never falls to zero.

The last property has two consequences:

1 . Eachblob has an influence on all other blobs of the same limb, although, it will become very small for distant blobs. This
is obviously undesired for modeling since the designer looses local control.

2. At the same time as each blob influences all other blobs, each blob is influenced by all observations in our fitting frame-
work. This allows us to work with only a rough initialization of the model's posture. Since the observations are already
segemented and associated to body parts, the unlimited influence does not pose any problems.

4. FITTING THE MODELS TO IMAGE DATA
From a fitting point of view, the body model of Section 3.3 embodies a rough knowledge about the shape of the body and can
be used to constrain the search space. Our goal is to fix its degrees of freedom so that is conforms as faithfully as possible to
the image data.

Here we use motion sequences such as the one shown in Figure 1 and corresponding stereo data computed using the method
of Section 2. Thus, the expected output of our system is a state vector that describes the shape of the metaballs and a set ofjoint
angles corresponding to their positions in each frame.

In this section, we introduce the least squares framework we use and show how we can exploit the tracking and stereo data
that we derive from the images.

4.1. Least Squares Framework
In standard least-squares fashion, we will use the image data to write nobs observation equations of the form

ft(S) = obs — 1 < i < mobs , (9)

where S is the state vector of Equation 1 that defines the shape and position of the limb and e2 is the deviation from the
model. We will then minimize

I,TPV = Mm , (10)

where v is the vector ofresiduals and P is a weight matrix associated with the observations (P is usually introduced as diagonal).

Our system must be able to deal with observations coming from different sources that may not be commensurate with each
other. Formally we can rewrite the observations equations of Equation 9 as

ftYPe(S) = ObSype _j , < i :S nobs , (11)

with weight tYPe where type is one of the possible types of observations we use. in this paper, type is restricted to object
space coordinates, although other information cues can easily be integrated.

The individual weights of the different types of observations have to be homogenized prior to estimation according to:

= (12)
P3 (ar)

where o, are the a priori standard deviations of the observations obs, obs3 of type k, 1.

Applying least-squares estimation implies the joint minimum

vtY P YP Mm , (13)
type=1

with nt the number of observation types, which then leads to the well-known normal equations which need to be solved using
standard techniques.

Since our overall problem is non-linear, the results are obtained through an iteration process.
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Figure 13. Arm model atier being fitted to frames I 9 arid 13 from the inlages of Figure I

Figure 14. The recovered animation parameters applied to a completely different animation model

4.2. Using Stereo Data

Let us assume that we are given a 3—D point thathas been computed using stereo data. We want to minimize the distance of the
reconstructed limb to all such "attractor" points. Given the implicit description of our metahalls. the simplest way to achieve
this result is to write an pseudo-observation equation of the form:

IL .i:p (—2d,) = ii', I 14

eip (2 (()2 (;)2 + () (15)

where up is the number of primitives for this body part. P (x. y. ) is the 3—D observation transformed into the local coordinates
of primitive with radii L1(lx.ly.Lc). We use Equation 15 which is the same than Equation 14 except for the fixed weights
u1 = - , o' = 1. 1 E [1. rip].

The optimization is effected wrt. the primitives' radii L and the DOFs which reside in the transformation of each obser-
vation from world global to primitive local coordinates. According to Equation 2, each L can he written as a function of its
world coodinates and the elements of state Vector S. In practice. we experienced better convergence by iteratively alternating
between primitive parameters and skeleton parameters instead of optimizing them simultaneously. For more detail we refer the
interested reader to a previous publication.1

4.3. Preliminary Results
By fitting our model of the right arm to the stereo information obtained from the images of Figure 1 we can reconstruct the
positions and shapes depicted by Figure 13. The joint angles stored in the state vector can then he used to animate the very
different virtual human of Figure 14.

5. CONCLUSION AND FUTURE WORK

In this paper, we have shown that given video sequences of a moving person acquired with a multi-camera system, we can
recover shape information and track joint locations during the motion. We have outlined techniques for fitting a simplified
model to noisy stereo dataand we have presented a new tracking process based on least squares matching. The recovered shape
and motion parameters can be used to create a realistic animation. Our ultimate goal is to produce automatically. with minimal
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human intervention, realistic animation models given a set of video sequences. The capability we intend to develop will be of
great applicability in animation areas, since the techniques used nowadays require a very long time of manual work to generate
and animate sophisticated models of humans. Automating the process will allow an increase of realism with simultaneous
decrease of costs.

In future work, will next produce some synthetic data in order to test the accuracy of the system. At the moment we are
applying the algorithms on sequences of full bodies in motion.

We will also investigate the possibilities of having the model guide the tracking process. If a point vanishes due to occlusion
we can employ the model to predict where and when it will appear again.

The next step for the fitting process consists of refining the model from only three primitives to the full set of the animation
model. This would allow us to model the filmed person very realistically. The simplified model only allows to get a good
approximation of the skeleton but a rather rough approximation of the shape.
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