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Abstract. Identifying a precise anatomic skeleton is important in order to
ensure high quality motion capture. In this paper we discuss two skeleton fitting
techniques based on 3D optical marker data. First a local technique is proposed
based on relative marker trajectories. Then it is compared to a global
optimization of a skeleton model. Various proposals are made to handle the
skin deformation problem. Index Terms— skeleton fitting, motion capture,
optical markers

1 Introduction

As stressed in a recent production featuring many virtual humans, the most critical
element in their creation seems to be the replication of believable motion [1]. In most
productions optical motion capture is preferred due to its high precision measurement
of little reflective markers attached on some relevant body landmarks (Fig. 1a). The
movement of an artist is captured with two to eight calibrated cameras. For simple
motions the multiple views of markers allow the automatic reconstruction of their 3D
position. Once per session, a special calibration motion that highlights all the
necessary degrees of mobility allows to build or adjust a skeleton model (this motion
is further referred to as the gym motion). Then the skeleton model is used in a post-
processing phase to derive the angular trajectories of all the captured motions. Finally
animators often adjust angular data to adapt the motion to a virtual character that is
different from the artist (Fig. 1d).
Presently, the stage of automatic 3D reconstruction is often brought to a halt for
complex motions. Either some markers are obscured from camera view or the
algorithm confuses the trajectory of one marker with that of another. This requires
much manual intervention that severely reduces the productivity of the system. In the
framework of the MOCA ESPRIT project, we propose a motion capture methodology
based on an anatomic human model (Fig. 1b) [2]. This model encompasses a precise
anatomic description of the skeleton mobility [3] associated with an approximated
envelope. It has a double objective: by ensuring a high precision mechanical model
for the performer, we can predict accurately the 3D location and the visibility of
markers, thus reducing significantly the human intervention during the conversion
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process. In the present paper we discuss methods exploiting the gym motion to
estimate the dimensions of the artist’s skeleton.

Input motion

(a)
Human performer

wearing optical markers
(little reflective spheres)

MOCA framework

 (b)  (c)

Anatomic Envelope for
skeleton visibility assessment

Output motion

 (d)

End user virtual
character

Fig. 1. Converting the human performer’s motion (a) into the end-user character’s motion (d)
with the anatomic human body (skeleton (b) and approximated envelope (c))

In the next section we review skeleton identification approaches used in other motion
capture techniques and in related fields. Then we propose a local skeleton fitting
technique based on the relative marker trajectories. In the fourth section we develop a
global fitting that adjusts simultaneously all the parameters of the skeleton. We
conclude by reviewing our results and by making a comparison between the two
proposed techniques.

2 Skeleton Fitting Techniques in Related Fields

Besides optical markers systems, other techniques exist that are based on magnetic
trackers [5][9] or plain video sequences [4][6][8].
The main advantage of the magnetic trackers lies in the possible real-time acquisition
and the unambiguous measurement of tracked points. However, its main drawback
comes from a lower precision that is even worse when the magnetic field is perturbed
by metallic objects or other magnetic fields. Regarding skeleton identification, in [5]
it reduces to the scaling of a standard model to the size of the real human. Other
important differences are estimated by manual measurements and reflected on the
skeleton model.
The video-based motion capture techniques try to fit a human model to video
sequences. Monocular or stereo video sequences may be used. The monocular case
uses a planar projection [6] of a human body model. The parameters of the projection
can model global scaling. The technique belongs to the image processing family of
techniques and therefore the quality of the recording is strongly sensitive to noise.
Another problem in this case is an undetermined direction. These drawbacks
disappear when using stereo sequences. In [4] an arm recorded with a stereo system is
being tracked by fitting a model built out of ellipsoids to the data. This way, the
skeleton fitting is concomitant to the motion tracking. The complex body parts where
the deformation of muscles has to be modeled as well, introduces a number of
parameters that is proportional to the number of ellipsoids. The measures of the body
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are modeled by parameters of the ellipsoids and they are globally adjusted over all or
selected frames of the sequence.
Other fields also rely on a precise identification of human features. In order to create
virtual mannequins that behave exactly like the real human model for presenting
garments, the body of the client has to be measured acceptably well [7]. To perform
such measurements, two digital cameras capture frontal and side silhouette of
customers. Although such an approach is efficient to build a suitable 3D envelope of
the client, it fails to identify precisely the joint location [7].

Fig. 2. A frame containing 3D
optical markers from a gym
sequence, used as input for the
skeleton fitting

Fig. 3. Interface for correction and association of
markers’ sets with skeleton segments. Result of tuning
the threshold (left). Skeleton model template (right)

The use of optical markers (Fig. 2) simplifies the human model without loss of
precision, increasing significantly the speed of the computations while avoiding all
the aforementioned problems. A problem lies in the possibility of loosing occluded
markers during complex motions. This is the point where the rigorous fitting of an
anatomic skeleton proves to be especially important. Using it, accurate prediction of
the artist’s posture can be made and integrated in the marker identification procedure.
It supports suitable decisions in discarding hidden markers out of the alternatives of
important choices at the 2D level of a camera view.

3 Local Technique

When looking for the position of the bones of a person, a first observation is that the
relative distance of markers attached to one limb is almost constant. The biggest
deviations occur when markers are attached on parts that suffer maximal deformation
during the movement as around the joints or on massive muscles (e.g. on the thigh).
Our approach handles this context by decomposing the problem into three stages
developed in the following subsections:
• Partitioning the markers into rigid segment sets
• Estimating the position of joints
• Deriving the corresponding skeleton dimensions
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3.1 Partitioning

We have to specify which marker belongs to which segment. This can be done
manually by using an anatomic skeleton and making associations. Nevertheless, an
automatic tool is welcomed (Fig. 3). We propose an algorithm that computes the
distances between markers at each frame of the gym motion (Fig. 4). It selects the
biggest sets of markers in which all distance variations between all pairs of markers
are under a certain threshold. This condition defines a rigid segment set. The system
may look for the expected number of partitions or the user can interactively tune this
threshold (Fig. 3).
We call partition such a rigid segment set. Its formal definition is the following: we
define a relationship R over the set of markers. The relationship R determines a cover
C over the set of markers M.

{ }),(,,,| 212121 mmRmmPmmMPPC ⇒≠∈∀⊂= (1)

where

RmmmmR ∈≡ ),(),( 2121
(2)

Fig. 5. Maximal Partitions after corrections
and association with segments of the template

Computing
deviations

Tuning the
threshold

User’s corrections
to partitions

Attaching partitions
to segments

correspondence file

final
partitions

biggest
partitions

deviations

“Gym” motion

Fig. 4. Steps followed in partitioning

O

A

M

Bp_segment
a_segment

Fig. 6. The trajectory of a marker M around
an adjacent segment OA

Now we define the cover ℜ  over M as:
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We call ℜ  “the set of biggest partitions of markers found in the relationship R”.
In our case two markers 1m  and 2m  are in the relation R if, over all frames, the

difference between the longest and shortest distances ),( 21 mmd between the

markers, passes below a thresholdθ . Thus R is the set:

{ }θ<− ),(min),(max|),( 212121 mmdmmdmm
framesframes

(4)

We intend to further develop this tool using information based on the angles formed
by the markers. Corrections can be done manually. After computing the sets in ℜ  we
need to establish a relationship between each of such set (Fig. 5) and a segment of the
skeleton model. In the current stage we are doing this association manually, using an
interactive graphical interface (Fig. 3). We will try AI learning techniques based on
the motion of the local systems of coordinates to accomplish it (see section 3.3).
We define the attachment weight of a marker to a segment as a normalized measure of
the rigidity of its attachment to that segment. By default, all the attachment weights
have a value of 1.0.

3.2 Using the Relative Trajectories of the Markers

If we consider a referential bound to a bone represented by a segment e.g. OA (Fig.
6), the markers that are attached on adjacent segments (e.g. OB) theoretically move
on a sphere centered on the joint that links the two segments (here joint O). This
comes from the hypothesis of constant distance between markers and joints.
The position of a segment in space is completely defined by three points. Thus, if we
have a minimum of three markers on a segment, we can define the position and
orientation of that segment in space. Afterwards, we compute the movement of the
markers on adjacent segments in the referential established by these markers and we
estimate their centers of rotation (Fig. 10). The centers of rotations correspond to the
joints. From their position in space we can compute the lengths of the segments as the
distances between them. For example, in Fig. 6 we can compute the position of the
joints A and O in space and we get the distance ||AO||.
Due to the deformations suffered by the skin during the motion, the markers attached
on a limb change their position with respect to the bone. As long as the deformation is
only due to a twisting rotation, it is filtered out by its property of maintaining the
distance to the joints. However, a deformation that is changing the distance to the
bone (e.g. due to muscles such as biceps) or one that changes the position along the
bone induces unknown errors. Markers suffering such deformation errors are further
said to belong to the noisy class. We deal with these errors by introducing a LSQ
computation of the center of rotation. We use a modified version of the Levenberg-
Marquardt method [10] for all of our least squares computations. Depending on the
complexity of the movements, the errors sum up or compensate each other, the worst
cases being presented in [12].
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3.3 Segment Referential

Due to skin deformations, during motion the markers may change their position with
respect to the underlying bones. This induces errors in computing a referential bound
to a segment. The biggest errors result from the displacement that may affect the
origin of the system of coordinates. In order to filter out such errors we assign little
weights to the markers that belong to the noisy class, and we choose the origin as the
center of mass of the weighted markers. In order to improve the stability of the
direction of the axis, we first choose the farthest marker from the origin for the
direction of one axis. In our case we compute this way the Ox axis. This marker is
then marked during the whole video sequence. Then we define the plan xOy as the
plan that contains the marker situated at the biggest distance from the axis Ox. All the
distances used in comparisons are multiplied with the attachment weight because the
increase in reliability is proportional to the distance.
The choice of the two important markers that determine the referential is done only
once. The calibration frame is the first frame of the sequence in which all the markers
attached to the reference segment (p_segment in the formula) are visible. They are
used for computing the referential in all the frames. The user manually specifies the
weights. We provide an interactive display that allows checking the effect of the
weights (Fig. 11 and Fig. 12).

3.4 Center of Rotation

In the p_segment referential we compute all the centers of rotation for all the markers
of an adjacent segment a_segment (Fig. 6). The center of rotation is estimated as the
result of the function:

2

,,,
)),,,(),,,((minarg

000

zyxrweightzyxrd
trajectoryzyxr

×∑ (5)

corresponding to the LSQ minimization [10] of the function:

),,,(),,,( zyxrweightzyxrd × (6)

where:

rzzyyxxzyxrd −−+−+−= 2
0

2
0

2
0 )()()(),,,( (7)

and the function ),,,( zyxrweight  is described in the section 3.6.
Then we estimate the joint position as the center of mass of the centers of rotation
weighted by the associated marker weight and the radius of the sphere that they
describe (Fig. 7).

)_,(
)_,(

segmentpmrkradius
segmentamrkweight

weightcenter =
(8)
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We have conjectured that the precision of the center estimation is related to the radius
of the rotation and empirically we have used the previous formula. However, the
relation between precision and radius proved, as shown in [12], not to be very tight.
Take as an example Fig. 7. After defining the system of coordinates bound to 1S , we

estimate the center of rotation J of 2S  in this referential. In order to do this we

estimate the center of rotation Jx of each of the markers M, N and P. Then we
compute the mass center of the centers of rotation for M, N and P using the weights
computed with the previous formula:

∑
∑ ×

=
centers

center

centers
centercenter

J weight

weightx
x

)( (9)

There is a case where the trajectory of a marker describes a circle and not a sphere,
due to reduced degree of freedom for a certain joint (e.g. elbow). We would project
this trajectory in the plan that best contains it. This plan can be found by using a LSQ
that minimizes the distance between it and the points on the trajectory (Fig. 9).
A certain attention has to be paid to the case where we have less than three attached
markers on a segment. This case occurs often in our experiments (Fig. 12). Currently
we solve it with two markers if the adjacent joints can be acceptably modeled as
having only one rotational degree of freedom. In this case we determine the system of
coordinates by the plane that contains the two markers of the base segment and the
marker whose trajectory is being tracked. The center of rotation is computed in this
plane and then retransferred into the global referential. There, we compute the center
of mass of all the centers of rotation computed for all the markers on a neighbor
segment in order to find an estimate for the position of the joint.
Afterwards, we perform as usually. For example (Fig. 6) we compute all the rotation
centers of the markers on OA around OB, and all the rotation centers of the markers
on OB around OA. Then we compute the center of mass using the weights of the
considered markers and the inverse of the radius of the circles or spheres described by
them during their motion.

3.5 Getting the Resulting Skeleton

By applying the previously described procedures we get finally a set of joints
estimates for each frame. The next step is to compute the length of each bone in the
anatomical skeleton so that the previously computed joints can be in the estimated
position in each frame.
One trivial approach is to estimate the length as the average distance between the
estimated joints. A more elaborated one is to compute the length that minimizes the
square of deviations.
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Fig. 7. Weighting centers of rotation for
different markers on segment 2S

Fig. 8. Case where the lack of proper
weighting would induce a bigger error than the
ones described in the presented theory. The
thickness of the continuous lines represents
the density of the points in the trajectory

Fig. 9. Algorithm used to estimate the
position of the joints for all the frames of the
gym motion
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Fig. 10. Each segment length is multiplied
with a coefficient (one of “a” to “n”) and the
degrees of freedom are modified in order to
bring the model skeleton in the estimated
position in each frame, marked here by the
black circles

Currently we use a global adjustment of the lengths that minimizes the distance
between the joints of a model and the estimated joints in each frame, adjusting in the
same step all the other degrees of freedom of the model (Fig. 10). The same technique
as the one presented in section 4.2 is employed.
We provide also the possibility of constraining the estimation of a symmetrical
skeleton. This constraint can be set very easily in the context of using the global LSQ
procedure mentioned above. The only change that has to be done in computations is
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to use the same coefficients for the adjustment of the symmetric lengths. For example,
in Fig. 10 we would have:

hi ≡ , mk ≡ , nl ≡ , hi ≡ , fa ≡ , eb ≡ , dc ≡

Fig. 11. Estimating the center of rotation of a
marker around a segment determined by
several

Fig. 12. Right upper arm. Example of a case
where the segment can be determined by only
2 markers

3.6 Errors, Advantages and Drawbacks

In order to restrict the errors of the previously shown type we weight the points on the
trajectories. The weight is the inverse of the densities of these points in a region of the
space. We compute this densities by first dividing the space in a set of parallelepipeds
in which we count the number of points. First we compute automatically the minimal
box containing all the points of the trajectory and we divide it, dividing each direction
by a factor of 5 or 10. This increases the importance of poorly populated regions of
the space representing extremities of the values of the degrees of freedom. Usually,
the artist keeps for very short time such postures. Such an inverse density weight
diminishes strong noise as the one in the Fig. 8.
As it is proved in 12, if

R<<ε , (10)

where R is the shortest possible distance between the joint and the marker while ε is
the maximum deviation of this distance, then we can approximate the error x:

2)
2

cos(1

ε
α

ε ≥
−

≅x
(11)

The last formula shows the maximum precision of the estimation of the position of a
joint in a given direction. It is a function of the maximum angle α  of the arc
described by the marker in a plane determined by the joint and that direction vector.
The maximum precision is less than half of the maximum deviation of the distance
between marker and joint.
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4 Global Technique

We now present a different approach to fitting a skeleton to motion capture data. It is
called global skeleton fitting and here it is used to refine the results of the local
technique of section 3. Global means, that we consider the whole skeleton at once,
whereas the local approach fits one limb at a time, ignoring relations between remote
limbs. A thorough description of the global method can be found in [4].
Since this method depends heavily on the underlying skeleton structure, we first give
a brief description of the used skeleton.

4.1 Modeling the Skeleton

As mentioned in the introduction, the skeleton of a body model is defined as a set of
articulations connected by rigid segments [3]. The model’s topology is defined by a
hierarchy tree and may be of humanoid, animal or any other shape which allows for
tree-like representation of the connected articulations. A “template” defines the
translations and rotations that have to be affected to get from an articulation to its
parent articulation in the hierarchy. This template describes the initial state of the
skeleton. It may vary between different instances of a model, i.e. different characters
or actors, but it is fixed for each instance during animation. Here, the local
transformation matrix of a joint is multiplied by a “motion matrix”, i.e. the matrix of
the rotation around this particular joint which represents the model’s motion.
Thus, the state of the skeleton is described by the state vector [ ]motionskelbody PPP ,= .

The initial state of the skeleton skelP  consists of the rotations and translations from
each joint to its parent. It is fixed for a given body model. The variable state vector

motionP  contains the actual values for each DOF. They reflect the position of the body
with respect to its rest position.
For any given limb or body part a partial state vector for its parent joint can be written
as [ ]iprepart QPP ,= , where preP  is the state vector of the preceding joint in the

hierarchy, and iQ  is the rotation angle of this DOF.
The position of joints in a global or world referential is obtained by multiplying the
local coordinates with a transformation matrix. This matrix is computed recursively
by multiplying all the transformation matrices that correspond to the preceding joints
in the body hierarchy:

,)(∏ ×=
i

liw XPDX (12)

with wlX ,  being local, resp. world, coordinates and the transformation matrices iD ,

which depend on the state vector P, ranging from the root articulation’s first to the
reference articulation’s last joint.
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The articulations may consist of several joints, each having its own transformation
matrix inirot DDD ×= . Take as example the elbow which has the two DOFs flex

and twist: flex
ini

flex
rot

twist
ini

twist
rotelbow DDDDD ×××= . The “initial transformation”

,...},{, twistflexk
k
ini pTXRD =+×=  is a matrix directly taken from the LIG

skeleton. It translates by the bone length and rotates the local coordinate system from
this joint to its parent. The matrix entries are calculated with the values of the state
vector skelP . The variable coefficient skelPp ∈  is necessary because we don’t know
the exact size of the person’s limbs yet. For the first joint of an articulation this matrix
is usually dense but the other joints have no translation and the rotational part usually
consists only of a permutation of the axes to ensure that the DOF rotates around the
local z-axis.

4.2 Fitting the Skeleton to Observations in a Global Approach

Optical motion capture delivers accurate 3D positions of markers in world
coordinates. We fit a model to these markers by minimizing a certain error function,
which penalizes the distance between real marker position and the position predicted
by the model. The employed model is depicted by Fig. 14. In order to be able to
measure a distance, both “marker observations” need to be in the same referential.
Thus, we transform the local coordinates of the modeled marker positions into world
coordinates by multiplying them with the recursive transformation matrix )( pD .
The fitting is then done by minimizing the error ε  over all frames and all DOFs in
the following equation:

∑ =−− 02 εwXObs (13)

where wX  depends on the state vector P, as explained in the previous paragraph. To
minimize the error, we employ the same LSQ algorithm as in section 3.2.
In other words, the global fitting searches optimal values for the DOFs and the lengths
of the limbs by taking all frames into account.

4.3 Practical Constraints versus Modeling Real Deformations

Usually, the markers are modeled as being rigidly attached to the skin. But in reality
they are effected by skin deformations. Those deformations are depicted by Fig. 13.
We see that, due to the muscles (e.g. biceps), skin deformation at the joints and
twisting, the markers are free to move in all directions. Allowing all those
deformations in our model, even with limiting constraints, would lead to
overparameterization. However we may consider that a certain position is the normal
one while the others are unstable and less probable.
In this case, the fact itself that we use a LSQ technique models such deformations.
Besides, some deformations are easily avoided by not attaching markers in noisy
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places. Usually markers are not attached on biceps or similar places so that the
corresponding degree of freedom is sufficiently well modeled by the LSQ method.
The deformation of the skin along the bones is important only on the joints. Several
characteristics such as the attachment weight of markers (section 3.1) can be used.
The deformations of the skin in transversal directions on the bones, due to twisting,
are sometimes important. A limit may still be set on the extent of the deformation
from one frame to another.

muscles

twisting

joint
flexions

Fig. 13. Degrees of freedom and their cause
for the movement of the markers with respect
to segments

r1

r2

Fig. 14. The model of the markers on the
segments

4.4 Computational Issues

The biggest drawback of the LSQ approach is that it gets stuck in local minima. The
best solution to this problem is to ensure a good initialization. The random
initialization is therefore avoided.
Taking into account the flexibility of the global approach regarding the models for the
attachment of the markers on the limbs, we find it interesting to use the result of the
local technique as the initialization of the global one. This way, as long as the model
for the global LSQ is enough constraining, we are sure of improving the previously
found result. The only condition is that the model should be more constraining than
the local one, respectively the movement of the markers on circles around segments
and weighted with attachment weights at joint proximity. The twisting model can be
improved, eliminating the errors that come in the local technique from the
computation of the referential.

4.5 Considered Models, Errors, Advantages and Drawbacks

A model of the markers on the limbs being currently considered is presented in the
Fig. 14. The markers that are secured to only one segment are modeled as moving on
a circle around the segment. The exact position as well as the radius of the circle is
computed as a result of the LSQ optimization (section 4.2) in which these parameters
are global over all frames. This approach allows the modeling of the markers attached
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at different distance on the same bone.
The markers secured very close to joints are modeled as moving on a sphere around
the joint. The radii of these spheres are also globally optimized. We intend to research
the effects of additional constraints regarding the parallel and meridian of the sphere
on which the marker can be found as a function of the current values of the degrees of
freedom.
Additional frame to frame constraints may be added in order to improve the
convergence of the LSQ technique while taking into account the position of the
marker on the corresponding circle or sphere.

Fig. 15. Crosses show the
position of some joints
estimated using the local
fitting technique

Fig. 16. Skeleton obtained by
using a global adjustment of
an anatomic skeleton to the
positions of the joints
estimated using the local
algorithm

Fig. 17. Body obtained by
covering the obtained
skeleton with muscles and
skin

5 Results and Experiments

We have tested the previously described algorithms on some “gym” motions. In Fig.
15 we present the computed positions in space for the joints using the technique
presented in section 3. Out of these positions estimated in all the frames of the
sequence we obtain the skeleton in Fig. 16 by applying the algorithm of section 3.5.
In addition to this skeleton we compute estimates of the position of the markers on the
limbs. This estimation can be used in further improving the marker tracking and the
analysis of the motion. After covering the computed skeleton with muscles and skin
we obtain the skeleton of Fig. 17.
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6 Local versus Global Approaches

Until now we have encountered some problems with the convergence of the global
LSQ. The main reason is that we have not used all the frames for the global
technique, and because of this, the possibility of introducing frame to frame
constraints was also reduced. Another reason is that the conversion of the results of
the local technique into the needed parameters for the initialization of the global LSQ
was done using yet another LSQ. We intend to further do this analytically. One
promising direction is to set multiple priorities levels [11] instead of looking for one
global compromise in the posture adjustment phase.
Two complementary validation campaigns are also planned. First recording optical
marker data on an articulated structure with known dimensions (e.g. a robot). Second
to exploit a set of simple human motions isolating various degrees of mobility in
complex regions as the shoulder. The analysis of these data should lead to a better
understanding of the markers optimal positioning.
A comparison between the two approaches is summarized in the next table:

Local Global
Complex algorithm Simple algorithm
Low computational cost
(high speed)

High computational cost
(slow speed)

The manually specified weights are
important

The importance of the values of the weights
depends on the employed model.

The model of the markers on the
limbs cannot be modified easily.

The model of the markers on the body is
flexible.

Robustness within the limits of the
quality of the input

May easily get stuck in local minima

7 Conclusion

We have proposed a new approach to fitting a skeleton to motion capture data. It is
based on two different, yet complementary techniques: a local and a global one. The
local technique consists of the analysis of the relative trajectories of the markers. It
proves to be very fast but good results are dependent on the quality of the gym
motion. Also, its output is a set of independent 3D positions of the joints which still
have to be assimilated to a skeleton. The global technique employs expensive
computations for the simultaneous estimation of all parameters. In order to succeed it
needs an already close initialization and a good constraining model, otherwise it gets
stuck in local minima. However, it is less sensitive to incomplete motions and can
better handle skin deformation. Its output is a complete articulated skeleton structure,
ready to be used for animation purposes.
The combination of both techniques eliminates the problems each of them has on its
own: the local technique serves as initialization to the global one, which delivers the
fitted skeleton.
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