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This text is intended for self-study. It contains many inline questions; I invite the alert readers to
try and answer the questions as they read.

QUESTION 0.0.1. Where is the answer to an inline question ?

1

Every chapter contains a review section that summarizes the main points and also contains further
inline questions. The exercise section can be used as assignments in a lecture. The solutions are
available on request; if time permits, a solution manual will eventually be available. The Index
collects all terms and expressions that are highlighted in the text like this and also serves as a
notation list.

1In a chapter at the end.
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CHAPTER 1

STOCHASTIC REACTION MODEL

The stochastic reaction model is a special case of Markov process, and is the basis for many models
used in the literature.
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1.1 MARKOV PROCESS ON COUNTABLE SPACE

1.1.1 DEFINITION

A Markov process is a stochastic process in continuous time, i.e. a function of time X(t) that is
random and takes values in some space S. We assume in this section that the state space is discrete
(= countable); typically, it is a subset of N

S for some integer S. A Markov process is one that has
the property that the distribution of the process is entirely determined by its present state; in other
words, if we want to simulate the process, the state description contains all information about the
past that is needed to continue the simulation.

Being Markov is not a property of the real biological system, but rather, of the model that we make
of it. A synonym for Markov process is Continuous Time Markov Chain.

EXAMPLE 1.1: IMMIGRATION-DEATH PROCESS. This process is also called the
M/M/∞ queue in queuing theory. The process counts the number of individuals
in some species: X(t) ∈ N (Figure 1.1).

Individuals arrive (immigrate) according to a Poisson process of rate λ. You can
think of a Poisson process as the continuous time limit of the following discrete time
process: at every time slot, flip a coin and decide whether an arrival occurs, indepen-
dently of any past events. The coin is biased such that the probability that an arrival
occurs in a time slot of duration λ is λdt. The parameter λ is the rate of arrival, i.e. the
average number of arrivals per time unit (it is the inverse of a time).

Individuals stay in the system for a random time, which in average has a duration 1
μ .

More precisely, the distribution of the sojourn time is exponential, with rate μ, and is
drawn independently of all past. You can think of the exponential distribution as the
as the continuous time limit of the following discrete time distribution: at every time
slot (of duration dt), flip a coin and decide, with probability μdt, whether the sojourn
time expires. The parameter μ is also a time inverse. One also sometimes uses the
half-life, which is the median of the distribution of sojourn time and is equal to ln(2)

μ .

QUESTION 1.1.1. Show this

The process X(t) is Markov because both the Poisson process and the exponential
distribution are memoryless.
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QUESTION 1.1.2. Modify Example 1.1 on page 2 and assume that the sojourn time is constant
instead of exponentially distributed. Is X(t) still a Markov process ?

In addition, we consider only Markov processes that are time homogeneous, i.e. their evolution
does not depend on time (but only on the current state).

1.1.2 PROPERTIES

The main properties of a Markov process on a discrete space are the following.

1. There exists an array of numbers Ai,j (transition rate matrix, also called generator), where
i, j are possible states of the process, such that, for any i �= j:

P{X(t + dt) = j|X(t) = i} = Ai,jdt + o(dt) (1.1)

where o(dt) means some function of dt that goes to 0 more rapidly than dt (i.e. limdt→0
o(dt)

dt
=

0). Ai,j is called the rate of transition from state i to state j. You can think of it as the
conditional probability that the process will jump to state j in the next dt seconds, given that
it is in state i now.

2. By convention, one usually lets
Ai,i = −

∑
j �=i

Ai,j (1.2)

and we have (probability of no transition)

P{X(t + dt) = i|X(t) = i} = 1 + Ai,idt + o(dt) (1.3)

3. The probability that two transitions occur simultaneously in the next dt seconds is o(dt),
i.e. can be neglected.

EXAMPLE 1.2: IMMIGRATION-DEATH PROCESS. The probability that an immigration
occurs in the next dt seconds is λdt, thus

P{X(t + dt) = n + 1|X(t) = n} = λdt + o(dt)

The probability that a given individual leaves in the next dt seconds is μdt + o(dt).
If there are n individuals present in the system, the probability of some departure is
1− (1− μdt− o(dt))n = nμ + o(dt). Thus

P{X(t + dt) = n− 1|X(t) = n} = nμdt + o(dt)

and the formula is also true in the special case where n = 0. The transition rate matrix
of the immigration death process is thus.

A =

⎛
⎜⎜⎜⎜⎝
−λ λ 0 0 ...
μ −λ− μ λ 0...
0 2μ −λ− 2μ λ ...
0 0 3μ −λ− 3μ ...
... ... ... ... ...

⎞
⎟⎟⎟⎟⎠ (1.4)
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In theory, we know everything about such processes. For example, the probability distribution at
time t is given by

P(X(t) = i) =
(
π(0)etA

)
i

(1.5)

where π(0) is the row vector of initial probability distribution, i.e. P{X(0) = i} = πi(0). The
exponential etA in the formula is a matrix exponential. For more details on matrix exponentials,
see for example in Wikipedia. It is a matrix of same dimensions as A, and has the property that
e(t+s)A = esAetA = etAesA. It gives the t-seconds ahead transition probabilities: for any t ≥ 0

(etA)i,j = P{X(t) = j|X(t) = i} (1.6)

QUESTION 1.1.3. Give an approximation of (etA)i,j valid for small values of t. (Hint: use Equa-
tion (1.1) and Equation (1.3))

When the state space is not too large, the matrix exponential can be computed and one can (nu-
merically) compute all quantities of interest. However in most practical cases in our setting, the
state space is huge. Consider for example a population of k different types of cells or molecules.
The process is X(t) = (X1(t), , Xk(t)); the state space has Mk states, where M is the maximum
population count. With k = 10 population types with M = 100 max individuals per type, this is
10010 = 1020. This is why most papers resort to simulation.

1.1.3 LONG RUN BEHAVIOUR

There are also simple results for the large time limit behaviour of Markov processes.

An important feature of the Markov process is whether the state space is irreducible, i.e. any
state can be reached in a number of transitions from any state. Assume that this is the case. If, in
addition, the state space is finite, then the distribution of state space tends to a limiting probability
π∗, i.e. limt→+∞ P(X(t) = i) = π∗(i). The limiting probability satisfies the balance equation

π∗A = 0 (1.7)

and is uniquely defined by this set of equations (up to a multiplicative constant). If the state
space is countable but infinite, one requires in addition a stability condition (the system does not
“explode”). A necessary and sufficient condition for stability is the existence of some solution ν
of the balance equation (i.e. νA = 0) such that

∑
i∈S |νi| < +∞ and ν is non identically 0. If so,

the limiting probability is π∗
i = νi�

j∈S νj
.

If the state space is not irreducible, then the graph of transitions allows to classify the states as
either transient or recurrent. A transient state is one such that it is possible to start a path of
transitions from this state that makes any return impossible (in any finite number of transitions).
A non transient state is recurrent. The set of recurrent states can be partitioned in recurrence
classes, i.e. maximal subsets in which one can go from any state to any other state in a finite
number of transitions (see Figure ??). Note that for this classification, the only thing that matters
is whether a transition rate is 0 or not; the values of the non zero transition rates does not matter.
The state space is irreducible if and only it all states are recurrent and there is only one recurrence
class. If the state space is not irreducible, then after some (random) time the process will visit one
randomly chosen recurrence class and will stay in it forever. In such cases the balance equation
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Equation (1.7) has one solution (up to a multiplicative constant) per recurrence class and any
combination of these solutions is a solution.

EXAMPLE 1.3: IMMIGRATION-DEATH PROCESS. It is easy to see that the state space
is irreducible. The balance equation is:

νi(λ + iμ) = νi−iλ + νi+1(i + 1)μ for i = 1, 2, ... (1.8)

ν0λ = ν1μ (1.9)

which we can interpret by saying that the rate of probability of leaving state i is equal
to the rate of probability of reaching state i. This system of equations can be solved
iteratively starting from i = 0, assuming ν0 = 1 (which we can do without loss of
generality since a solution of the balance equation is known up to a multiplicative
constant). One obtains

νi =
λi

i!μi

It follows that the sum
+∞∑
i=0

νi = e
λ
μ < +∞

thus the system is stable for any values of λ and μ, and the limiting probability distrib-
ution is

π∗
i =

λi

i!μi
e
−λ

μ

This is the Poisson distribution, with mean λ
μ .

Figure 1.1 shows a simulation of this process. We see that, after some transient time,
the process tends to become distributed around the mean value λ

μ .

1.2 STOCHASTIC REACTION MODEL

The Stochastic Reaction Model is a way of compressing the description of a Markov process,
which is well suited to modelling biological systems. It originates from chemistry, from where it
borrows some elements of terminology.

1.2.1 DEFINITION

In order to specify a Markov process, one can give the transition rate matrix A. For complicated
processes, this is a huge array. One can compress the description by exploiting some structure in
the process.

DEFINITION 1.2.1. A stochastic reaction model is a description of a Markov process based on the
following framework.
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Figure 1.1: Four independent simulation runs of the Immigration Death process with λ = 10 and μ = 1 and
two sets of initial conditions (x0). The plain line is the exact value of E(X(t)).
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1. The set of possible states S is a subset of N
S for some integer S. In other words, the state at

time t has the form
�X(t) = (X1(t), ., Xs(t), .., XS(t)) (1.10)

where Xs(t) is interpreted as the number of individuals in species s.
2. There are R reactions, each associated with a change in the population. When reaction r

occurs, the state changes from �x to �x + �Δr. The vector �Δr is called the effect of reaction r.
3. (Rate function: ) The rate of transition of reaction r is a function hr(). The value hr(�x) is

the probability that a reaction of type r occurs in the next dt seconds, given that �X(t) = �x.
4. To avoid inconsistencies, we assume that reactions cannot lead to impossible states: If �x +

�Δr(�x) ∈/S then hr(�x) = 0.

The rate function hr() is called propensity in chemistry or hazard rate in finance.

EXAMPLE: IMMIGRATION-DEATH PROCESS.There are S = 1 species and R = 2 reac-
tions (“arrival”, “departure”). The state space is S = N.

Reaction Effect Rate
1 (arrival) �Δ1 = +1 h1(x) = λ

2 (departure) �Δ2 = −1 h2(x) = xμ

The transition rate matrix of a stochastic reaction model is given by the following formulas:

A(�x, �x + �Δr(�x)) = hr(�x) (1.11)

A(�x, �x′) = 0 if for all r �x + �Δr(�x) �= �x′ (1.12)

A(�x, �x) = −
∑

r

hr(�x) (1.13)

Note that there is not much loss of generality when considering stochastic reaction models: any
arbitrary Markov process on a finite space S ⊂ N

I can be described as a stochastic reaction model.

QUESTION 1.2.1. Show how an arbitrary Markov process on a finite space can be described as a
stochastic reaction model.

1.2.2 EXAMPLE: IMMUNE RESPONSE MODEL

This example is the stochastic version of the model in [2]. It represents a population of target cells,
infected by a virus, in presence of an immune response. The state is X = (T, I, E) where

• T= population of target cells;
• I= population of infected cells;
• E= population of effectors (immune response).

The state space is S = N
3. There are S = 3 species and R = 7 reactions. The effects are described

below.
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Reaction Description Effect Rate
1 Influx of New Target Cells T := T + 1 σ
2 Infection I := I + 1; T := T − 1 βTI
3 Elimination of Infected Cell I := I − 1 kIE
4 Proliferation of Effectors E := E + 1 αIE
5 Death of target cells T := T − 1 δT T
6 Death of infected cells I := I − 1 δII
7 Death of effector cells E := E − 1 δEE

Reaction 1 has a constant rate because it is assumed that there is a generation of healthy cells
(probably from stem cells) at a rate not affected by the infection. Reactions 2,3 and 4 have a rate
proportional to two populations, as they represent the results of binary interactions. Reactions 5, 6
and 7 represent death processes have a rate proportional to the population of interest.

In this description we used a different convention to describe the effects. Instead of giving the
effects �Δr, we give the result of applying the reaction to the state vector (T, I, E), by writing only
those coordinates that are affected. An alternative method would have been to describe the effects,
as follows.

Reaction r Effect �Δr

1 (+1, 0 , 0 )
2 ( -1 ,+1, 0 )
3 ( 0 , -1 , 0 )
4 ( 0 , 0 ,+1)
5 ( -1 , 0 , 0 )
6 ( 0 , -1 , 0 )
7 ( 0 , 0 , -1 )

Figure 1.2 shows a few simulation runs.

QUESTION 1.2.2. Comment on the variability of the X(t) from one run to the other.

To analyze the long run behaviour of this model we first classify the states. A state is a triple
(t, i, e) ∈ N

3. We need to determine the graph of state transitions; it is derived from the rules in
the tables above. The possible transitions are given in the tables below. For i > 0 the transitions
are:

from→ to additional condition reaction number
1 t, i, e→ t− 1, i, e t > 0 5
2 t, i, e→ t + 1, i, e 1
3 t, i, e→ t, i− 1, e 3,6
4 t, i, e→ t− 1, i + 1, e t > 0 2
5 t, i, e→ t, i, e− 1 e > 0 7
6 t, i, e→ t, i, e + 1 4

and for i = 0:

from→ to additional condition reaction number
7 t, 0, e→ t− 1, 0, e t > 0 5
8 t, 0, e→ t + 1, 0, e 1
9 t, 0, e→ t, 0, e− 1 e > 0 7
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Figure 1.2: One simulation run of the Immune response model in Section 1.2.2. Initial values: T (0) = 1000,
I(0) = 50 and E(0) = 5. The time axis is in days. Parameter values are α = 0.001, β = 0.1, δE = 0.01,
δI = 0.1, δT = 0.1, k = 1 and σ = 100. First three panels: T (t), I(t), E(t) as a function of time (time plots),
for the same simulation run zoomed at three different time scales. Last panel: I(t) versus E(t), E(t) versus
T (t) and I(t) versus T (t) (phase plots) for t ∈ [0, 200]. The circles are the non-trivial equilibrium predicted
by the differential equation method in Section 1.5.
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We see that if we start with i = 0 we can never increase i. It follows that if we start from a state
with i > 0 there is a path that leads to some state with i = 0, from where we can never come back
to the original state. Thus all states with i > 0 are transient.

Now let us examine states (t, 0, e); from there we can only decrease e, except if e = 0; thus these
states are transient except for e = 0.

Finally from any state (t, 0, 0) we can go to any other state (t′, 0, 0), and only to such states. Thus
there is one recurrence class; it made of all states with i = e = 0. To see if the system is stable
we solve the balance equation assuming that ν(t, i, e) = 0 except if i = e = 0. These are the
same equations as for the immigration-death process, thus the process is stable for any values of
its parameters. But in the long run limit, it always (sooner or later) ends up with I(t) = E(t) = 0.
The limiting distribution of the state (T, 0, 0) is obtained as in Example 1.3 on page 5, i.e. T is
Poisson with mean σ

δT
.

1.2.3 STOCHASTIC REACTION NETWORKS

Stochastic reaction networks is a variant of stochastic reaction model. They were originally
introduced to describe chemical reactions, but are used for other population models like we use for
modelling the immune system.

A reaction network is a stochastic reaction model with S species and R reactions. Every reaction
is written in a form

a1X1 + a2X2 + ...
λr→ b1Y1 + b2Y2 + ... (1.14)

with the following convention.

• Xi is an overloaded representation that means both “species i” and the number of individuals
of species i
• Items on the left-handside are calledreactants, on the right handside, products.
• A coefficient such as ai or bi is called a stoichiometry. The effect of reaction r is the

difference between product stoichiometry and reactant stoichiometry.
• The reaction rate is given by λr. By default, λr is a constant and the reaction rate is given

by
hr = λrX

a1
1 Xa2

2 ... (1.15)

If the default rule in Equation (1.15) does not apply, then λr is a function of the reactant,
given explicitly.

EXAMPLE 1.4: IMMUNE REACTION. The Immune Reaction model can be alternatively
described using the formalism of reaction networks, as follows.

BIRTH σ→ T (1.16)

T + I
β→ 2I (1.17)

I + E
k→ E (1.18)

E + I
α→ I + 2E (1.19)

T
δT→ DEATH (1.20)

I
δI→ DEATH (1.21)

E
δE→ DEATH (1.22)
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QUESTION 1.2.3. Does this reaction network describe exactly the same Markov process as the
stochastic reaction model in Section 1.2.2 ?

Reaction networks are implemented in formal description languages such as SBML (Systems Bi-
ology Markup Language) or the language TSED developed at EPFL. The default rules for the rate
functions were shown by Gillespie to be valid for well stirred chemical reactions, and are generally
accepted for many bio-chemical reactions.

Reaction networks provide our first examples of population models. By default, when population
of cells or molecules interact according to Equation (1.14), and if there is no specific constraints,
then the rates of the reactions are given by the default rule in Equation (1.15). The reactions of
immigration, death and proliferation usually are in this case.

Reversible reactions are simply the conjunction of two independent reactions:

a1X1 + a2X2 + ...
λ
�
μ

b1Y1 + b2Y2 + ... (1.23)

is the same as

a1X1 + a2X2 + ...
λ→ b1Y1 + b2Y2 + ...

b1Y1 + b2Y2 + ...
μ→ a1X1 + a2X2 + ...

1.2.4 OTHER CLASSICAL STOCHASTIC REACTIONS

HOMEOSTATIC REGULATION

This a set of s reactions that models the fact that species 1...s share some common resource, or are
subject to a regulation that tends to control the total population X1 + ... + Xs.

• Effect of reaction i (i = 1, ..., s): Xi := Xi − 1
• Rate of reaction i: λXi(X1 + ... + Xk) where λ is some constant.

MICHAELIS-MENTEN

This models reactions that use a catalytist, or enzymes. It is also applied to binding sites on
dendritic cells. Assume a population X1 is transformed into another population Y1, by a mechanism
that involves a catalyst, or facilitator C. Assume one unit of population X1 needs to combine with
one facilitator, for the reaction to occur. This is modeled by the following reaction:

X1
h1(X1)→ Y1 (1.24)

with rate
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h1(X1) =
λX1

X1 + x∗
1

(1.25)

The constant λ is the maximum value of the rate, reached when X1 is large. The constant x∗
1 is the

Michaelis-Menten constant; it is the value of X1 for which the rate is half its maximum value.

If 2 units of X1 need to combine with one facilitator, for the reaction to occur, the reaction is

2X1
h2(X1)→ Y2 (1.26)

and the rate now has the form

h2(X1) =
λX2

1

X2
1 + (x∗

1)
2

(1.27)

A similar case is with more than one reactants that bind to one or more facilitators:

2X1 + X2
h3(X1,X2)→ Y1 (1.28)

The rate then has the form

h3(X1, X2) =
λX1X2

k0 + k1X1 + k2X2 + k3X1X2

(1.29)

In Section 1.6.1 we give an explanation for this model.

1.3 SIMULATION OF REACTION MODELS

1.3.1 GILLESPIE’S DIRECT METHOD

Simulating a reaction model means drawing a sample path, given some initial conditions. This is
in principle simple, based on the following property.

THEOREM 1.3.1. Consider a stochastic reaction network. Let T+(t) be the time at which the next
reaction occurs, counted from time t. Then

1. the conditional distribution of T+(t)−t, given that �X(t) = �x0, is exponential with parameter∑
r hr(�x0)

2. the conditional probability that the next reaction is reaction r0, given that �X(t) = �x0, is
hr0 (�x0)
�

r hr(�x0)

3. the time until next transition T+(t)− t and the choice of the next reaction are conditionally
independent, given that �X(t) = �x0.

EXAMPLE 1.5: IMMIGRATION-DEATH PROCESS. Given that there are n individuals
present in the system, the distribution of time until next transition is exponential with
rate λ + nμ; the probability that the next transition is an arrival is λ

λ+nμ , that it is a
departure is nμ

λ+nμ . The choice of the next event (arrival or departure) can be drawn
independently of the time until next event.
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The theorem gives us a means to generate the next transition step by step. The resulting simulation
algorithm is called Gillespie’s Direct method.

Algorithm 1 Gillespie’s Direct Method
1: procedure GILLESPIE(Tmax, �x0)


 Tmax: maximum duration of simulation

 �x0: initial state

2: �X ← �x0

3: t = 0
4: loop
5: draw T ∼ Expo

(∑
r hr( �X)

)
6: t := t + T
7: if t > Tmax then
8: break
9: end if

10: draw R in set of reactions according to the probability distribution

P{R = r0} =
hr0 ( �X)
�

r hr( �X)

11: �X ← �X + ΔR

12: output(t, �X)
13: end loop
14: end procedure

To apply Gillespie’s direct method we need to be able to draw a sample of an exponential random
variable (line 5). This can be done by using the fact that if U is a uniform random variable between
0 and 1, then − ln(U)

λ
is distributed according to the exponential distribution with rate λ. The random

variable U is sampled by calling the random number generator.

Similarly (line 10), in order to draw a random value in the finite set {1, 2, ..., rmax} with probabili-
ties p1, ..., pmax (where

∑rmax

r=1 pr = 1), one draws a uniformly distributed number V ∼ Unif(0, 1)
and searches for the index r such that

Pr−1 ≤ V < Pr

where P0 = 0 and Pr = p1 + ... + pr (see [3], chapter “Simulation” for explanations).

EXAMPLE 1.6: IMMIGRATION-DEATH PROCESS. A simulation code in matlab, using
Gillespie’s direct method, is is given below.

function [] = imde(n,x0,la,mu) % immigration model simulation
% use it for example with imde(400,100,10,1)
% n=max simulation time in transitions
% x0 = initial population
% la =immigration rate
% mu = death rate
x= x0*ones(1,n); % x data
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t= zeros(1,n); % times
for i=2:n

rate = la + x(i-1)*mu;
t(i)=t(i-1)-log(rand(1))/rate;
v=rand(1);
if (v < la/rate) % arrival

x(i)=x(i-1)+1;
else

x(i)=x(i-1)-1;
end

end
plot(t,x);
return

1.3.2 TIME STEPPED METHOD

The previous algorithm may become prohibitive if the state space is large, which is often true in
practice. We will see later a number of fundamental simplifications that can be made to the model
itself. Here, we discuss a simplification, and approximation, of the simulation algorithm. It is
based on the following theorem.

THEOREM 1.3.2. Consider a stochastic reaction model. Assume the rate hr0 of some reaction r0 is
independent of the state. The number of times that reaction r0 occurs in a time interval of duration
t is Poisson with mean thr0 .

The idea of the time stepped method is to take a discrete time step δ that is small enough so that
the rates of all reactions do not vary much; of course, δ needs to be large enough so that we do
speed up the simulation. The following algorithm applies when the state space is S = N

S for some
integer S.

Line 7 requires sampling from the Poisson distribution. This is more complicated than the sampling
in the previous algorithm, but is readily implemented in statistical packages (see below for a Matlab
example).

Line 8 sets �Xs to 0 if the update equation would produce a negative value. If the state space puts
some constraints on �X other than being non-negative (for example Xs ≤ xmax

s for some s) then
one needs to modify line 8 accordingly.

One needs to validate the approximation made by the time stepped method, for example by reduc-
ing the time step δ until there is no visible change in the simulation output.

The time stepped method can be refined: the time step δ can be kept small at times when the rates
vary rapidly, and large when rates vary much (Gillespie calls it the τ−leap method). Also, it is pos-
sible to combine the direct method (to slow reactions) with the time-stepped (to fast reactions) [4].

EXAMPLE 1.7: IMMIGRATION-DEATH PROCESS. A simulation code in matlab, using the
time stepped method, is is given below. Sample outputs are shown in Figure 1.3
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Algorithm 2 Time Stepped Method
1: procedure TIMESTEPPED(Tmax, �x0,δ)


 Tmax: maximum duration of simulation

 �x0: initial state


 δ: time step
2: �X ← �x0

3: t = 0
4: nmax = floor(Tmax

δ
)

5: for n← 1, nmax do
6: for r ← 1, R do
7: draw dr ∼ Poisson

(
δhr( �X)

)
8: �X ← max

(
�X +

∑
r drΔr,�0

)
9: end for

10: output(t, �X)
11: end for
12: end procedure

function [] = imdets(tmax,x0,la,mu, delta)
% immigration model simulation, time stepped version

% tmax = max simulation time
% x0 = initial population
% la =immigration rate
% mu = death rate
% delta = time step

n= floor(tmax/delta)
x= x0*ones(1,n); % x data
t= (0:(n-1))*delta; % times

for i=2:n
arrivals = poissrnd(la*delta);
departs = poissrnd(mu*x(i-1)*delta);
x(i)=max(x(i-1)+arrivals-departs,0);

end

% arrange plots for nice jump process
arranget = zeros(n,2*n-1);
arranget(1,1)=1;
for j=1:(n-1)

arranget(j+1,2*j)=1;
arranget(j+1,2*j+1)=1;

end
arrangex = zeros(n,2*n-1);
arrangex(n,2*n-1)=1;
for j=1:(n-1)

arrangex(j,2*j-1)=1;
arrangex(j,2*j)=1;
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(a) δ = 0.2
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(b) δ = 1

Figure 1.3: Two simulation runs of the Immigration Death process with λ = 10 and μ = 1, with the time
stepped method (δ=time step). The plain line is the exact value of E(X(t))

end

plot(t*arranget,x*arrangex);
return

1.4 THE DRIFT EQUATION

Stochastic models are able to reproduce the“irregularity” of biological systems, but they can some-
times be simplified and replaced by deterministic models. The link is the drift equation of Markov
processes, which we give in a form adapted to the stochastic reaction framework.

1.4.1 THE DRIFT EQUATION

THEOREM 1.4.1. Consider a stochastic reaction model. For any function f() of the state space
such that the expectations are well defined we have

d

dt
E

(
f( �X(t))

)
= E

(
drift of f at �X(t)

)
(1.30)

where

drift of f at �x =
∑

r

hr(�x)
[
f(�x + �Δr)− f(�x)

]

The drift equation (1.30) contains essentially the same information as the properties in Sec-
tion 1.1.2, but in a form more suitable to derive deterministic equations. The function f() in
the theorem is a function of the state, therefore is defined on S ⊂ N

S .
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EXAMPLE 1.8: IMMIGRATION-DEATH PROCESS. The state space is S = N. Let us
take f(x) = x, for x ∈ N. We have:

drift of f at x = λ− μx

d

dt
E (X(t)) = E (λ− μX(t)) = λ− μE (X(t)) (1.31)

Let x̄(t) = E(X(t)). The drift equation gives

dx̄

dt
= λ− μx̄ (1.32)

This is an ordinary differential equation which can be solved into:

x̄(t) =
λ

μ
+
(

x̄(0)− λ

μ

)
e−μt (1.33)

We see that when t grows x̄(t) approaches the limit λ
μ . In Figure 1.1 and Figure 1.3

the value of x̄(t) is plotted as a plain, red line.

QUESTION 1.4.1. Is X(t) an integer ? x̄(t) ?

1.4.2 THE MASTER EQUATION

The drift equation can be used to derive a set of differential equations for the probability distribu-
tion of state, called the master equation or forward-Chapman-Kolmogorov equation.

THEOREM 1.4.2. For a stochastic reaction model:

d

dt
P{X(t) = x0} =

∑
r

P{X(t) = �x0 − �Δr}hr(�x0 − �Δr)− P{X(t) = �x0}
∑

r

hr(�x0)(1.34)

= rate of proba of reaching state �x0 − rate of proba of leaving state �x0

Proof. The master equation derives from the drift equation. To see why, consider some fixed state
�x0 ∈ S and take for f the indicator function of �x0. The drift of f at some arbitrary vector �x is:

drift of f at �x =
∑

r

hr(�x)
[
1{�x+�Δ(r)=�x0} − 1{�x=�x0}

]

thus

�x = �x0 − �Δr ⇒ drift of f at �x = hr(�x) = hr(�x0 − �Δr)

�x = �x0 ⇒ drift of f at �x = −
∑

r

hr(�x0)

else drift of f at �x = 0

Apply the drift equation and obtain the theorem.

�
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EXAMPLE: IMMIGRATION-DEATH PROCESS. Let px = P{X(t) = x} for x = 0, 1, 2, ...;
we have the set of differential equations:

dpx

dt
= λpx−1 + (x + 1)μpx+1 − (λ + xμ)px for x = 1, 2, ... (1.35)

dp0

dt
= μp1 − λp0 (1.36)

QUESTION 1.4.2. If you set the derivative equal to 0 in Equation (1.35) and Equation (1.36),
which equations do you obtain ?

The master equation is mainly theoretical. Its solution is possible, even numerically, only for very
small state spaces.

1.5 DETERMINISTIC REACTION MODELS

1.5.1 APPROXIMATION BY ORDINARY DIFFERENTIAL EQUATION

We are interested in this section in systems where the dynamics is large, probably because they
start from initial conditions that are very far from the long run average (see Figure 1.1 for some
examples). Such systems can be approximated by deterministic equations. Here again, the starting
point is the drift equation. Apply the drift equation to the functions f( �X) := Xs. We obtain:

dx̄s

dt
=
∑

r

E

(
hr( �X(t))

)
Δr,s (1.37)

where x̄s = E(Xs) (recall that Δr,s is the effect of the rth reaction on Xs). Assume that we can
neglect the variability of Xs(t) around its mean value x̄s; then one can write the approximation:

E

(
hr( �X(t))

)
≈ hr

(
E( �X(t))

)
(1.38)

DEFINITION 1.5.1 (Associated ODE). Consider a stochastic reaction model with state space S =
N

S . The associated ordinary differential equation (ODE) is the differential equation system:

d�x

dt
=
∑

r

hr(�x)�Δr (1.39)

where �x(t) is a vectorial function of time t, with values in R
S

Thus, if the approximation in Equation (1.38) is valid, the vector of means (x̄1, ..., x̄S) satisfies
the associated ODE. The associated ODE is similar to the drift equation, however, there are some
differences:

• the quantities xs(t) in Equation (1.39) are real numbers, not integers
• the drift equation contains expectations, the ODE does not.
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EXAMPLE: IMMIGRATION-DEATH PROCESS. The vector of mean here is a scalar x(t)
and the ODE is:

dx

dt
= λ− μx (1.40)

The mean of the process x̄(t) satisfies exactly this ODE, as we saw in Example 1.8
on page 17. This is because all rates are linear in the state vector, in which case
Equation (1.38) is exact.

EXAMPLE: IMMUNE REACTION. The vector of mean here is (T̄ (t), Ī(t), Ē(t)). The
ODE is here a set of three simultaneous equations:

dT̄

dt
= σ − βT̄ Ī − δT T̄ (1.41)

dĪ

dt
= βT̄ Ī − kĪĒ − δI Ī (1.42)

dĒ

dt
= αĪĒ − δEĒ (1.43)

Here the equation is only approximately true for the vector of means. A true equation
for T̄ is

dT̄ (t)
dt

= σ − βE(T (t)I(t))− δT T̄ (t)

= σ − β(T̄ Ī + cov(T (t), I(t))− δT T̄ (t)

where we used the identity E(TI) = E(T )E(I)+ cov(T, I). If the variability of T (t) and
I(t) is small, then the standard deviations σT (t) and σI(t) are small compared to the
means T̄ (t) and Ī(t), thus |cov(T (t), I(t))| ≤ σT (t)σI(t) is also small compared to T̄ (t)
and Ī(t).

The approximation is also valid if the variability is high but if we can assume that T (t)
and I(t) are independent.

It can be shown that the ODE becomes exact if we scale the system such that the reaction rates
are large and the effects are small, i.e. the system implies a large number of small changes. More
precisely, if we replace �Δr by ε�Δr and hr(�x) by 1

ε
hr(�x), then, as ε goes to 0, the vector of means

of the stochastic systems converges, in some sense, to a solution of the ODE.

EXAMPLE 1.9: REGULATED POPULATION. A population of cells is generated at a con-
stant rate λ2 and subject to homeostatic regulation with rate γ2. Let x̄(t) be the mean
population. The associated ODE is

dx

dt
= λ2 − γ2x2 (1.44)
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which, using a symbolic computation package, gives

x(t) =
λ

γ

1 + −λ+γx0

λ+γx0
e−2λγt

1− −λ+γx0

λ+γx0
e−2λγt

(1.45)

where x0 is the initial condition. The long run limit is

x∗ = lim
t→+∞x(t) =

λ

γ
(1.46)

Now let us compare to the mean of the long run distribution. The long run distribution
of state π(x) satisfies the balance equation, for x = 0, 1, 2...:

π(x)(λ2 + x2γ2) = π(x− 1)λ2 + π(x + 1)γ2(x + 1)2

π(0)(λ2 + x2γ2) = π(1)γ2

This can be solved iteratively and one finds

π(x) = K
λ2x

γ2x(x!)2
(1.47)

where K is the normalizing constant, with

K−1 =
+∞∑
x=0

λ2x

γ2x(x!)2
= I0

(
2
λ

γ

)

where I0() is the modified Bessel function of order 0. The long run mean of the
distribution of the population is

x̄∗ :=
∑
x∈N

xπ(x) = K
∑
x∈N

xλ2x

γ2x(x!)2
= K

λ

γ
I1

(
2
λ

γ

)

=
λ

γI0

(
2λ

γ

)I1

(
2
λ

γ

)

where we used the fact that I1() (modified Bessel function of order 1) is the derivative
of I0(). The Bessel functions are special functions, which are available in many soft-
ware tools. In Figure 1.4 we plot the approximation x∗ and the true value x̄∗ against
the ratio λ

γ . We see that the approximation becomes better for large values: this corre-

sponds to the convergence result mentioned earlier. When λ
γ is large, the population

size is in average large compared to the increase or decrease due to one reaction,
thus the approximation by the ODE is good. We see that even for small average
population sizes, the approximation is good.

QUESTION 1.5.1. The exact value is below the approximate. Can you make sense of this ?
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Figure 1.4: Long run average of the number of individuals in the regulated population model of Example 1.9
on page 19: exact value (plain) obtained by solution of the master equation and approximate value (dashed)
predicted by the ODE method.

1.5.2 STABLE POINTS OF ODE

When the ODE approximation is valid, it gives a much more useful method to study the system.
In particular, one can easily obtain information about possible stable points, i.e. values towards
the system converges when starting from appropriate initial conditions. Stable points are obtained
by setting the derivative equal to 0 in the ODE, i.e, these are the points that simultaneously satisfy
all equations

0 =
∑

r

hr(�x)Δr,s (1.48)

for all values of s.

However, not all points that satisfy this condition (called equilibrium points) are stable.

QUESTION 1.5.2. What are the equilibrium points of the associated ODE of the immigration-death
model ? Which ones are stable points ?

To see whether an equilibrium point is stable, one can use the differential (also called Jacobian

matrix) of the right-handside of the ODE at this point. This is the matrix
(
( ∂fs

∂xr
)r,s

)
, where fs(�x)

is the right-handside in Equation (1.48), and �x is the equilibrium point. If all eigenvalues of the
matrix have a negative real part, then �x is a stable point. More precisely, this condition means that
the point �x is asymptotically stable, i.e. if we take initial conditions �X(0) close enough to �x, then
�X(t) remains in the neighborhood of �x (stability) and further, the long-run limit is �x (asymptotic
stability).

EXAMPLE 1.10: IMMUNE RESPONSE. The associated ODE is given by Equations 1.41
to 1.43. Steady-state values are obtained by the set of equations

σ − βTI − δT T = 0
βTI − kIE − δII = 0

αIE − δEE = 0
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which is equivalent to

σ − βTI − δT T = 0
βT − kE − δI = 0 or I = 0

αI − δE = 0 or E = 0

This gives 4 cases in total, depending which branch is chosen in the second and third
equations. One of the four cases has no solution (I = 0, αI − δE = 0), which leaves
us with 3 possible equilibrium points:

x∗
1 =

(
σ

δT
, 0, 0)

)

x∗
2 =

(
δI

β
,

σ

δI
− δT

β
, 0
)

x∗
3 =

(
σ

β δE
α + δT

,
δE

α
, (

σ
δE
α + δT

β

− δI)
1
k

)

The equilibrium points x∗
2 and x∗

3 exist only if the expressions that define them are non
negative, i.e. x∗

2 exists only if σ
δI
≥ δT

β and i.e. x∗
3 exists only if σ

δE
α

+
δT
β

≥ δI .

The Jacobian matrix is

J =

⎡
⎢⎢⎣
−β I − δT −β T 0

β I β T − kE − δI −kI

0 α E α I − δE

⎤
⎥⎥⎦

We now take the values of the parameters α, β... as in Figure 1.2. For these values,
the three equilibrium points exist. A numerical software tool such as Matlab gives the
eigenvalues for the three cases:

for �x = x∗
1 : �λ = (−0.1000, 99.9000,−0.0100)

for �x = x∗
2 : �λ = (−99.9000,−0.1000, 0.9890)

for �x = x∗
3 : �λ = (−0.5446 + 2.9787i,−0.5446− 2.9787i,−0.0108)

It follows that only x∗
3 is a stable point. It is shown by dotted lines and circles in the

figures. Figure 1.5 shows a numerical solution of the ODE for these values of the
parameters. We see that there is convergence to x∗

3, but the convergence of E(t) is
very slow.

QUESTION 1.5.3. Compare Figure 1.2 and Figure 1.5. Can you explain the difference ?

1.5.3 NUMERICAL SOLUTION OF ODE

In some (rare) cases it is possible to solve the ODE explicitly. In all other cases, one needs to solve
it numerically (this is also called a simulation). Simulating the ODE can be done in a simple way
using Euler’s method. The idea is to pretend that the derivative d�x

dt
in Equation (1.39) is the same

as the increase ratio �x(t+δ)
δ

: then we compute the value of �x(nδ) iteratively for n = 1, 2, ....
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Figure 1.5: Numerical Solution of the associated ODE for the Immune Response model, and the same
parameter values as Figure 1.2.
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Algorithm 3 Euler’s Method
1: procedure EULER(Tmax, �x0,δ)


 Tmax: maximum duration of simulation

 �x0: initial state


 δ: time step
2: �x← �x0

3: t = 0
4: nmax = floor(Tmax

δ
)

5: for n← 1, nmax do
6: for r ← 1, R do
7: �x← max

(
�x + δ

∑
r hr(�x)Δr,�0

)
8: end for
9: output(t, �x)

10: end for
11: end procedure

Euler’s algorithm is simple, but it has to be used with care. If the time step δ is not small enough,
it may not give a good approximation. A simple check is to decrease the time step until the
solution does not change. Some software packages are more efficient as they adjust the time
step automatically. Further, there are better approximations than to replace the derivative by the
increase ratio (for example the Runge-Kutta method).

1.6 HYBRID METHODS

1.6.1 HYBRID REACTION MODEL

Consider a stochastic reaction model where some reactions (the fast reactions satisfy the condi-
tions for the associate ODE to be accurate, i.e., the rates are high and the effects are small, but not
all. Then it is possible to simulate the fast reactions using the ODE, and the other reactions using
a stochastic algorithm.

EXAMPLE: IMMUNE REACTION.Figure 1.2 shows that the population of effectors with
these parameter values varies slowly, unlike the populations of target and infected
cells. Also, the rates of reactions 4 and 7 are small compared to the others. Thus one
could simulate all reactions except 4 and 7 with the ODE.

It follows that T (t) and I(t) vary due to both deterministic and stochastic reactions. In
contrast, E(t) is updated only when a stochastic reaction occurs.

Simulation of a hybrid reaction model works as follows.

• When a stochastic reaction r fires, say at time T1, update all variables by

Xs(T1) := Xs(T
−
1 ) + Δr,s (1.49)
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for all s, where Xs(T
−
1 ) is the state of species s just before T1.

• Let T2 be the time of occurrence of the first stochastic reaction after T1 (this may not be the
same reaction as r, which fired at T1). Between T1 and T2, update all variables by solving
the ODEs

dXs

dt
= hr(Xs)Δr,s (1.50)

for all s, for t ∈ [T1, T2] and with initial value �X(T1) given by Equation (1.49).

The problem is how to draw the time T2 once the transition at T1 has fired, i.e. draw the time delay
until the occurrence of any next stochastic reaction. It is not possible to simply use Gillespies’
direct method, as the rates of the stochastic reaction may involve the fast reactions. This is the case
in the example above for reaction 4, which is stochastic; its rate, αIE, varies continuously because
I(t) is updated by the ODE.

A solution to this problem is as follows. Intuitively, the probability hr( �X) that the stochastic
reaction r fires in the next dt seconds is hr( �X(t)). During the time interval until next occurrence of
reaction r, we can view the rate as a given time varying function λ(t). The problem now becomes:
sample the time at which the next transition will occur, knowing that the rate of probability that it
fires in the next dt seconds, given that it has not yet fired, is λ(t). One solution to this problem is
as follows: draw a random variable Y according to the exponential distribution with rate 1. Set the
time T by the condition

∫ t+T

t

λ(s)ds = Y (1.51)

and the next transition time is T2 = T1 + T .

One can check that if the rate λ is constant, then T = Y
λ

. Otherwise, one needs to solve this
equation numerically, by approximating the integral. In Algorithm 4, the approximation is by step
functions.

An intuitive description of Equation (1.51) is in terms of credits. One draws a credit for reaction
r from the exponential distribution with rate 1. Then the credit is burnt at rate λ(t). When the
credit reaches 0, the reaction occurs. This is the basis of the hybrid simulation method presented
in Algorithm 4.

Algorithm 4 gives a possible simulation method for the hybrid model. The algorithm runs up to
time tmax approximately. It can slightly overshoot the maximum simulation time tmax – this can be
fixed by changing the exit conditions around line 13.

Line 10 implements Equation (1.49). It differs slightly, however. First, due to the finiteness of
the time step δ, it is possible that more than one reactions fire in the same time step (which is
theoretically impossible for the Markov process). Second, it follows that the update rules are
inconsistent, this is why the max term is used to avoid impossible states.

See Figure 1.6 for sample simulation runs using this algorithm.

Note The Gillespie’s next reaction algorithm, also called Gibson-Bruck’s algorithm, is similar
to the hybrid algorithm we presented here, but applies to the pure stochastic reaction case [?].
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Algorithm 4 Hybrid Algorithm
1: procedure HYBRID(Tmax, �x0,δ)


 Tmax: maximum duration of simulation

 �x0: initial state


 δ: time step
2: StochasticReactions, DeterministicReactions: Sets of reactions
3: t = 0; �x = �x0

4: for all r ∈ StochasticReactions do
5: draw credit(r) ∼ Exp(1)
6: end for

7: loop
8: nextReaction(ti, FiredReactions, �xi,credit)
9: t← t + ti

10: �x← max{�xi +
∑

r∈FiredReactions
�Δr,�0}

11: output(t, �x)
12: if t > tmax then
13: break
14: end if
15: for r ∈FiredReactions do
16: draw credit(r) ∼ Exp(1)
17: end for
18: end loop
19: end procedure
20: function NEXTREACTION(ti, FiredReactions, �xi,credit)


 Advances the simulated time until a stochastic reaction fires

 FiredReactions: set of reactions fired


 ti: incremental time until next stochastic reaction

 �xi: input: initial state; output: final state just before stochastic reactions


 credit: input: initial credits; output: credits when reaction occurs

 credit: output: credits when reaction occurs

21: ti = 0; FiredReactions← Ø
22: for n = 1, nmax do 
 nmax: local constant
23: ti ← ti + δ
24: �xi ← max{�xi + δ

∑
r∈DeterministicReactions

�Δrhr(�xi),�0}
25: for all r ∈StochasticReactions do
26: credit(r)← credit(r)− hr(�xi)δ
27: if credit(r) ≤ 0 then
28: FiredReactions← FiredReactions

⋃{r}
29: end if
30: end for
31: if FiredReactions = Ø then
32: output(t, �x)
33: else
34: break
35: end if
36: end for
37: end function
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Figure 1.6: Hybrid simulation of Immune Response model, where the reactions that control the evolution
of I(t) are stochastic, and all others are deterministic. Same parameter values as Figure 1.2.
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1.6.2 HYBRID METHOD WITH QUASI-STEADY STATE

In the previous section we saw how to simplify the study of a stochastic reaction model by replacing
the fast reactions by their associated ODE. In this section we go one step further.

Assume the fast reactions converge quickly to some equilibrium. The idea is now to do as if
the fast reaction would immediately get into euilibrium. This is called the quasi-steady state
approximation. We explain it on one important example.

Explaining the Michaelis-Menten Reaction Model. This model was described in Section 1.2.4.
We can explain Equation (1.24) if we assume it to be the result of the following network of reac-
tions:

X1 + F
α
�
β

C

C
γ→ Y1 + F

where F is the facilitator and C is the complex made of X1 and C.

The Michaelis-Menten reaction model occurs if we can assume that the reaction rates α and β are
large compared to γ and the concentration of the facilitator F is small compared to X1. We can
thus consider the first two reactions as deterministic. Between two firings T1 and T2 of the third
reaction, we have

dX1

dt
= −αX1F + βC

dF

dt
= −αX1F + βC

dC

dt
= αX1F − βC (1.52)

Now we make the steady-state assumption for the concentration of the complex C. This means that
soon after T1, C has reached its equilibrium value. This value is given by setting Equation (1.52)
to 0, thus

αX1F = βC (1.53)

Now, note that the conservation law for this set of reactions gives

F + C = f0 (1.54)

where f0 is the total amount of facilitator units (free or engaged in complexes).

Using Equations (1.53) and (1.54) we can solve for C and obtain

C =
αX1f0

β + αX1

(1.55)

Thus, soon after T1, the rate of the stochastic reaction is

γC =
γX1f0

β
α

+ X1

(1.56)

Now, since the amount of facilitator f0 is assumed to be small, we can equate X1 with the number
of units of species 1 present in the system described by Equation (1.24). This explains the form of
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Figure 1.7: Basic reproductive ratio for Immune Response Model.

the reaction rate in Equation (1.25) by letting x∗
1 = β

α
and λ = γf0. The other cases in Section 1.2.4

are explained similarly.

This method can be generalized to many other types of reactions [1].

1.7 REPRODUCTIVE NUMBER

For the immune response model of Section 1.2.2, the reproductive number is the ratio R0 = σβ
δT δI

.
It is necessary that R0 > 1 for the infection to be sustainable. To see why, consider Figure 1.7.

Assume some period of time during which the number of infected cells I(t) can be considered
approximately constant. One target cell creates 1 infected cell with probability βy

βy+δT
. The rate of

creation of infected cells is thus

λ = σ
βy

βy + δT

(1.57)

One infected cell lives in average 1
δI

. By Little’s law, the quasi-stationary number of infected cells
is:

y = λ
1

δI

= σ
βy

βy + δT

1

δI

(1.58)

from where we derive

σβ = δIβy + δT δI (1.59)

for y > 0 to be possible we need σβ > δT δI .
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1.8 EXERCISES

1.8.1 REVIEW QUESTIONS

QUESTION 1.8.1. What does the convergence of a stochastic reaction model mean ? Compare this
to the convergence of a deterministic reaction model.

QUESTION 1.8.2. Give a representation of the Immigration-Death process as a stochastic reaction
network.

QUESTION 1.8.3. Which of the following simulation methods of a stochastic reaction network
provide outputs that may differ from one run to the other:

1. Gillespie’s direct method
2. Solution of the associated ODE
3. The hybrid method.

QUESTION 1.8.4. The proliferation of naive T cells is controlled by homeostasis.

1. Give a stochastic reaction model for the population of naive T-cells.
2. Write the associated ODE.

QUESTION 1.8.5. Consider the immune response model of Section 1.2.2. We want to add into the
model the population of virus particles V (t). Write the corresponding reaction model

1.8.2 PROBLEMS

EXERCISE 1.1. Consider the immune response model in Section 1.2.2. Use the same values of the
parameters as in the figure.

1. Implement a simulator using Gillespie’s direct method. You can use matlab or any program-
ming environment that you are comfortable with.

2. Run the simulator for t ∈ [0, 1] and t ∈ [0, 40]. Take as initial conditions T (0) = 1000,
I(0) = 50 and E(0) ∈ {1, 5, 9, 50}. What qualitative statements can you make on the
impact of E(0) ?

EXERCISE 1.2. Consider again the immune response model in Section 1.2.2. Use the same values
of the parameters as in the figure.

1. Implement a simulator using the ODE method and a numerical solution of it. Verify that you
can reproduce the results of Section 1.5.

2. Run the simulator for t ∈ [0, 1], t ∈ [0, 40] and t ∈ [0, 400]. Take as initial conditions
T (0) = 1000, I(0) = 50 and E(0) ∈ {1, 5, 9, 50}. Compare to the results of the previous
simulator (using Gillespie’s Direct method). Interpret the differences.

EXERCISE 1.3. Consider again the immune response model in Section 1.2.2. Use the same values
of the parameters as in the figure.
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1. Implement a hybrid method where reactions 4 and 7 are stochastic, and the others are deter-
ministic. Make several runs and compare the different simulation methods with each other.

EXERCISE 1.4. Consider the immigration-death model.

1. Write the drift equation for f(x) = x2.
2. Let v(t) := var(X(t)). Write an ODE for (x̄, v).
3. Solve this equation for initial conditions v(0) = 0, x̄(0) = x0.
4. What is the long run value of v(t) ? Compare with the long run distribution of X(t)

EXERCISE 1.5. 1. Redo the analysis of Example 1.10 on page 21 assuming now we start with
initial condition I(0) = 0.

2. Redo the analysis of Example 1.10 on page 21 assuming now we start with initial condition
E(0) = 0.
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CHAPTER 2

SOLUTIONS

0.0.1 (P. 2). Where is the answer to an inline question ?
ANSWER. In a chapter at the end.

1.1.1 (P. 2). Show this
ANSWER. For an exponential random variable S with parameter μ we have P{S ≤ t} = 1− e−μt.
The half time is the value of t such that P{S ≤ t} = 0.5 from where we derive t = ln(2)

μ

1.1.2 (P. 3). Modify Example 1.1 on page 2 and assume that the sojourn time is constant in-
stead of exponentially distributed. Is X(t) still a Markov process ?
ANSWER. No. In order to simulate the process, we need to have some additional information:
the residual sojourn time for each individual present in the system. The process should thus be
described as a variable length list: X(t) = [R1(t), .., Rn(t)] where Rj(t) ≥ 0.

1.1.3 (P. 4). Give an approximation of (etA)i,j valid for small values of t. (Hint: use Equa-
tion (1.1) and Equation (1.3))
ANSWER. For i �= j: (etA)i,j = Ai,jt + o(t) and (etA)i,i = 1 + Ai,it + o(t).

1.2.1 (P. 7). Show how an arbitrary Markov process on a finite space can be described as a
stochastic reaction model.
ANSWER. Consider one reaction for every couple (�x0, �y0) ∈ S. The rate of reaction r = (�x0, �y0)
is hr(�x) = 0 for �x �= �x0 and hr(�x0) = A�x0,�y0 . The effect is Δr = �y0 − �x0.

1.2.2 (P. 8). Comment on the variability of the X(t) from one run to the other.
ANSWER. The runs are all different, but show a common deterministic behaviour. The behaviour
is very deterministic when the initial condition is far from the equilibrium. It looks relatively more
random when the equilibrium is reached.

1.2.3 (P. 11). Does this reaction network describe exactly the same Markov process as the
stochastic reaction model in Section 1.2.2 ?
ANSWER. Yes. You can choose the representation you prefer.

35
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1.4.1 (P. 17). Is X(t) an integer ? x̄(t) ?
ANSWER. Yes; no.

1.4.2 (P. 18). If you set the derivative equal to 0 in Equation (1.35) and Equation (1.36), which
equations do you obtain ?
ANSWER. The balance equations Equation (1.8) and Equation (1.9).

1.5.1 (P. 20). The exact value is below the approximate. Can you make sense of this ?
ANSWER. The exact drift equation gives

dx̄

dt
= λ2 − γ2(x̄2 + σ2

x(t))

where σ2
x(t) = var(X(t)). At the limit dx̄

dt
= 0 and thus

(x̄∗)2 =
λ2

γ2
− σ2

x = (x∗)2 − σ2
x

where σ2
x is the variance of the limiting distribution. Thus (x̄∗)2 < (x∗)2.

1.5.2 (P. 21). What are the equilibrium points of the associated ODE of the immigration-death
model ? Which ones are stable points ?
ANSWER. λ− xμ = 0 gives one single equilibrium point x = λ

μ
. The derivative is −μ, which has

a negative real part, thus it is a stable point. We can see on Equation (1.33) that it is the limit of
any trajectory.

1.5.3 (P. 22). Compare Figure 1.2 and Figure 1.5. Can you explain the difference ?
ANSWER. The simulation escapes infection as, sooner or later, the stochastic reaction model has
I(t) = 0. In contrast, in the ODE, which uses real numbers, the value of I(t) may approach 0,
but is never exactly 0. As long as the stochastic reaction simulation does not get into I(t) = 0, it
coincides almost with the ODE; after that it does not.

1.8.1 (P. 30). What does the convergence of a stochastic reaction model mean ? Compare
this to the convergence of a deterministic reaction model.
ANSWER. The convergence of a stochastic reaction model means that the distribution of state has
a limiting value. It does not mean that the state itself converges to a limiting value. In contrast, this
is what is meant by convergence of a deterministic reaction model.

1.8.2 (P. 30). Give a representation of the Immigration-Death process as a stochastic reac-
tion network.
ANSWER. S = 1 species and R = 2 reactions.

BIRTH
λ→ X (2.1)

X
μ→ DEATH (2.2)

1.8.3 (P. 30). Which of the following simulation methods of a stochastic reaction network
provide outputs that may differ from one run to the other:
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1. Gillespie’s direct method
2. Solution of the associated ODE
3. The hybrid method.

ANSWER.

1. Yes; the output is random, so it differs from one run to the other.
2. In principle no; the output should always be the same. However, be careful to use a valid

approximation method (with Euler’s algorithm, make sure the time step is small enough).
3. Yes, the output is random, so it differs from one run to the other.

1.8.4 (P. 30). The proliferation of naive T cells is controlled by homeostasis.

1. Give a stochastic reaction model for the population of naive T-cells.
2. Write the associated ODE.

ANSWER.

1. S = 1 species, R = 3 reactions:

• Growth: rate λX , effect: X ← X + 1
• Homeostasis: rate γX2, effect: X ← X − 1
• Death: rate δX , effect: X ← X − 1

2. dx
dt

= (λ− δ − γx)x

1.8.5 (P. 30). Consider the immune response model of Section 1.2.2. We want to add into
the model the population of virus particles V (t). Write the corresponding reaction model
ANSWER. We now represent that cells become infected by the virus, not by the I population. The
reactions are

Reaction Description Effect Rate
1 Influx of New Target Cells T := T + 1 σ
2 Infection I := I + 1; T := T − 1 βTV
3 Elimination of Infected Cell I := I − 1 kIE
4 Proliferation of Effectors E := E + 1 αIE
5 Death of target cells T := T − 1 δT T
6 Death of infected cells I := I − 1 δII
7 Death of effector cells E := E − 1 δEE
8 Proliferation of virus V := V + 1 μI
9 Death of virus V := V − 1 δV V

The modifications are the addition of reactions 8 and 9, and the modification of the rate of reaction
2.


