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Integrated systems
• Ubiquitous presence of integrated 

circuits and systems in products

• The market pull:
– Run demanding SW applications 

with minimal energy consumption

• The technology push:
– Pushing the physical limits of 

computational structures
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Anecdotes
• I think there is a world market for maybe 5 computers -

T. Watson – IBM, 1949
• There is no reason anyone would want a computer in 

their home - K. Olsen – DEC 1977
• I see no advantage whatsoever to a graphical user 

interface – B. Gates - Microsoft, 1983
• The cost of silicon in a car is higher than the cost of 

steel - circa 2000
• Communications of ACM dedicates a full issue to 

internet games - November 2006
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Multi-processor 
Systems on Chips

• Large-scale systems
– Billion-transistor chips
– Multi-cores, multi-threaded SW
– Power-consumption limited

• Very expensive to design
– Non recurring engineering costs
– Require large market

IBM Cell Multi-Processor



De Micheli  5

Platforms

• Address application-specific needs
– Domain-specific hardware
– Differentiation via software

• Examples
– Telecom: 

• Philips Nexperia
• ST Nomadic

– Automotive
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Designing a large chip

CMOS, mostly digital, 65nm, >200mm2

SystemBlocks103
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MaskTrapezoids1013

LayoutPolygons1012

CircuitTransistors109

NetlistGates108

InterruptInterrupt
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AMBA APBAMBA APB

ArbitrationArbitration
& Decode& Decode
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GPIOGPIO
WatchdogWatchdog

TimerTimer

AHB/APBAHB/APB
BridgeBridge

SDRAMSDRAM
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AHB/AHB/PCIePCIe
BridgeBridge

USB 2.0USB 2.0
ISB 1.1ISB 1.1

EthernetEthernet

SATASATA1394a1394a

USB PHYUSB PHY

PCI ExpressPCI Express

PCIe PHYPCIe PHY

SATA PHYSATA PHY

BootBoot
RomRom

CPUCPU CustomCustom
BlockBlock
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Process begin
Wait until not Clock = 1;

If (Enable = ‘1’) then
Toggle = Not Toggle;

Endif
End process;
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Challenges

• Complexity (giga scale)
– Intractable large scale 

problems
• Technology (nano scale)

– Ever shrinking CMOS
– New disruptive technologies

• Architectures
– Multi-processing
– Structured communication

• Objectives
– High performance
– Low-energy consumption
– Small footprint - low cost
– Dependable

• Synthesis technology
– Model HW with languages
– Compile into masks

• Issues
– Design closure
– Handling new technologies
– HW/SW co-design
– Deal with multiple objectives
– Verifying correctness
– …

&     solutions
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Outline

• The nanotechnology challenge
– Variability management
– Error tolerance

• The energy consumption challenge
– Temperature management

• The communication bottleneck
– Networks on chips

• A vision and conclusions
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Where are we heading?

• Medium term:
– More Moore

• More scaling - More complex chips - Fewer players

– More than Moore
• Use silicon technologies beyond computational 

structures
• Interaction with environment, sensors, etc…
• System integration

• Long term:
– A multi-furcation of Moore’s scaling law beyond 

the 22 nanometer node
– New technologies:

• There is plenty of room at the bottom

SensorSensor
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Will a new nano-electronic 
technology prevail?

• The skeptical view:
– Investments in CMOS silicon are huge

– We will not need localized computing power beyond what is achievable 
with a 1 cm2 die in 22 nm silicon CMOS

– Wiring is the bottleneck: making transistor smaller does not help

• The optimistic view:
– We will always need increasing computing power and storage capacity

– We need to curb the increasing costs of manufacturing

– We will invent new computing architectures, storage media and 
communication means
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How is the transition path?

• When will current semiconductor technologies run out of steam?

• What factor will provide a radical change in technology?
– Performance, power density, cost?

• Will the transition eliminate previous CMOS technologies?

– Are the new nanoelectronic technologies compatible with standard silicon?

• How will we design nanoelectronic circuits:

– What are the common characteristics, from a design technology standpoint?
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Common characteristics of 
nano-devices

• Self-assembly can be used to create structures
– Manufacturing paradigm is both bottom-up and top down

– Attempt to avoid lithography bottleneck

• Combined presence of micro and nano-structures
– Interfacing and compatibility issues

• More physical defects and higher failure rates
– 10-15% defective devices according to recent estimates

– Design must deal with nonworking and short-lived devices

• Advantage stems from the high density of devices
– Two orders higher than scaled CMOS
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Design issues

• Variability
– Physical parameter variation
– Molecular structural effects

• Reliability
– Higher failure rate
– Higher environmental exposure 
– Transient and permanent errors
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Variability

• Variations within/across chips 
– Fast/slow transistors and interconnect

• Design objective:
– Achieve better than worse-case performance

• Solutions
– Statistical timing analysis
– Statistical logic synthesis
– Asynchronous design
– System-level approaches
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Self-calibrating circuits

• Adapt to inter-chip variations and to 
environmental changes
– Use on-line adaptation policy

• Examples:
– Dynamic voltage scaling of bus swings 

[Worm,Ienne –EPFL]
– Dynamic voltage scaling in processors

• Razor [Austin – U Michigan]

– Dynamic latency adjustment for NoCs
• Terror [Tamhankar -Stanford]

• Autonomic computing
– Systems that understand and react to 

environment [IBM]
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Reliability: 
coping with transient malfunctions

• Soft errors
– Data corruption due external 

radiation exposure
• Crosstalk

– Data corruption due to internal 
field exposure

• Both malfunctions manifest 
themselves as timing errors
– Error containment
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Soft error rates
• Vary with altitude and latitude
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Propagation of soft errors
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Logic protection techniques

Redundancy (TMR) Detection + System 
Correction
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Reliability:
aging of materials

• Failure mechanisms:
– Electromigration
– Oxide Breakdown
– Thermo-mechanical stress

• Temperature dependence
– Arrhenius law
– Gradients

time

Failure rate
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Summary:
coping with variability & reliability

• Design chips so that they are insensitive 
to local timing variations

• Exploit redundancy to replace failing 
devices

• Manage power consumption and 
temperature of on-chip components
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Outline

• The nanotechnology challenge
– Variability management
– Error tolerance

• The energy challenge
– Temperature management

• The communication bottleneck
– Networks on chips

• A vision and conclusions
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Execution 
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Thermal map
1.5 GHz Itanium-2

[Source: Intel Corporation and Prof. V. Oklobdzija]
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Thermal map:
multiprocessosr
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Thermal management modeling
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Thermal management policies
• Objective:

– Increase energy efficiency and enhance reliability by controlling 
activity and temperature

– Control systems on chips while running

• Mathematical problem:
– Compute a policy that shuts down / slows down components
– Policy complexity depends on requested accuracy

• Markov, Semi-Markov, Time-Index Markov models, …
– Under mild assumptions, the policy 

can be computed exactly by LP
– Convex optimization can be used
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Effect of power management policy 
on MTTF

• At high temperatures, EM 
and breakdown dominate
– DPM helps reliability

• At low temperatures, thermal 
stress dominates

– DPM lowers MTTF

• As the temperature gap 
between the active and sleep 
state widens, thermal stress 
tends to dominate
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• Any management policy must address both power consumption and 
temperature management
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Summary: 
power and thermal management

• Power and temperature management addresses:
– Battery lifetime extension for mobile systems
– Component lifetime extension because of reliability 

enhancement

• Management policies become increasingly more 
important as geometries scale down:
– More devices dissipate more power (per unit area)
– Smaller devices are more prone to fail
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Outline

• The nanotechnology challenge
– Variability management
– Error tolerance

• The energy challenge
– Temperature management

• The communication bottleneck
– Networks on chips

• A vision and conclusions
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Why on-chip networks?

• Provide a structured methodology
for realizing on-chip communication
– Modularity
– Flexibility

• Cope with inherent limitations of busses
– Performance and power of busses do not scale up

• Support reliable operation
– Layered approach to error detection and correction

PE Network
Interface

Packets
Routes



De Micheli  31

NoC multi-processors:
the RAW architecture

• Fully programmable SoC
– Homogenous array of tiles:

• Processor cores 
with local storage

• Each tile has a router
[Agrawal MIT]

• The raw architecture is exposed to the compiler
– Cores and routers are programmable
– Compiler determines which wires are used at each cycle
– Compiler pipelines long wires



The BONE roadmap

[Source: KAIST]
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Metrics for NoC design
• Low communication latency

– Streamlined control protocols
– Data and control signals can be separate

• High communication bandwidth
– To support demanding SW applications

• Low energy consumption
– Wiring switched capacitance dominates
– Local storage in register buffers is expensive

• Error resiliency
– To compensate/correct electrical-level errors

• Flexibility and programmability
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Flexibility in NoC design
• NoCs have modular structure

– Core interfaces
– Switches/routers
– High-speed links

• NoCs can be tailored to 
applications
– Topology selection
– Switch/link sizing
– Protocols

• Several parameters for optimization
and a large design space
– NoC synthesis and optimization

CPU

Memory

DSP

Memory

link
switch

network 
interface

CPU
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Netchip tool flow
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[Source: Murali]
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Processor-
memory 
cluster

SUNFLOOR vs. manual design
multimedia chip with 30 cores

P-processors, M-private memories, 

T-traffic generators, S-shared slaves

Hand-mapped topology SUNFLOOR custom topology

Bi-directional 
links

Bi-directional 
links

Uni-directional 
links
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Design layouts

Hand-design (custom mesh) SUNFLOOR Design

From Cadence 
SoC Encounter 
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SUNFLOOR vs. manual design
Manual design:

• Topology: 5x3 mesh
(15 switches)
• Operating frequency:
885 MHz (post-layout)
• Power consumption:
368 mW
• Floorplan area:
35.4 mm2

• Design time: several 
weeks
•0.13 µm technology

Manual design:

• Topology: 5x3 mesh
(15 switches)
• Operating frequency:
885 MHz (post-layout)
• Power consumption:
368 mW
• Floorplan area:
35.4 mm2

• Design time: several 
weeks
•0.13 µm technology

SUNFLOOR:

• Topology: custom
(8 switches)
• Operating frequency:
885 MHz (post-layout)
• Power consumption:
277 mW (-25%)
• Floorplan area:
37 mm2 (+4%)
• Design time: 4 hours 
design to layout
•0.13 µm technology

SUNFLOOR:

• Topology: custom
(8 switches)
• Operating frequency:
885 MHz (post-layout)
• Power consumption:
277 mW (-25%)
• Floorplan area:
37 mm2 (+4%)
• Design time: 4 hours 
design to layout
•0.13 µm technology

Benchmark execution times comply with application requirements 
and, in fact, are even 10% better on the SUNFLOOR topology
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Summary:
networks on chips

• Networks on Chips are the structured 
interconnect of the future
– NoCs exists in many forms and flavors

• Networks on Chips are necessary for chips 
designed in 45 nm technology and beyond
– NoCs deal with wire delay variability
– NoCs provide reliability enhancement 
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Outline

• The nanotechnology challenge
– Variability management
– Error tolerance

• The energy challenge
– Temperature management

• The communication bottleneck
– Networks on chips

• Vision and conclusions
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A vision for the future

• Mobile, ubiquitous, pervasive computing
– Ultra low-power demands low-voltage operation

• High performance requires parallel computation

• High reliability is achieved by redundancy

• New paradigm for computation:
– Array-based computation (e.g., RAW)

– Array-oriented communication (NoC)
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Conclusions

• High-performance, ultra low-power, reliable circuits will be 

required by distributed embedded systems

• Novel nanotechnologies will provide us with unprecedented 

levels of functional integration and performance

• Novel design tools and methodologies will be needed to 

leverage the technology:

– Cope with variability, reliability, thermal  and other issues
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It is only a beginning …
… the challenges are still ahead

[Source: Kubrick]


