Integrated Systems Challenges and Opportunities

Giovanni De Micheli Centre Systèmes Intégrés

Integrated systems

- Ubiquitous presence of integrated circuits and systems in products
- The market pull:
 - Run demanding SW applications
 with minimal energy consumption
- The technology push:
 - Pushing the physical limits of computational structures

Anecdotes

- I think there is a world market for maybe 5 computers T. Watson IBM, 1949
- There is no reason anyone would want a computer in their home - K. Olsen – DEC 1977
- I see no advantage whatsoever to a graphical user interface – B. Gates - Microsoft, 1983
- The cost of silicon in a car is higher than the cost of steel - circa 2000
- Communications of ACM dedicates a full issue to internet games - November 2006

Multi-processor Systems on Chips

- Large-scale systems
 - Billion-transistor chips
 - Multi-cores, multi-threaded SW
 - Power-consumption limited
- Very expensive to design
 - Non recurring engineering costs
 - Require large market

IBM Cell Multi-Processor

Platforms

- Address application-specific needs
 - Domain-specific hardware
 - Differentiation via software
- Examples
 - Telecom:
 - Philips Nexperia
 - ST Nomadic
 - Automotive

5

Designing a large chip

10 ³	Blocks	System
10 ⁵	RTL lines	RTL
10 ⁸	Gates	Netlist
10 ⁹	Transistors	Circuit
1012	Polygons	Layout
10 ¹³	Trapezoids	Mask

CMOS, mostly digital, 65nm, >200mm²

Challenges & solutions

- Complexity (giga scale)
 - Intractable large scale problems
- Technology (nano scale)
 - Ever shrinking CMOS
 - New disruptive technologies
- Architectures
 - Multi-processing
 - Structured communication
- Objectives
 - High performance
 - Low-energy consumption
 - Small footprint low cost
 - Dependable

- Synthesis technology
 - Model HW with languages
 - Compile into masks SYNTHESIS AND

- Issues
 - Design closure
 - Handling new technologies
 - HW/SW co-design
 - Deal with multiple objectives
 - Verifying correctness
 - ...

Outline

- The nanotechnology challenge
 - Variability management
 - Error tolerance
- The energy consumption challenge
 - Temperature management
- The communication bottleneck
 - Networks on chips
- A vision and conclusions

Where are we heading?

Medium term:

- More Moore
 - More scaling More complex chips Fewer players
- More than Moore
 - Use silicon technologies beyond computational structures
 - Interaction with environment, sensors, etc...
 - System integration

 A multi-furcation of Moore's scaling law beyond the 22 nanometer node

- New technologies:
 - There is plenty of room at the bottom

Will a new nano-electronic technology prevail?

The skeptical view:

- Investments in CMOS silicon are huge
- We will not need localized computing power beyond what is achievable with a 1 cm² die in 22 nm silicon CMOS
- Wiring is the bottleneck: making transistor smaller does not help

The optimistic view:

- We will always need increasing computing power and storage capacity
- We need to curb the increasing costs of manufacturing
- We will invent new computing architectures, storage media and communication means

How is the transition path?

- When will current semiconductor technologies run out of steam?
- What factor will provide a radical change in technology?
 - Performance, power density, cost?
- Will the transition eliminate previous CMOS technologies?
 - Are the new nanoelectronic technologies compatible with standard silicon?
- How will we design nanoelectronic circuits:
 - What are the common characteristics, from a design technology standpoint?

Common characteristics of nano-devices

- Self-assembly can be used to create structures
 - Manufacturing paradigm is both bottom-up and top down
 - Attempt to avoid lithography bottleneck
- Combined presence of micro and nano-structures
 - Interfacing and compatibility issues
- More physical defects and higher failure rates
 - 10-15% defective devices according to recent estimates
 - Design must deal with nonworking and short-lived devices
- Advantage stems from the high density of devices
 - Two orders higher than scaled CMOS

Design issues

Variability

- Physical parameter variation
- Molecular structural effects

Reliability

- Higher failure rate
- Higher environmental exposure
- Transient and permanent errors

Variability

- Variations within/across chips
 - Fast/slow transistors and interconnect
- Design objective:
 - Achieve better than worse-case performance
- Solutions
 - Statistical timing analysis
 - Statistical logic synthesis
 - Asynchronous design
 - System-level approaches

Self-calibrating circuits

- Adapt to inter-chip variations and to environmental changes
 - Use on-line adaptation policy
- Examples:
 - Dynamic voltage scaling of bus swings [Worm,lenne –EPFL]
 - Dynamic voltage scaling in processors
 - Razor [Austin U Michigan]
 - Dynamic latency adjustment for NoCs
 - Terror [Tamhankar -Stanford]
- Autonomic computing
 - Systems that understand and react to environment [IBM]

Reliability: coping with transient malfunctions

- Soft errors
 - Data corruption due external radiation exposure
- Crosstalk
 - Data corruption due to internal field exposure
- Both malfunctions manifest themselves as timing errors
 - Error containment

Soft error rates

Vary with altitude and latitude

Propagation of soft errors

Logic protection techniques

Redundancy

Shielding

Others

[Source IROC]

19

Reliability: aging of materials

- Failure mechanisms:
 - Electromigration
 - Oxide Breakdown
 - Thermo-mechanical stress
- Temperature dependence
 - Arrhenius law
 - Gradients

Summary: coping with variability & reliability

- Design chips so that they are insensitive to local timing variations
- Exploit redundancy to replace failing devices
- Manage power consumption and temperature of on-chip components

Outline

- The nanotechnology challenge
 - Variability management
 - Error tolerance
- The energy challenge
 - Temperature management
- The communication bottleneck
 - Networks on chips
- A vision and conclusions

Thermal map 1.5 GHz Itanium-2

[Source: Intel Corporation and Prof. V. Oklobdzija]

Thermal map: multiprocessosr

Thermal management modeling

Thermal management policies

Objective:

- Increase energy efficiency and enhance reliability by controlling activity and temperature
- Control systems on chips while running
- Mathematical problem:
 - Compute a policy that shuts down / slows down components
 - Policy complexity depends on requested accuracy
 - Markov, Semi-Markov, Time-Index Markov models, ...
 - Under mild assumptions, the policy can be computed exactly by LP
 - Convex optimization can be used

$$\begin{aligned} & \min & \sum_{c=1}^{N} \operatorname{cost}_{energy, c} \\ & st. & \sum_{a \in A} f(s, a) - \sum_{a \in A} \sum_{s' \in S} M(s' | s, a) f(s', a) = 0; \ \forall s, \forall c_{s} \\ & \sum_{a \in A} \sum_{s \in S} T(s, a) f(s, a) = 1; \quad \forall c_{s} \\ & \sum_{c=1}^{N} \operatorname{cost}_{perf, c} < Perf_{const}; \quad \forall c \\ & Tpl\left(\mathbf{l}_{c}\right) \leq \operatorname{Rel}_{const}; \quad \forall c_{s} \\ & \mathbf{l}_{c} = \sum \sum \sum \mathbf{l}_{core}^{i} \left(s, a\right) y(s, a) f(s, a) \end{aligned}$$

Effect of power management policy on MTTF

- At high temperatures, EM and breakdown dominate
 - DPM helps reliability
- At low temperatures, thermal stress dominates
 - DPM lowers MTTF
- As the temperature gap between the active and sleep state widens, thermal stress tends to dominate

 Any management policy must address both power consumption and temperature management

De Micheli 27

Summary: power and thermal management

- Power and temperature management addresses:
 - Battery lifetime extension for mobile systems
 - Component lifetime extension because of reliability enhancement
- Management policies become increasingly more important as geometries scale down:
 - More devices dissipate more power (per unit area)
 - Smaller devices are more prone to fail

Outline

- The nanotechnology challenge
 - Variability management
 - Error tolerance
- The energy challenge
 - Temperature management
- The communication bottleneck
 - Networks on chips
- A vision and conclusions

Why on-chip networks?

- Provide a structured methodology for realizing on-chip communication
 - Modularity
 - Flexibility
- Cope with inherent limitations of busses
 - Performance and power of busses do not scale up
- Support reliable operation
 - Layered approach to error detection and correction

NoC multi-processors: the RAW architecture

- Fully programmable SoC
 - Homogenous array of tiles:
 - Processor cores with local storage
 - Each tile has a router
 [Agrawal MIT]

- The raw architecture is exposed to the compiler
 - Cores and routers are programmable
 - Compiler determines which wires are used at each cycle
 - Compiler pipelines long wires

The BONE roadmap

[Source: KAIST]

Metrics for NoC design

- Low communication latency
 - Streamlined control protocols
 - Data and control signals can be separate
- High communication bandwidth
 - To support demanding SW applications
- Low energy consumption
 - Wiring switched capacitance dominates
 - Local storage in register buffers is expensive
- Error resiliency
 - To compensate/correct electrical-level errors
- Flexibility and programmability

Flexibility in NoC design

- NoCs have modular structure
 - Core interfaces
 - Switches/routers
 - High-speed links
- NoCs can be tailored to applications
 - Topology selection
 - Switch/link sizing
 - Protocols
- Several parameters for optimization and a large design space
 - NoC synthesis and optimization

Netchip tool flow

SUNFLOOR vs. manual design multimedia chip with 30 cores

SUNFLOOR custom topology

P-processors, M-private memories, T-traffic generators, S-shared slaves

Design layouts

From Cadence SoC Encounter

Hand-design (custom mesh)

SUNFLOOR Design 37

SUNFLOOR vs. manual design

Manual design:

- Topology: 5x3 mesh (15 switches)
- Operating frequency:885 MHz (post-layout)
- Power consumption:368 mW
- Floorplan area:
 35.4 mm²
- Design time: several weeks
- •0.13 µm technology

SUNFLOOR:

- Topology: custom (8 switches)
- Operating frequency:885 MHz (post-layout)
- Power consumption:277 mW (-25%)
- Floorplan area:
 37 mm² (+4%)
- Design time: 4 hours design to layout
- •0.13 µm technology

Benchmark execution times comply with application requirements and, in fact, are even 10% better on the SUNFLOOR topology

Summary: networks on chips

- Networks on Chips are the structured interconnect of the future
 - NoCs exists in many forms and flavors
- Networks on Chips are necessary for chips designed in 45 nm technology and beyond
 - NoCs deal with wire delay variability
 - NoCs provide reliability enhancement

Outline

- The nanotechnology challenge
 - Variability management
 - Error tolerance
- The energy challenge
 - Temperature management
- The communication bottleneck
 - Networks on chips
- Vision and conclusions

A vision for the future

- Mobile, ubiquitous, pervasive computing
 - Ultra low-power demands low-voltage operation
- High performance requires parallel computation
- High reliability is achieved by redundancy
- New paradigm for computation:
 - Array-based computation (e.g., RAW)
 - Array-oriented communication (NoC)

Conclusions

- High-performance, ultra low-power, reliable circuits will be required by distributed embedded systems
- Novel nanotechnologies will provide us with unprecedented levels of functional integration and performance
- Novel design tools and methodologies will be needed to leverage the technology:
 - Cope with variability, reliability, thermal and other issues

It is only a beginning ... the challenges are still ahead

[Source: Kubrick]