
WebLang :
A Language for Modeling and Implementing Web Applications

Olivier Buchwalder, Claude Petitpierre

Networking Laboratory
Swiss Federal Institute of Technology in Lausanne

CH-1015 Lausanne EPFL, Switzerland
E-mail: {olivier.buchwalder, claude.petitpierre}@epfl.ch

Abstract

Nowadays Web applications are being developed by the
thousand, most of the time successfully. However, too many
development projects exceed deadlines and budget, or be-
come unreliable. The large number of existing technolo-
gies and the difficulty involved in the practical application
of current development methodologies are partially respon-
sible for this situation. Even, the main existing approaches,
such as MDA, based on graphical models, do not fully de-
fine the architecture and the business behavior. In this pa-
per, we describe a DSL language, WebLang, that abstracts
the application components with a useful model, and re-
mains sufficiently close to the technology to reduce the enor-
mous gap that exists between UML models and implemen-
tation. The WebLang solution provides a compiler and an
editing tool, which produces easily usable prototypes. Thus,
the validation of an architecture is possible early in the de-
velopment process, avoiding certain implementation and in-
tegration problems.

1. INTRODUCTION

Web applications and distributed systems are currently
booming, and the developer community is very active in this
domain. Application servers and specialized frameworks
provide the essential components for Web application de-
velopment.

Three-tier architecture has been adopted by many appli-
cation and framework designers. However, despite the fact
that this global architecture is known and adopted by many
companies, there are too many development projects that
exceed deadlines and budget, or become unreliable. This
problem is not exclusive to the domain of Web applications,
but the large number of existing technologies and special-
ized frameworks, developed for this domain, highlight the
weakness of the available development methodologies.

Currently, there is no universal development process
with a designing language that is commonly used and mas-
tered by the majority of the developers. The available meth-
ods based on the graphic UML notation bring rules and
structure, but they don’t respond entirely to the practical
needs of the companies [19, 7]. Frequently, the latter elab-
orate homemade methods, specialized frameworks or code
generation tools, to fully master their business.

However, the development methods mainly converge to
a consensus about the use of models to abstract the sys-
tem details, and to provide simpler views of the system
structure and business behavior in the early development
stage. The general approach where models are used as key
elements during the whole development process is called
Model Driven Development (MDD [1, 2]). Recently, new
development methodologies or approaches, based on this
trend, turned up, such as the Model Driven Architecture
(MDA [13]), Executable UML [16] or WebML[4]. The
main differences between the existing modeling approaches
are the level of abstraction of the models and the nature of
the notation language. Moreover, the methods require pow-
erful CASE tools for the edition of the models, and for their
transformation to executable code.

The UML modeling notation is an important actor of
software engineering; most approaches are based on UML,
subsets of UML, or UML 2.0 extensions for a specific do-
main. UML provides a graphical notation and includes spe-
cific representations for describing the architecture or the
behavior concerns in an abstract way. The recent UML 2.0
version provides user-defined extensions through the use of
tagged value, stereotypes and constraints. They enable to
insert new notations or terminologies, while keeping the ba-
sis of UML generic. In practice, the compatibility between
different extended UML diagrams is not guaranteed any-
more, and these extensions lead to the apparition of incom-
patible UML dialects [18]. Moreover, UML is a complex
language and the extension mechanism is also quite com-

plex. It is therefore not easy to understand how they will
work in practice and how they will be manipulated and in-
terpreted by tools to generate the code [8, 15, 17, 20].

The early implementation of Executable UML, such as
Nucleus BridgePoint, uses a subset of UML plus certain
rules to link the elements together. This extreme appli-
cation of the MDD approach formalizes requirements and
use cases, into a set of verifiable diagrams that can be ex-
ecuted, and expresses the specification of business behav-
ior using action semantics, action languages and OCL con-
straints tags.

Several research efforts addressed the development of
UML extensions for the domain of Web applications, such
as the Conallen’s approach [5], which defines UML ex-
tended diagrams for describing the client and server con-
cerns of a Web application. Recently, the OMG released
MDA, a standardized MDD approach, which is practically
based on the UML extension mechanism. The MDA is
a new way of developing applications and writing spec-
ifications, based on a platform-independent model (PIM)
of the application and on automatic transformation into
platform-specific models (PSMs) and into code. Several
MDA tools exist, such as ArcStyler and OptimalJ, each of
which introduces UML extensions for defining applications
for the J2EE platform. However it’s nontrivial to support
and evolve correct PSMs for platforms such as J2EE or
.NET. These platforms contain thousand of APIs and many
of them are poorly documented. The application layer of
middleware or additional libraries increase the difficulty to
catch comprehensive models on which application can be
built [20].

Beside UML extensions, more specific notations ap-
peared for defining Web applications, such as Web Mod-
eling Language (WebML), which was built on several pre-
vious Web design language proposals, including HDM[10],
RMM, OOHDM, and Araneus. WebML provides a high
level graphical notation and orthogonal models for design-
ing structure, composition and presentation of a Web site;
this approach is supported by the CASE tool WebRatio.
WebML uses its own restricted notation and fails to ex-
press advanced composition and navigational constructs
[11]. However, some research efforts have addressed the
interaction between UML and WebML for defining behav-
ior [14].

In this paper, we present WebLang, a Domain-Specific
Language (DSL), which provides an adapted notation to de-
fine the architecture of J2EE Web applications. A DSL is
a language designed to be useful for a specific domain, in
contrast to general-purpose language (GPL), such as Java.
WebLang brings abstraction for defining the structure and
the business behavior of a Web application, and is intention-
ally closer to the target technologies than a general-purpose
modeling language, such as UML. Indeed, in our opinion,

the platform independent model is a theoretical good idea,
but is practically difficult to apply for the wide area of ex-
isting technologies, and to maintain during the whole devel-
opment process of an application. Our solution is designed
to be used by architects and developers, who need to design
well-defined architectures, and to generate rapidly testable
prototypes on a specific platform.

The paper is organized as follows: in Section 2, the We-
bLang approach is presented. Section 3 shows the language
specification, and finally Section 4 presents an example of a
realistic application defined with WebLang.

2. WEBLANG APPROACH

WebLang is a Domain-Specific Language that makes it
possible to define Web applications. The main motivation
behind WebLang is to abstract the application components
with a useful model, but to remain sufficiently close to the
technology to reduce the enormous gap that exists between
a PIM model and implementation. The WebLang approach
expects to provide a simple and realistic method for design-
ing the architecture of a Web application and a usable tool
for generating a testable prototype.

The WebLang development process follows the MDD
approach and brings a language model as key element of
the development. The language syntax is oriented towards
being naturally editable for a human in comparison with
XML, which is more adapted to the machine. A WebLang
application is defined by the assembling of several compo-
nents that can specify each structural properties, business
logic, and interconnections with other components.

The WebLang tool checks and compiles the model, and
then generates the application in one atomic action. This
approach is easier to implement than the incremental gen-
eration of application fragments. Furthermore, it provides
the developers with a well-defined environment, where the
whole application is defined with a unique and centralized
model. All the generated files are standard and can be freely
modified by the developer. The tool is integrated in the IBM
Eclipse IDE, and is currently available for the J2EE JBoss
platform, but the approach is extendable to other servers or
technologies, by extending the templates or implementing
new adapted modules.

2.1. Language Structure

The use of our own human-usable language allows us
to freely specify the properties inherent to the technology
without being limited by existing standards, such as the
OMG Human-Usable Textual Specification (HUTN [12]),
which is based on the OMG standards. We call a WebLang
component a module, and a valid WebLang architecture is

defined by a set of module instances. The following gram-
mar presents the syntax of a typical active component of a
WebLang application.

module_type name {
 package pack1.pack2;
 String field1;
 int field2;
 public create(String arg1, int arg2){
 //...

 }
}

<module_type> <moduleName> {
 <destination> <path>;
 (<specialized_feature>;)*
 (<field_type> <field_name>;)*
 (<method_declaration>)*
}

module_type instanceName {
 package pack1.pack2;
 String field1;
 int field2;
 public void method1(String arg1){
 // ...
 }
}
// the javacode, is for java module, is copied
simply, or some relevant part are taken.. and
preoccessed
// sinon on copie le reste..

The global syntax looks like well-known GPLs, such as
Java or C, while the inner specification of a WebLang mod-
ule is based on the target nature, in abstracting and simpli-
fying the technology details.

2.2. Introduction of Business Logic

One of the benefits of using a text language as input
model is the possibility to introduce the business logic di-
rectly and naturally into the WebLang source code. Cur-
rently, the language is dedicated to the J2EE platform;
therefore a full Java 1.5 parser has been integrated into the
tool by using JavaCC. The workflow, the Web-flow (3.2.3)
or the business behavior can be inserted directly into the
module declarations using the target platform language as
shown in Section 3.1.

When the language syntax is parsed, the Java zones are
checked and processed by the tool before being introduced
into the generated files. During the parsing phase, cer-
tain relevant tokens or groups of tokens are recognized and
stored. Then, when the module instance is processed, this
Java-related information can be easily handled. Compared
with Wizard-based and graphic MDA tools, this approach
is simpler and offers greater flexibility. An early implemen-
tation of some .Net modules has shown that a C# parser is
not essential, but brings facilities for implementing the tool,
especially for checking the syntax.

2.3. Model Nature

The WebLang language is clearly a Platform Specific
Model, which abstracts the implementation details of the
target platform, but specifies precisely the relevant features
of the target technologies. This model specification is text-
based, and is defined in a constant and centralized way, con-
trary to several UML graphic models.

The designer can create WebLang models in which the
full application prototype is defined without ambiguities.
For instance, with WebLang, the architect decides at an
early stage whether a service must be handled by a Servlet
(3.2.3) or by a Session Bean (3.2.2), and the definition of
the corresponding business behavior is easily and precisely
defined in both situations. In our opinion, many implemen-
tation and integration problems result from models that are

too abstract, incomplete or not fully mastered by the de-
veloper. When the components of the application are fully
defined and when a usable prototype can be tested initially,
the development process becomes less risky.

WebLang does not provide a platform independent
model, such as the attractive MDA PIM. The latter pro-
vides facilities for switching between different technologies
at any moment of the development. However, we think that
currently the definition of a Web application with a PIM is
too difficult to master and is not efficient enough. A PIM
does not allow the specification of a significant and crucial
part of most applications. For instance, the PIM cannot de-
fine the simplest application that every developer begins to
write, Hello World, because there are no I/O libraries de-
fined in the OMG standards [8].

On the other hand, the PSM and the WebLang approach
also provide facilities for switching between different tech-
nologies, because the model synthesizes both the applica-
tion structure and the business behavior; the conversion be-
tween PSMs is trivial for most cases. Moreover, when the
PSM conversion would require a deep reengineering, the
corresponding PIM would certainly be not trivial to specify.
The definition of a PIM requires the additional intellectual
work of an architect or a developer, and there is no assur-
ance that a defined PIM would be reusable in the context of
a new platform.

The WebLang model is defined with a unique input
structure; the whole information concerning architecture
and behavior is centralized in the same model. On the con-
trary, UML diagrams are not linked together by nature; each
of them defines a fragment of structure or behavior of the
application. This fragmented graphic approach is interest-
ing for documentation or discussion on a specific part of the
system, but it implies difficulties for developers and archi-
tects, who must deal with a set of diagrams, between which
the interconnections are not trivial.

3. WEBLANG LANGUAGE

3.1. A Simple Example

--

moduletype instanceName {

 ... // local module definition

}

--

simple example: size = 18

servlet CourseManager {

 package pack;

 public void addCourse(PrintWriter out,

 String name, int id){

 Course c;

 try {

 c = courseHome.findByName(name);

 out.println(("Course =" + c.getNumber());

 }catch (javax.ejb.FinderException fe) {

 c = courseHome.createACourse(name,id);

 out.println("Course created :" + id);

 }

 }

}

cmpbean Course {

 package pack;

 String name;

 int number;

 Course createACourse(String name,int number);

 Course findByName(java.lang.String s) {

 query = "SELECT OBJECT (o) FROM Course o

WHERE o.name=?1"

 }

}

Course c = courseHome.findByName(name);
...

Course c = courseHome.createACourse(name,id);

 outputchannel outTopic(topic," topicName");

J
a

v
a

 -
 C

la
s
s
D

e
c
la

ra
ti
o

n

Public Method addCourse()

Servlet : CourseManager
Field (String) name

Field (int) number

Create createACourse()
Finder findByName()

CMP : Course

J
a

v
a

 C
la

s
s
D

e
c
l.

Figure 1. Two basic Web components

The figure 1 presents the abstract structural schema of
a simple J2EE application. This application contains a
Servlet instance (3.2.3), which is a Java Web service that
usually returns an HTML response page, and a J2EE CMP

element that provides an object abstraction of a database ta-
ble. The corresponding WebLang model is presented in the
following code sequence. This definition not only abstracts
the application architecture, but also specifies the applica-
tion business behavior in the form of Java business code.

In this example, the Servlet method searches for a
Course CMP bean instance. If the instance is found, its id
is displayed on the output page; otherwise the Course bean
is created.

--

moduletype instanceName {

 ... // local module definition

}

--

simple example: size = 18

servlet CourseManager {

 package pack;

 public void addCourse(String name, int id,

 PrintWriter out){

 try {

 Course c = courseHome.findByName(name);

 out.println("Course finded:" + c.getId());

 }catch (javax.ejb.FinderException fe) {

 courseHome.createACourse(name, id);

 out.println("Course created:" + id);

 }

 }

}

cmpbean Course {

 package pack;

 String name;

 int id;

 Course createACourse(String name, int id);

 Course findByName(String name) {

 query = "SELECT OBJECT (o) FROM Course o

WHERE o.name = ?1"

 }

}

Course c = courseHome.findByName("math");

Course c = courseHome.createACourse("math",12);

 outputchannel outTopic(topic," topicName");

P
u

b
li
c
 M

e
th

o
d

s

Public Method addCourse()

Servlet : CourseManager
Field (String) name

Field (int) number

Create createACourse()
Finder findByName()

CMP : Course

F
ie

ld
s
 +

 M
e

th
o

d
s

--

moduletype instanceName {

 ... // local module definition

}

--

simple example: size = 18

servlet CourseManager {

 package pack;

 public void addCourse(String name, int id,

 PrintWriter out){

 try {

 Course c = courseHome.findByName(name);

 out.println("Course finded:" + c.getId());

 }catch (javax.ejb.FinderException fe) {

 courseHome.createACourse(name, id);

 out.println("Course created:" + id);

 }

 }

}

cmpbean Course {

 package pack;

 String name;

 int id;

 public Course createACourse(String name, int id);

 public Course findByName(String name) {

 query = "SELECT OBJECT (o) FROM Course o

WHERE o.name = ?1"

 }

}

Course c = courseHome.findByName("math");

Course c = courseHome.createACourse("math",12);

 outputchannel outTopic(topic," topicName");

P
u

b
li
c
 M

e
th

o
d

s

Public Method addCourse()

Servlet : CourseManager
Field (String) name

Field (int) number

Create createACourse()
Finder findByName()

CMP : Course

F
ie

ld
s
 +

 M
e

th
o

d
s

The WebLang generator reads these model inputs and
produces mainly Java classes annotated with XDoclet tags,
HTML or JSP pages, and XML script files.

3.2. Module Details

This section presents a syntax overview of the main mod-
ules. For the sake of simplicity, the specification of the
modules is presented by examples rather than using BNF
grammars.

3.2.1. Java Common Processing

The parsing of the following modules expects some manda-
tory or optional tokens, and is able to run an external Java
1.5 parser on specific blocks. The main Java parsing func-
tions used are BlockStatement, ClassBodyDeclaration and
the more localized FieldDeclaration and MethodDeclara-
tion. Moreover, some parser extensions have been made for
handling some specific declarations, such as the bean finder
and creation methods.

--

moduletype instanceName {

 ... // local module definition

}

--

simple example: size = 18

servlet CourseManager {

 package pack;

 public void addCourse(String name, int id,

 PrintWriter out){

 try {

 Course c = courseHome.findByName(name);

 out.println(("Course = " + c.getId());

 }catch (javax.ejb.FinderException fe) {

 courseHome.createACourse(name, id);

 out.println("Course created :" + id);

 }

 }

}

cmpbean Course {

 package pack;

 String name;

 int id;

 Course createACourse(String name, int id);

 Course findByName(java.lang.String name) {

 query = "SELECT OBJECT (o) FROM Course o

WHERE o.name = ?1"

 }

}

Course c = courseHome.findByName("math");

Course c = courseHome.createACourse("math",12);

 outputchannel outTopic(topic," topicName");

P
u

b
li
c
 M

e
th

o
d

s

Public Method addCourse()

Servlet : CourseManager
Field (String) name

Field (int) number

Create createACourse()
Finder findByName()

CMP : Course

F
ie

ld
s
 +

 M
e

th
o

d
s

Each module processes the parsed Java information dif-
ferently according to its needs, but a common processing
is applied to most supported modules. The preceding code
sequence shows the abstracted WebLang syntax for finding
and creating a bean instance. These expressions can be used

in all Java blocks, and are transformed by our tool into exe-
cutable code compatible with the module in which they are
defined. The bean type is automatically replaced by a ref-
erence to the remote or the local object proxy, and the bean
home identifier by a reference to the corresponding home
proxy object.

jclient Client {

 package clientpack;

 void methodTest(String courseName, profName) {

 Student aStud = studentHome.createStudent(

 "Simon", "Smith", 23);

 Course aCourse = courseHome.createCourse(

 profName, coursename);

 aStud.getCourseN().add(aCourse);

 }

}

class MyClass {

 package pack;

 access Remote;

 Course course;

 void methodTest(String courseName, profName) {

 course = courseHome.createCourse(

 profName, coursename);

 }

}

State Stateful

Field (Customer) aCustomer

Create createController()

Public Method newCustomer()

SessionBean : Controller

Field (String) name

Create create()

Finder findByName()

CMP : Customer

Field (String) name

Create createPet()

Finder findByName()

Finder findAll()

CMP : Pet

N

1

Figure 2. Interaction between three EJB modules

3.2.2. J2EE Enterprise Java Beans

WebLang is able to produce the J2EE EJBs classes under
the specification of EJB 2.0. The figure 2 and the follow-
ing code sequences show a typical interaction between three
EJB modules, a Session bean and two CMP beans.

CMP Bean
A CMP bean (Container Managed Persistence Entity
Beans) represents the object abstraction of a table in the
database. Each instance of a defined CMP bean can be cre-
ated, deleted and retrieved like a row of a database table.
Some relations to other CMP beans can be defined after the
package entry.

cmpbean Pet {

 package data;

 String name;

 public Pet createPet(String name);

 public Collection findAll() {

 query = "SELECT OBJECT (o) FROM Pet o"

 }

 public Pet findByName(String name) {

 query = "SELECT OBJECT (o) FROM Pet o

 WHERE o.name = ?1"

 }

}

cmpbean Customer {

 package data;

 relations (Pet = 1:N);

 String name;

 public Customer findByName(String name) {

 query = "SELECT OBJECT (o) FROM Customer o

 WHERE o.name = ?1"

 }

 public Customer create(String name);

}

sbean Controller {

 package control;

 state Stateful;

 Customer aCustomer;

 ControllerSession createController();

 public void newCustomer(String name)throws Exception{

 aCustomer = customerHome.create(name);

 }

}

mdbean

mdbean MyMDB {

 package control;

 inputchannel(queue, "inQueueName"){

 String s = ((TextMessage)msg).getText();

 try {

 TextMessage tm = topicSession.createTextMessage(s);

 outRef.publish(tm);

 } catch (Exception e){e.printStackTrace();}

 }

 outputchannel outRef(topic," topicName");

}

CMP Fields

Create

Stateful (less)

P
u
b
lic

M

e
th

o
d

In
p

u
tc

h
a

n
n

e
l

Outchan.

Relation 1:N

F
in

d
e

rs

CMP Relations: a relation must define the target bean
name and the relation nature: 1:1, 1:1 target, 1:N or N:M.
When a relation is defined, the database table is configured
with XDoclet tags, and getter-setter functions are generated
in the class file.

CMP Fields: the Java class members are registered as
CMP bean fields; they are mapped as table attributes and
getter-setter methods are inserted in the CMP class.

CMP Finder Methods: some EJB finder methods are de-
finable as specific method declarations. Their names must
begin with the keyword find followed by an optional identi-
fier name. The parameters may have either simple types or
fully qualified types. This method declaration expects the
definition of an EJB-QL query (see Sun EJB specification,
Chapter 11).

EJB Creation Methods: some EJB creation methods are
definable as specific method declarations. Their names
must begin with the keyword create followed by an optional
identifier name. The parameters must correspond to a sub-
set of the attributes, placed in any order.

Java Methods: the method declarations are parsed and
inserted in the generated class with the common transfor-
mations 3.2.1. The public methods are referenced in the
bean’s proxy and become accessible from the other mod-
ules.

Session Bean
The SessionBean is a service supplier, managed by the
server and associated with a client session.

cmpbean Pet {

 package data;

 String name;

 public Pet createPet(String name);

 public Collection findAll() {

 query = "SELECT OBJECT (o) FROM Pet o"

 }

 public Pet findByName(String name) {

 query = "SELECT OBJECT (o) FROM Pet o

 WHERE o.name = ?1"

 }

}

cmpbean Customer {

 package data;

 relations (Pet = 1:N);

 String name;

 public Customer findByName(String name) {

 query = "SELECT OBJECT (o) FROM Customer o

 WHERE o.name = ?1"

 }

 public Customer create(String name);

}

sbean Controller {

 package control;

 state Stateful;

 Customer aCustomer;

 ControllerSession createController();

 public void newCustomer(String name){

 aCustomer = customerHome.create(name);

 }

}

mdbean

mdbean MyMDB {

 package control;

 inputchannel(queue, "inQueueName"){

 String s = ((TextMessage)msg).getText();

 try {

 TextMessage tm = topicSession.createTextMessage(s);

 outRef.publish(tm);

 } catch (Exception e){e.printStackTrace();}

 }

 outputchannel outRef(topic," topicName");

}

CMP Fields

Create

Stateful

P
u
b
lic

M

e
th

o
d

In
p

u
tc

h
a

n
n

e
l

Outchan.

Relation 1:N

F

in
d

e
rs

Session Type: the session can be declared Stateful and
assigned permanently during a client session or Stateless
and reassigned to other clients.

EJB Creation Methods: some EJB creation methods are
definable in the module declaration, like for the CMP beans.

Java Methods: the method declarations are parsed and
inserted in the generated class, like for the CMP beans.

3.2.3. Web Server Modules

The following client modules, Servlet and Struts, are by na-
ture local to the server; they are typically hosted in a Web
server, such as Apache Tomcat. Some others modules are
remote such as the Java Client (see 3.2.4).

Servlet
A Servlet module is presented in Section 3.1. The genera-
tion of a module produces a standard Java Servlet class and
a requesting HMTL page.

Java Methods: the method declarations are parsed and
inserted in the generated class with the common transfor-
mations 3.2.1. Moreover, the public methods are processed

specifically; they become accessible by calling the gener-
ated Servlet. For each public method, a requesting HTML
form with all method’s parameters, is included in the gener-
ated page.

Struts
A Struts module defines a state chart based on the Apache
Struts framework. The following code sequence represents
the business and the presentation layers of the application
example, reviewed in Section 4.

struts

struts Control {
 package store;
 stateMachine {
 statedef State_0 (pList);
 statedef State_1 (pConfirm);

 switch (sessionState) {
 case State_S:
 makeForm(browseForm);

 sessionState = State_0;
 break;

 case State_0:
 clientForm.setNbOfItems(

 browseForm.getPetFormN().size());
 sessionState = State_1;
 break;

 case State_1:
 if (submit.equals("Confirm")) {
 String cfname = clientForm.getName();

 Customer cust;
 try {
 cust = customerHome.findByName(cfname);
 }catch(FinderException fe) {
 cust = customerHome.create(cfname);
 }
 for(PetForm pform: browseForm.getPetFormN()){
 if(pform.getFlag()){
 String pfname = pform.getName();
 cust.addPet(
 petHome.findByName(pfname));
 }
 }
 }
 sessionState = State_0; break;
 }
 }

 page pList {forms(browseForm.petFormN[](OK)); }
 page pConfirm {forms(clientForm(Confirm),
 cancelForm(Cancel)); }

 private void makeForm(BrowseForm browseForm){
 for(Pet pet : petHome.findAll()){
 PetForm pForm = new PetForm();
 pForm.setName(pet.getName());

 browseForm.getPetFormN().add(pForm);
 }
 }
}

form BrowseForm {
 package pack;
 forms (petFormN[]);
}
form ClientForm {
 package pack;
 fields(String name,
 int nbOfItems);
}

form PetForm {
 package pack;
 fields(String name,
 boolean flag);
}
form CancelForm {
 package pack;
}

J
a

v
a

 B
lo

c
k
 -

 F
S

M

States definition

S
tr

u
ts

 A
c
ti
o

n
 F

o
rm

s

J
a

v
a

M

e
th

o
d

P

a
g

e
s

m
e
th

o
d

The WebLang Struts module provides a safe Web appli-
cation controller, in which the state of the client is preserved
during the whole session. Some additional Java class files
are automatically included in the project to manage the state
machine. The generation of the module produces a Struts
Action class, which contains the state chart. A JSP page is
also produced for each declared page, and a Struts Action-
Form class for each defined form.

State Definition: The definitions of the states are de-
clared with a state name and an associated page name;
State0 is reserved as the starting state.

Java State Chart: the state chart code is parsed by the
Java BlockStatement function. Typically, a Java switch
statement is anticipated to assign a new state according to
the requested form values. However, the developer is free to
manage the state evolution and to initialize the form values
with the Java language.

Page Definition: each page, referenced in the state defi-
nition, must be declared formally, and is generated as a JSP
page. A page must define a name and the list of included
forms.

Forms: a Struts Action Form is basically a Javabean; it
is used to host the page input and output data. The form
defines some local fields and some included sub-forms.

3.2.4. Other Supported Modules

The WebLang language defines other modules by follow-
ing the same approach: Message Driven Bean (MDB), Java
Class, Java Client, RMI Object, Synchronous Java Class,
Hibernate bean, JSP or HTML.

In addition to the presented proxy connections, WebLang
supports the asynchronous exchanges between most mod-
ules in using the Java Messaging Service (JMS) specifica-
tion.

4. DESIGN WITH WEBLANG

In order to demonstrate the value of our solution, we
present in this section a realistic prototype of an elementary
Web-store application. This three-tiered architecture pro-
vides a Web access to a pet database, and allows customers
to make orders.

This application is composed of a database for storing
persistent data; it mainly implements a Web service for han-
dling the client requests, which accesses the system by us-
ing a Web browser. The full source code of this application
is composed of the Struts and the CMP preceding code ex-
amples (3.2.3, 3.2.2). This application prototype is fully
defined by WebLang with approximately fifty lines.

4.1. Scenario

A client accesses the pet database with a Web browser.
The first page, displayed by the server, shows the list of
all available pets. The client selects the elements that he
wishes to order, and then submits his selection to the server.
The server temporarily keeps the client selection, and re-
sponds with a confirmation page, showing the number of
ordered pets and an empty field name. The client enters his

name and clicks on the confirm button to finalize the or-
der or on the cancel button to return directly to the starting
page. If the order is confirmed, the selection is stored into
the database; the customer instance is created if necessary
and all selected pets are added to the customer’s list.

4.2. Application Components

This application defines two CMP beans to store persis-
tent data; the Pet table must be filled externally. The Cus-
tomer CMP is linked to the Pet CMP with a 1:N relation.
The Form components are used to handle the temporary
data from and to the Pages. The Forms are basically Jav-
abean objects with some Struts additions. The heart of the
application is managed by the Struts component Control. It
is mainly composed of a state chart that processes the client
requests and accesses the database in a reliable way.

PetStore light : 3PetStore light : 3--tietiered architecture schemared architecture schema

Presentation layer Business layer Data layer

Cancel

Confirm

1 - N

OK

- BrowseForm
 . petFormN[]

Page: pList

- ClientForm
 .clientName
 .numberOfItems

Page: pConfirm

OK

Confirm Cancel

- name

CMP : Pet

- name

CMP : Customer

- name

CMP : Pet

- browseForm.petFormN[]

Form : BrowseForm

- clientName
- numberOfItems

Form : ClientForm

select the pet elements

set client name
confirm elements

store new data input in
the database

read database and fill a
temporary data container

Form : PetForm

- name
- flag

1
N

data flow :

transition :

0

Struts : Control

1

data rel :

operation :

Figure 3. Elementary Web-Store

4.3. Diagram Overview

The figure 3 represents the architecture of this applica-
tion. The WebLang components are all represented in the
same diagram, as well as the principal behavior of the ap-
plication. Currently, this diagram notation is informal, but
it is for the most part usual for a developer. This schema
is based on the following UML diagrams: state-chart, data-
flow and collaboration diagrams. The boxes represent the

WebLang strongly typed components. The diagram is sep-
arated into the common three layers (presentation, business
and data). The Struts instance is clearly the controller of the
application, and each state, declared in the Struts module,
is linked to a page. The data-flow evolution, represented in
the schema by double arrows, is controlled by the transition
of the state chart.

The business functionalities need to be extended to in-
clude the requirements of a commercial store, but the ar-
chitecture defined by WebLang is really close to the final
product. The generated prototype can be tested early in the
development process, and the business functionalities can
be developed on concrete and validated foundations.

Although we think that the edition of graphical models
is less efficient and less flexible than editing a textual lan-
guage with a good editor, the diagram visualization is inter-
esting for documentation and development discussion, and
we plan to release this tool extension.

5. CONCLUSION

We have presented a new approach for designing Web
applications. The method is based on a language, WebLang,
that is intentionally close to the technology. Our goal is to
abstract the behavior and the structure of the application by
providing well-defined components.

The advantage over some other modeling methods is that
the WebLang language can specify the whole architecture
of an application. The model is natural for a developer and
more flexible than some graphic editions. The associated
tool can compile and produce a usable prototype in one ac-
tion. The architecture can then be tested early in the devel-
opment process, thus avoiding certain implementation and
integration problems.

Currently, WebLang only defines architecture for the
Java J2EE platform. However, the concept is easily extend-
able to other technologies by adding new module declara-
tions. We plan to support Web services soon, and to provide
adapted modules for the Microsoft .Net platform in the fu-
ture. Since the EJBs have no equivalent in the Microsoft
specification, a .Net architecture is more difficult to devise
in a standard and powerful way. The WebLang approach
can provide a useful components set to help the developers
to compose reliable applications.

The imminent introduction of Web services will trans-
form WebLang into a SOA (Service Oriented Architecture
[3]) designing tool, which will allow to compose heteroge-
neous application in a simple way.

5.1. Future Work

We are also implementing a generic designing tool,
which extends the WebLang modeling approach to all kind

of applications. This tool will allow the developers to spec-
ify and create their own DSL language, parser, generator
and editor adapted to their needs.

This approach enables Language Oriented Programming
[6, 9], which is a style of programming in which, rather than
solving problems in GPLs, the programmer creates adapted
DSLs and solves the problem in these languages.

References

[1] C. Atkinson and T. Kuehne. Aspect-oriented development
with stratified frameworks. IEEE Software, Volume 20, Issue
1, Jan.-Feb. 2003 Page(s):81 - 89, 2003.

[2] C. Atkinson and T. Kuehne. Model-driven development: a
metamodeling foundation. IEEE Software, Volume 20, Issue
5, Sept.-Oct. 2003 Page(s):36 - 41, 2003.

[3] J. Bloomberg. Principles of soa, 2003. ZapThink - ADT-
mag.com.

[4] S. Ceri, P. Fraternali, and A. Bongio. Webml: a model-
ing language for designing web sites. Computer Networks
(Netherlands), 33(1–6):137–157, 2000.

[5] G. Costagliola, F. Ferrucci, and R. Francese. Web engineer-
ing: Models and methodologies for the design of hyperme-
dia applications, 2002.

[6] S. Dmitriev. Language oriented programming: The next pro-
gramming paradigm, 2004.

[7] M. Fowler. UML distilled: A brief Guide to the Standard
Object Modelling Language. Object Technology series. Ad-
dison Wesley, 3rd edition, 2004.

[8] M. Fowler. Language workbenches and model driven archi-
tecture, 2005.

[9] M. Fowler. Language workbenches: The killer-app for do-
main specific languages?, 2005.

[10] F. Garzotto, P. Paolini, and D. Schwabe. Hdm a model-
based approach to hypertext application design. ACM Trans.
Inf. Syst., 11(1):1–26, 1993.

[11] E. Gorshkova and B. Novikov. Exploiting uml extensibility
in the design of web applications, 2003.

[12] HUTN. Human-Usable Textual Notation (HUTN) specifica-
tion (OMG), 2002.

[13] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The
Model Driven Architecture-Practice and Promise. Addison-
Wesley, 2003.

[14] M. Matera, A. Maurino, S. Ceri, and P. Fraternali. Model-
driven design of collaborative web applications. Softw.
Pract. Exper., 33(8):701–732, 2003.

[15] A. McNeile. Mda: The vision with the hole?, 2003.
[16] S. J. Mellor and M. J.Balcer. Executable UML: A Founda-

tion for Model-Driven Architecture. Addison-Wesley, 2002.
[17] C. Petitpierre. Software Engineering: The Implementation

Phase. EPFL-Press, 2006.
[18] B. Rumpe. Executable modeling with uml. a vision or a

nightmare? Issues and Trends of Information Technology
Management in Contemporary Associations, Seattle, pages
697–701, 2002.

[19] D. Thomas. Uml - unified or universal modeling language?
Object Technology, vol. 2, no. 1, January-February, 2003.

[20] D. Thomas. Mda: Revenge of the modelers or uml utopia?
IEEE Software, vol. 21, no. 3, pp. 15-17, 2004.

