
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

B. Sc. in Engineering Physics, Sheffield Hallam Univeristy, Royaume-Uni
de nationalité britannique

acceptée sur proposition du jury:

Lausanne, EPFL
2007

Prof. R. Schaller, président du jury
Prof. A. Fiore, directeur de thèse

Prof. B. Deveaud-Plédran, rapporteur
Prof. J.-M. Gérard, rapporteur
Prof. R. Warburton, rapporteur

optical characterisation of single quantum 
dots emitting at 1300 nm

Carl ZINONI

THÈSE NO 3744 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 23 février 2007

à la faculté des sciences de base

Institut de photonique et d'électronique quantiques

SECTION DE physique





Optical characterisation of single quantum dots emitting at
1300nm

by

Carl Zinoni

Ecole Polytechnique Fédérale de Lausanne
Institute of Photonics and Quantum Electronics

Lausanne 2006

A 5µm mesa



c© Copyright by
Carl Zinoni

2006
All Rights Reserved



Dedicated to my wife Rosa, and my children Alex and Sarah

ii





Acknowledgments

The work documented in this thesis is the result of a common effort, after all

there is no use for an ultra-stable super-efficient optical setup without anything to

measure. I would like to start by thanking my thesis advisor Prof. Andrea Fiore

for the countless hours spent on scientific discussions: I particularly appreciated his

constant availability and high level of competence. I would like to thank Valery

Zwiller who showed me my first steps in the field of experimental quantum optics,

his enthusiasm for the subject and originality are unparalleled. I would like to thank

and acknowledge the work of the members of the Quantum Devices group starting

with: Blandine Alloing who produced the first low density quantum dots emitting

at 1300nm, and Christelle Monat that processed the samples in collaboration with

Lamberto Lunghi and Annamaria Gerardino (who work at the CNR in Rome).

Also a special thanks to all the members of the group which contributed to make the

working environment very pleasant: Laurent Balet, David Bitauld, Nicolas Chauvin,

Lianhe Li, Alexander Marcus, Francesco Marsili, Pablo Moreno, Cyril Paranthoen,

Phillip Ridha and Marco Rossetti.

I would like to thank the members of the IIS group at ETHZ who responded

very positively when I contacted them for help in simulating our optical cavities:

since then we setup a very healthy collaboration. Thanks to Peter Arbenz, Oscar

Chinellato, Matias Streiff, Andreas Witzig and Bernd Witzigmann.

I am also grateful to the members of my thesis committee: Benoit Deveaud-

Pledran, Jean-Michel Gerard, Robert Schaller and J Richard J. Warburton, for their

constructive comments on the written thesis and for attending the defence.

iv



A mention also goes to the GAP group in Geneva University and IdQuantique

for their cooperation and willingness to lend us their best single photon detectors.

And finally I am grateful for the tremendous support that I received from my

wife Rosa to which I owe part of the success I have achieved in these years. During

this thesis she also made me the proud father of two marvelous children Alex and

Sarah.

v



Abstract

This thesis deals with the optical characterization of single quantum dot de-

vices emitting at 1300nm. Thanks to the development and optimization of the

growth technique we were able to achieve at the same time emission at 1300nm

and ultra low QD densities. Our single QD devices present clear and reproducible

spectral signatures in which we can identify exciton, biexciton and charged exci-

ton transitions. Quasi-resonant excitation at 70K demonstrates background free

single exciton transitions, which is very promising for the realization of a single

photon device operating at temperatures in easy reach of thermoelectric coolers. A

time-correlated single photon counting setup was built and used to measure the ra-

diative lifetimes of single exciton transitions. These measurements also present new

evidence on a background emission superposed to the narrow spectral transitions.

Demonstration of single photon emission at these wavelengths required building a

setup to measure the correlations between fiber-coupled single photons in a 300ps

time window, emitted from a nano-device in free space at cryogenic temperatures,

and with the capability of maintaining the optical alignment on a micrometer scale

for several hours. With such a setup we have demonstrated that our QDs can

generate single photon states at 1300nm. We used this single photon source to char-

acterize novel detectors based on superconducting nanowires and measured for the

first time the intensity correlation function at 1300nm on single photons from a QD.

These detectors show at least 2 orders of magnitude improvement on the signal to

noise ratio as compared to InGaAs APDs; this is very important since, for a QKD

system, the detector noise, amongst others, determines the maximum distance over

which a secure key can be exchanged. It should be noted that, due to the difficulties
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in these measurements, to date there has been only one other clear demonstration

of single photon emission at 1300nm.

Key words: single photon, quantum dot, spectroscopy, exciton lifetime, quan-

tum cryptography, optoelectronics, detectors.
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Astratto

Questa tesi tratta la caratterizzazione ottica di singoli dispositivi basati su

punti quantici che emettono a 1300nm. Grazie allo sviluppo ed all’ottimizzazione

della tecnica di crescita sono stati ottenuti allo stesso tempo l’emissione a 1300nm

ed una densità ultra bassa di punti quantici. I nostri singoli dispositivi presentano

chiare caratteristiche spettrali riproducibili in cui possiamo identificare l’eccitone, il

bieccitone e le transizioni ecittoniche in presenza di altre particelle. Con la creazione

di portatori direttamente nello stato eccitato ad una temperatura di 70K si otten-

gono transizioni eccitoniche in assenza del segnale di fondo: questo risultato è im-

portante perché implica la possibilità di realizzare un dispositivo a singolo fotone

che funziona a temperature facilmente raggiungibili con apparecchiature a raffred-

damento termoelettrico. Un esperimento è stato sviluppato per misurare i tempi

di vita dei portatori utilizzando rilevatori a singolo fotone. Le misure con questo

sistema rivelano la presenza di un’emissione a larga banda sovrapposta alle strette

righe spettrali. La dimostrazione di emissione di singolo fotone a queste lunghezze

d’onda ha richiesto lo sviluppo e la messa a punto di un esperimento per misurare

le correlazioni tra singoli fotoni accoppiati in fibra, in una finestra temporale di

300ps, emessi da un dispositivo a temperature criogeniche, e con la capacità di

mantenere l’allineato ottico su una scala di qualche micrometro per parecchie ore.

Abbiamo dimostrato che i nostri punti quantici possono generare singoli fotoni a

1300nm. Abbiamo usato questa sorgente a singoli fotoni per caratterizzare dei riv-

elatori superconduttori ed inoltre abbiamo misurato per la prima volta la funzione

di correlazione di secondo ordine a 1300nm sui singoli fotoni emessi da un punto

quantico.
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Chapter 1

Introduction

The work documented in this thesis is part of a project which aims at de-

veloping a solid state single photon source based on quantum dots for quantum

cryptography applications over telecom fibers. The outcome of the project relied

on the successful research and development in two areas: optimization of epitaxial

growth procedure for the realization of sparse quantum dots emitting in the telecom

range and realization of an efficient optical bench with single photon sensitivity in

the fiber-optic telecom windows (1300nm and 1550nm). This thesis documents the

optical characterization of the single photon states produced by the device: by spa-

tially isolating a single quantum dot we measured the integrated and time resolved

photoluminescence to gain information about the carrier population and dynam-

ics at the single exciton level. Single photon correlation experiments were used to

characterize the statistics of the light emitted by the devices and we demonstrated

single photon emission at 1300nm. At the time when the project was being set-up

(2002) QKD experiments were (and still are) carried out using attenuated coherent

sources: a single photon source at telecom wavelength was not available. Working

with QDs emitting in the telecom window presents several challenges: first the QD

emission has to be redshifted while maintaining a low spatial density - a difficult

combination of requirements for conventional epitaxial growth methods. Second,

the single photon detection technology for the near infrared is still in its infancy,

and noise levels, quantum efficiency, and temporal response are considerably poorer
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when compared to the single photon detection modules operating below 1000 nm

based on silicon technology. Single-photon sources emitting in the visible and up to

1µm have been extensively characterized. In 2002, to our knowledge, there was only

one reported integrated photoluminescence measurement on single quantum dots

emitting around 1100nm (at 10K) using InGaAs technology [1]. During the course

of this project some promising results on single quantum dot spectroscopy measure-

ments at 1300nm and 1550nm have been published by various groups[2, 3, 4, 5]. On

the other hand there has been only one other clear demonstration, besides the work

reported in this thesis, of single photon emission in the telecom window[6].

1.1 The need for single photons

Manipulation of a single quantum state leads to the development of appli-

cations that are unachievable in the classical context. In particular the ability to

generate, manipulate and detect single photon states leads to very interesting ap-

plications [7] such as: true random number generation[8], quantum cryptography

[9, 10], and applications based on entangled photon states [11, 12] such as quantum

computing. A true single photon source would also be an absolute standard of opti-

cal intensity. The application which is closest to a practical implementation is QKD,

which involves the exchange of a secret key, encoded onto qubits, between two dis-

tant systems [9]. A qubit can take on values of 0 or 1, but it can also be in a mixture

of both. While the security of classical cryptographic methods presents retroactive

vulnerability and can be undermined by advances in technology and mathematical

algorithms, the quantum approach can provide unconditional security. The secrecy

is guaranteed by fundamental laws of quantum mechanics: any attempt to make a
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measurement on qubits in a superposition of states will result in a collapse of the

wavefunction onto one of the states. The impossibility to reconstruct the original

superposition of states is guaranteed by the no-cloning theorem [13] that prevents

the creation of identical copies of an unknown quantum state. It should be noted

that quantum mechanics does not prevent from eavesdropping; it only enables us

to detect the presence of an eavesdropper and since only the cryptographic key is

transmitted, no information leak can take place.

The first protocol proposed by Bennet and Brassard in 1984, called BB84, is

based on encoding Qbits on the polarization of the photon. The rectilinear basis

is spanned by horizontally and vertically polarized photons (H and V), while the

diagonal is spanned by photons polarized at 45 and 135(D and DD respectively).

Any measurements in the diagonal (rectilinear) basis on photons prepared in the

rectilinear (diagonal) basis will yield random outcomes with equal probabilities.

On the other hand, measurements performed in the basis identical to the basis of

preparation of states will produce deterministic results. At the beginning, the two

parties that wish to communicate, traditionally called Alice a Bob, agree that, H

and DD stand for the bit 0, and V and D stand for a binary 1. Alice, the sender,

generates a sequence of random bits (the secret key) that she wants to transmit, and

randomly for each bit she chooses her encoding basis, rectilinear or diagonal. Bob,

the receiver, randomly and independently of Alice, chooses his measurement bases,

either rectilinear or diagonal. Statistically, in 50% of the cases Bob’s measurements

provide deterministic outcomes and agree with Alice’s bits. In order to know when

the outcomes were deterministic, Alice and Bob have to exchange the sequence of

basis used over a public channel. It should be noted that only information about
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the used bases is exchanged, not the outcomes of the measurements. If Eve (the

eavesdropper) measures each of Alice’s photons and sends new photons to Bob she

will introduce a 25% error rate into the key data, making it possible for Alice and

Bob to detect eavesdropping. Although single-photon polarization is a convenient

way to explain QKD, imperfections in real world telecom fiber make it unpractical

and phase encoding is one of the most commonly used techniques [14]. An overview

on QKD protocols can be found in [10].

For most of the demonstrated implementations of quantum key distribution,

scientists have been using attenuated coherent sources (see section 1.3 for details)

with emission in the 1300 and 1550nm region for transmission of approximate

single photon states in the telecom fibers. A combination of vulnerability to at-

tacks that exploit multiphoton pulses, detector dark counts and attenuation in the

quantum channel limit the maximum distance to around 100km for fiber based

communications[15]. The advantage of using a single photon source is that it is

intrinsically secure from photon-number splitting attacks. Demonstrations of single

photon source have achieved a g(2)(0) as low as 0.02 at 900nm [16] which means that

there is a 50 fold decrease in the probability of emitting more than one photon per

pulse as compared to a coherent source of the same intensity. Attenuated sources

recover security through privacy amplification, which consists in masking the values

of the qbits, at the expense of the usable key bit rate.

1.2 How to measure single photons

In Fig. 1.1 are represented the time distribution of photons for different types

of sources. The statistical photon time distribution is accurately described by the
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second order correlation function g(2)(τ), which quantifies the probability of emitting

a photon at time t+ τ after a photon has been emitted at time t, normalized by the

average probability of emitting a photon at any time. While bunched and coherent
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t
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Figure 1.1: Time distribution of photons from a thermal, coherent and non-classical
emitter.

light, g(2)(τ) ≥ 1, are accurately described by the intensity correlation function for

classical fields:

g(2)(τ) =
〈I(t)I(t + τ)〉

〈I(t)〉2 , (1.1)

this function cannot describe the antibunching behavior since the numerator will

always be larger than the denominator: 〈I2〉 ≥ 〈I〉2. To describe the sub-Poissonian

statistics of a single photon source we must resort to the quantum interpretation of

a beam of light and the correlation function is expressed [17, 18] in terms of creation

and destruction operators that operate on the field modes to increase or lower the

energy by an amount h̄ω equivalent to the energy of a single photon:

g(2)(τ) =
〈â†(t)â†(t + τ)â(t)â(t + τ)〉

〈â†(t)â(t)〉 (1.2)

The value of g(2) goes to zero since two applications of the destruction operator to

a single photon state |1〉 yields 0. If we consider a single mode of the field, Eqn. 1.2
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becomes time-independent:

g(2)(τ) =
〈â†â†ââ〉
〈â†â〉 =

〈n(n− 1)〉
〈n〉2 . (1.3)

The correlation function is expressed in terms of the mean and mean-square photon

number (n) using the commutation relation, ââ† − â†â = 1 and the photon number

operator n̂ = ââ†. The magnitude of g(2)(τ) as a function of the mean photon

number is obtained by using the definition of the photon number variance(∆n2) and

eqn. 1.3:

(∆n2) = 〈n2〉 − 〈n〉2 ≥ 0 (1.4)

(∆n2) = 〈n〉2g(2)(τ)− 〈n〉2 + 〈n〉 ≥ 0

g(2)(τ) ≥ 1− 1

〈n〉 . (1.5)

The correlation function can take on values between 0, for a single photon state

input, and 1 for n >> 1, which is consistent for a single mode beam.

From the representation in Fig. 1.1 it is straightforward to assume that the

g(2)(τ) can be simply measured by time-stamping the clicks of the detector and

then by correlating the arrival times of the photons. The problem is that real

world detectors are inactive for a given length of time after detecting a photon and

current technology does not have photon-number resolving capabilities. An elegant

solution was proposed by Hanbury-Brown and Twiss [19] which consisted in feeding

the beam to the input of a symmetrical BS and then measuring the correlations

with two detectors between the reflected and transmitted beams. In this thesis the

ability of our sources to emit a single photon is established using this technique,

and in the following the theoretical proof that the intensity correlation between the

output beams from the BS is the second order correlation function of the input
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beam is demonstrated. Figure 1.2 is a schematic of the beam splitter where âi is the

Figure 1.2: Input and output fields with the associated destruction operators for a
symmetric beam splitter.

destruction operator associated with the input and output fields. From the classical

input-output relations of a BS [17] and the correspondence principle, the lossless BS

has the following properties:

â1 = R∗â3 + T ∗â4 (1.6)

â2 = T ∗â3 + R∗â4 (1.7)

â3 = Râ1 + T â2 (1.8)

â4 = T â1 + Râ2. (1.9)

where R and T are the reflection and transmission coefficients and:

|R|2 + |T |2 = 1 and RT ∗ + TR∗ = 0. (1.10)

We want to show that:

g
(2)
1 (τ) = g

(2)
3,4(τ) (1.11)

The mean photon outputs from the BS arms for an arbitrary input state |m〉 in arm

1 and a vacuum state |0〉 in arm 2 are:

〈n3〉 = 2〈0|1〈m|n̂3|m〉1|0〉2
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= 2〈0|1〈m|(R∗â†1 + T ∗â†2)(Râ1 + T â2)|m〉1|0〉2

= 1〈m|(|R|2â†1â1)|m〉1 = |R|2〈n1〉, (1.12)

and for output in arm 4:

〈n4〉 = |T |2〈n1〉. (1.13)

And the quantum mechanical average of the product is:

〈n3n4〉 = 2〈0|1〈m|n̂3n̂4|m〉1|0〉2

= R∗RT ∗T1〈m|â†1â1â
†
1â1|m〉1 + R∗(−RT ∗)T1〈m|â†1â1|m〉1

= |R|2|T |21〈m|â†1â1â
†
1â1 − â†1â1|m〉1

= |R|2|T |2〈n1(n1 − 1)〉. (1.14)

Writing the correlation between the output arms and making use of eqn. 1.3:

g
(2)
3,4(τ) =

〈n3n4〉
〈n3〉〈n4〉 =

〈n1(n1 − 1)〉
〈n1〉〈n1〉 = g

(2)
1 (τ) (1.15)

1.3 Single photon ‘guns’

Sources than can be used for quantum information applications fall in two

categories: true single photon sources and attenuated coherent sources [20, 21]. In

Fig. 1.3 are plotted the probability distributions, for the sources shown in Fig. 1.1,

for an average photon number 〈n〉 = 1. A thermal source follows the Bose-Einstein

distribution of black-body radiation where the empty state has always the highest

probability of occupation. The number of photons in a coherent state fluctuates

according to Poisson statistics, which is an improvement over thermal light. Pulsed

lasers that are used for demonstrations of QKD achieve low multiphoton probability

by working with beams with an average photon number 〈n〉 < 0.1 [22], which implies
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Figure 1.3: Probability distributions for sources with an average photon number
〈n〉 = 1. Textured plot gives the distribution for a coherent source with 〈n〉 = 0.1 as
used in QKD experiments.

that most of the pulses are empty. This has the effect of reducing the SNR on the

receiver’s apparatus, since every pulse must be checked for the presence of a photon.

The approximate ’single photon’ performance of these emitters is compensated by

the fact that they are easy to build and operate.

An ideal single photon source should have the following properties: due to

the dispersion in fiber transmission a narrow emission linewidth is important, and

a transform-limited emission is essential for quantum computing with linear optics.

The emission wavelength of the device should overlap with the minima in the at-

tenuation for the quantum communication channels: ∼800nm for free space and

1300 and 1550nm for telecom fibers. A high extraction efficiency into the collection

optics is required for achieving QKD exchange over long distances: the efficiency

can be enhanced by controlling the position of the emitter in a cavity with a high

Q/Vm ratio[23]. The emission properties must be stable in time: bleaching [24] and

blinking[25] are not acceptable. The running cost should be low and the technology
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simple: the use of UHV chambers and liquid helium will limit the use of the source

to specialized research centers.

Table 1.1 summarizes the properties of single photon sources under develop-

ment, demonstrating a wide variety of systems each one with it’s own characteristics

and advantages.

Table 1.1: Single photon sources characteristics. The values reported in the table
are extracted from the references in the column headers.

Cesium Heralded TDI Molc. Col.cent. QD Nanocr. QDs in
atom PDC Molec. NV InAs CdSe nanowr.

Ref. [26] [27] [28] [29] [30] III-V [31] [32]

Linewidth 40neV 7nm 0.6neV 40meV 4meV 20µeV 120µeV 2meV
Lifetime 120ns <1ps 3.4ns 4ns 10ns 1ns 30ns 500ps
Stability No Yes Yes No Yes Yes No Yes
Temp µK 300K 1.4K 300K 300K 10K 300K 10K
Cavity Yes No Yes Yes Yes Yes Yes No

Site cont. Yes Yes No No No Yes No Yes
Technology UHV Easy Liq.He Easy Easy Liq.He Easy Liq.He

Atoms have Fourier limited transitions with high extraction efficiencies, but

require a high level of technological complexity. Heralded single photon sources gen-

erated in a parametric down conversion (PDC) process change the light statistics of

a beam from Poissonian to sub-Poissonian by elegantly suppressing the empty state

[27]. Although this source is easy to implement it is not used for fiber transmission

due to the broad linewidth. Similarly molecules and color centers although techno-

logically easy have relatively broad emission and it is difficult to include them in

cavities or address them electrically. Recent work [32] on QDs in nanowiers show

promising results with very high extraction efficiencies, but more development is

required to understand the origin of the broad line width and to investigate the
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possibilities of tuning the optical mode density around the nanowires. II-VI QDs

can be embedded in microcavities require simple technology, but they are not stable

and have a broad emission linewidth. III-V semiconductor quantum dots present

the best compromise between the optical properties and technological requirements.

These quantum dots have narrow spectral width (we measured ∼30µeV resolution

limited), are tunable over the telecom window and by controlling the position of the

QD [33] in high-Q and small mode volume cavities [34], reasonable repetition rates

and efficiencies can be achieved[35].

1.3.1 Semiconductor quantum dots

QDs are nanometer-sized islands of semiconductor material embedded in other

semiconductor material with a higher band gap. QDs are often referred to as ”arti-

ficial atoms” although they contain from a few hundred to many thousand of atoms

and the electrons move in the crystal lattice. The comparison with atoms arises

from the nanoscale confinement which leads to the quantization of the kinetic en-

ergy, allowing only a few electrons and holes to populate the conduction and valence

bands of the QD. The electronic and optical properties are sizably modified by the

additional presence of a single charge through the Coulomb interactions. Fig. 1.4

shows the schematic structure of a QD obtained from the solution of the Schrödinger

equation [36]. The confinement potential is a complex 3D field resulting from the

combination of QD composition, shape, size, material, strain and piezoelectricity.

The single particle Schrödinger equation is not enough to account for observed spec-

tra since only certain solutions with a given symmetry are allowed: electrons are

indistinguishable particles with spin 1/2 therefore must have antisymmetric wave
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Figure 1.4: Quantum dot energy levels, showing the recombination of an electron-
hole pair on the ground state (GS) of the QD emitting a photon of energy equal to
the energy level separation.

functions. Three terms contribute to the Coulomb interaction between charges in

the QD to lift the degeneracies of the energy levels: the direct Coulomb, the correla-

tion and the exchange interactions. The magnitude of the changes in the electrical

and optical properties due to the Coulomb interaction depends on the difference

between the QD size and the exciton Bohr radius (the electron-hole separation).

If the dot size is greater than the exciton Bohr radius, then the exciton binding

energy is determined by the Coulomb interaction and the QD is said to be in a weak

confinement regime. A dot size smaller than the Bohr radius (strong confinement

regime) results in a strong quantization of the electron and hole kinetic energies.

In this case the Coulomb interaction acts as a perturbation to the confinement po-

tential giving rise to the possibility of forming antibinding biexciton complexes: the

four-particle state is kept stable by the confining potential[37, 38]. Since the Bohr

radius depends on the dielectric constant, it is easier to achieve strong confinement
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in III-V materials rather than II-VI which requires a much smaller dot size.

1.3.2 Growth of low density QDs emitting at 1300nm

The quantum dots developed and optimized for this project were grown by

molecular beam epitaxy. In MBE ultra-pure elements such as gallium and arsenic

are heated in effusion cells until they slowly begin to evaporate into an UHV chamber

where they can be adsorbed to the wafer surface and may react with each other (see

Ref.[39] for further reading). This growth method yields high purity samples with

the possibility of including abrupt interfaces for the realization of structures such as

Bragg reflectors. The main problems with MBE are linked to the high technological

complexity required for the ultra-high vacuum in the growth chamber.

Our dots are grown by evaporating In and As onto a GaAs substrate. Due

to the lattice mismatch the InAs layer reaches a critical thickness beyond which

it is energetically more favorable to form strained islands rather than continue a

two dimensional growth mode. This is known as the Stranski-Krastanov growth

method. The islands are subsequently buried to form the quantum dot, and in

between the dots a wetting layer is formed from the InAs that was not included in

the dots. This growth method presents several advantages: it is a simple growth

mechanism, the emission wavelength is tunable by changing material concentration

and growth parameters, and the structures have a high radiative efficciency. On the

negative side it is not possible to control the nucleation site of the QD and due to

size dispersion the PL is inhomogeneously broadened.

For this project we required large and thick QDs for emission at 1300nm at low

temperature (10K) and a low dot density < 10dots/µm2: several growth techniques
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where developed before [40, 41] and during this project [6] but none of them achieved

at the same time low density and efficient PL at 1300nm. We used a combination

of an ultra-low InAs growth rate and an InGaAs capping layer to obtain [42].

The optimization of the growth process involved finding the values for the In

flux, sample temperature and As pressure that give at the same time low dot density

and an efficient red-shifted PL signal. The convergence of the optimization process

was verified by AFM and PL measurements. The effect of the individual parameters

on the growth of the QDs is the following:

- by decreasing the In cell temperature, hence the In flux, a reduction of QD density

is expected as a consequence of an increased migration length of the In adatoms on

the substrate: it is energetically more favorable for In adatoms to be incorporated

into existing dots instead of forming new ones,

- the temperature of the substrate during growth affects the dot formation process:

high temperatures increase both the adatom mobility and the In desorption rate

resulting in an increased QD size and low density,

- a low As pressure results in an increase of the diffusion length of the adsorbed

atom, red-shits the PL emission and QDs have a higher QE. The optimum growth

parameters were found to be: InAs growth rate=2 ∗ 10−3ML/s, As pressure=5 ∗

10−7mbar and substrate temperature=505◦C. Since these ultra-low growth rates are

difficult to monitor with traditional methods, such as RHEED oscillations, the 2D-

3D transition was timed by monitoring the RHEED pattern and by assuming a

critical thickness of 1.7ML. With this method the growth rate could be estimated

with an error of 10%.

In Figure 1.5(a) are plotted the QD densities as a function of growth rate:
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Figure 1.5: (a)Dot density vs. growth rate. (b) Emission wavelength vs growth rate.
(c) AFM images of samples at different growth rates. (d) Comparison between the
PL emission from samples with GaAs and InGaAs capping.(e) Dark-Field images of
QDs grown at low InAs growth rate (0.0015ML/s) and capped by GaAs. (f) Plan
view of QDs grown at low InAs growth rate (0.0015ML/s) and capped by GaAs.
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for a rate of 2 ∗ 10−3ML/s the dot density decreases to < 2dots/µm2. Figure 1.5(b)

reports the trend of the PL as function of dot size: indeed we obtain a significant red

shift in the emission spectrum and at the same time a low dot density. The redshift of

PL peak emission wavelength is attributed to the increased QD size as demonstrated

by the AFM images for samples with different growth rates (Fig. 1.5(c)). In order

to further shift the PL emission to 1300 nm, we used an InGaAs capping layer to

reduce the In segregation from the QDs. The best compromise between the red-shift

in the PL and the efficiency was obtained for an In composition of 15% and a layer

thickness of 5nm. A comparison for the PL spectra from samples with an InGaAs

and a GaAs capping layer are reported in Fig. 1.5(d): we have achieved emission

from the GS of the QD at 1300nm at 10K and low density dots. In Fig. 1.5(e) we

show a cross-sectional dark field TEM image of the QDs capped with InGaAs: the

QDs are lens shaped with a height of 7.5nm. From the plan-view image Fig. 1.5(f)

the QDs have a square base and a mean width of 37.5nm along the 〈100〉 axis. The

dimensions of the QD imply that the dots should be in a strong confinement regime

since exciton Bohr radius in InAs is ∼34nm [43].
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Chapter 2

Experimental methods

2.1 Micro-Photoluminescence

In general the difficulty of measuring the optical emission from a single QD

lies in the low intensity of the signal. Since our QDs emit in the telecom wavelength

range, InGaAs based technology with noise levels higher by more than 2 orders of

magnitude when compared to silicon technology is required. As a consequence the

measurements are much more challenging and the microphotoluminescence setup

must be designed to reduce to a minimum the optical losses while maintaining a

high spatial and spectral resolution.

A schematic of the optical setup is shown in Fig. 2.1. The pump station is

composed of three cw diode lasers emitting at 660nm, 850nm and 980nm. The red

(660nm) laser is used mainly for a rough alignment of the optical components. The

850nm and 980nm lasers were used for non-resonant excitation of carriers in the

WL. A pulsed diode laser with a max rep frequency of 80MHz emitting at 750nm

and a temporal jitter, at low power, of 50ps is used for TRPL and correlation

measurements. All the light sources can be coupled into the same 50µm optical

fiber (MMF) using flip mirrors, which makes it convenient to change between one

source and another without having to realign all the optics. A high power 1300nm

cw laser (not shown in the diagram) is used for fine tuning the optical alignment

and the focal distances of the lens.
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The laser light from the MMF is collimated with a 25mm lens and transmitted

through a dichroic mirror which was custom made for our application to work at

45◦ with a reflectivity >99% for λ > 1000nm and transmission greater than 50%

for λ < 1000nm. The light is focused to a ∼4µm spot on the sample with a

x100 objective (Mitutoyo NIR-series NA=0.5, wd=12mm and f=2mm). A 100mm

lens can be placed in the path of the collimated laser beam to provide a uniform

sample illumination for device identification: due to the monochromatic illumination

shallow structures can be easily identified. The sample is held at 10K in a liquid

helium flow cryostat equipped with two step-motors for moving the sample in the

plane with a resolution of 100nm.
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Figure 2.1: Optical setup for measuring PL, TRPL and antibunching.

The PL from the sample is collected by the same objective and the collimated
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beam is reflected by the dichroic mirror. The light can be directed to single mode

fiber coupling optics, or focused, by a planoconvex lens with a 100mm focal, onto

the slits of a 1m monochromator which disperses the light onto an InGaAs array

(IGA3000 HORIBA Jobin-Yvon, pixel dimensions: 25µmX500µm) for spectroscopy

measurements. The spectrometer is equipped with two gratings: the first is blazed

at 900nm with 1200 lines/mm, while the second is blazed at 1000nm with 300

lines/mm.

A 1µm feature on the sample is imaged on the entrance slits with a spot size

of 50µm and a NA of 0.01 which is compatible with the NA of the monochromator

(NA=0.04). This implies that the light from the QD forms a spot at the entrance

slits of the monochromator which is comparable to the width of a pixel of the InGaAs

detector (25µm): no significant improvement in the resolution is gained by closing

the slits hence all the light coupled into the objective is efficiently coupled into the

spectrometer. In this configuration the resolution was measured to be below 30µeV .

For time resolved and antibunching experiments the light is coupled into a

SMF by an aspheric lens with a focal of 8mm and NA=0.5, the image of the 9um

SMF core on the sample is ∼ 2µm. The single exciton transition from the QD

is spectrally filtered by a fiber-coupled tunable band pass filter (Santec-OTF 300

tunable between 1270nm and 1310nm with a FWHM of 0.8nm). For TRPL the fiber

is directly connected to the optical input of an APD detector, while for correlation

measurements a 1x2 splitter with a 50/50 ratio is used to feed the optical inputs of

two APDs.

On of the major problems of working with QDs emitting at more that 500nm

above the pump wavelength is that the objective cannot focus in the same focal
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plane the laser and the QD PL due to chromatic aberrations. As a result the highest

obtainable PL signal, in a free space spectroscopy measurement, is not achieved for

the highest coupling efficiency of the light from the QD into the objective: focusing

the laser light optimizes the power density but reduces the coupling of the PL into

the objective, while focusing at 1300nm reduces considerably the power density. This

is why a multimode fiber was used for guiding the laser pump light to the setup:

the spatial distribution of the guided modes projected on the sample produces an

approximate uniform spot as the objective is defocused, in contrast to the Gaussian

spot from a SMF that gives origin to diffraction rings as the objective is defocused

producing large local fluctuations in the power density. To solve this problem for

experiments that require small excitation areas, we adjusted the divergence of the

collimated laser beam to force the focal plane of the objective at 750nm to match

the focal plane at 1300nm.

The alignment strategy used for coupling the single photons from a QD to the

single mode fiber was the following: after a rough alignment of the light collected

from the ensemble of dots, the single X emission was selected by the BP filter and

the count rate monitored on the APD. By setting the pump power to saturate the

X emission it is possible to optimize the coupling of the signal into the fiber.

2.1.1 A tunable laser between 1210nm and 1300nm

Quasi-resonant excitation measurement in the excited state of the QD require

a tunable laser in the range 1200nm to 1270nm. Since such a laser does not exist

on the market, we used the temperature dependence of the bandgap to tune the

emission wavelength of a fiber-coupled telecom Fabry-Perot laser (Zarlink ZL60402)

20



emitting at 1300nm at room temperature. The electrical contacts of the laser chip

housing were soldered directly to an SMA connector: the lowest pulse duration

obtained was 47ps FWHM (Fig. 2.2a). The laser was pumped by a AVTECH pulse

generator (AVM-2-C with 100ps rise time and 135ps fall time). To control the

temperature, the laser was mounted on a cold finger together with a 10W resistor

and a temperature sensor, the other end of the cold finger was dipped in liquid

N2. The laser wavelength could then be calibrated as a function of the temperature

(Fig. 2.2b) by adjusting the power dissipated by the resistor. A PID controller was

used to set and stabilize the output wavelength of the laser.

(a) (b)

Figure 2.2: (a)Output laser pulse measured on a digital oscilloscope. (b)Calibration
of laser emission wavelength as a function of temperature.

2.2 TCSPC

Time correlated single photon counting (TCSPC) is a technique that was de-

veloped for measuring the PL time evolution for very weak signals, since it takes

advantage of the sensitivity of single photon detectors. The setup built for mea-

suring the radiative lifetime on our QDs is more complicated than the standard

TCSPC setups since the detectors are operated in gated mode. In Fig. 2.3 there
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Figure 2.3: Detailed diagram of the setup used for TRPL measurements.

is a detailed diagram including all the instrument configurations. We used a delay

generator (SRS-DG535) to coordinate the complex sequence of trigger signals for

the different instruments. The APD gate must be activated when the light emitted

from the QD is expected to arrive on the detector. If the APD detects an event it

sends a trigger signal to the START input of the correlation card which must re-

ceive the synchronization pulse from the delay generator (the time reference signal)

before 120ns have elapsed from the arrival of the detection pulse from the APD.

Due to the high time resolution and high laser repetition rates used in TCSPC mea-

surements, in this correlation card the traditional START-STOP inputs have been
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replaced by SYNC-START inputs: the card measures the time between the photon

arrival(START) and the next laser pulse(SYNC), then by inverting the time axis it

reconstructs the correct fluorescence decay curve. The most critical settings are the

trigger levels (SYNC and CFD) for the correlation card. The jitter and noise in the

trigger pulses combined with the high resolution of the card, will result in different

temporal resolutions for different trigger levels. It should be noted that the level

settings shown in Fig. 3.13 are valid only for this setup; different instrumentation

or different configurations require an optimization of the SYNC and CFD levels.

The START input is designed as a Constant Fraction Discriminator to handle the

output signals from SPADs and PMTs. In our setup we use clean pulses therefore

the CFD Zero Cross setting should always be zero. A good introduction to TCSPC

theory, techniques data analysis can be found in [44].

2.3 Antibunching setup

The antibunching setup used in this experiment is a fiber-coupled HBT setup

with the added complexity arising from the detector gating. Due to the high dark

counts the detectors are operated with an optical active window of 300ps. The

synchronization of the different instruments is controlled by a 35MHz function gen-

erator (SRS-DS340, see Fig. 2.4): the SYNC signal triggers the laser pulse, while

the OUT signal triggers the opening of the gates of the APDs. To get the values for

the delay between the SYNC and the OUT signals in the correct order of magni-

tude, i.e. to synchronize the detector gate opening with the photon arrival time, we

initially set long gates (100ns) and used high intensity signals (PL from QD ensem-

ble). The gate duration is then gradually reduced and the delays tuned to achieve
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the nominal 2.5ns gate length, corresponding to a ∼300ps active window. For the

final optimization the signal from the single exciton transition must be fed into the

detectors and both the gate width and delay must be tuned to optimize the SNR.

To measure the correlations for negative times we shifted the zero time delay (t0)

by introducing a 2.5µs delay on the output of one of the detectors with the delay

generator (DG535).
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Figure 2.4: Detailed diagram of the setup used for antibunching measurements with
SSPDs.

Due to the long integration times and mechanical instability it was necessary to
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constantly monitor the count rates on the detector and control the optical alignment.

For this purpose, the control signal of the X and Y movements of the cryostat sample

holder, the piezo control voltage for the Z movement of the objective and the detector

count rate were fed to an ethernet bus coupler (WAGO I/O-750): a simple software

program (developed in LabView) running on a PC outside the lab could then be

used to monitor and control the experiment in real time without interfering with

the data acquisition.

The setup for measuring single photon correlations with the SSPDs (Fig. 2.5a)

looks trivial when compared to the one for APDs since the SSPDs do not require

any gating. Attention is only needed in setting the delay (∼ 70ns) between the

SSPD and the SYNC input of the correlation card to ensure that the t0 falls within

the time window of the correlation card. The t0 can be checked by feeding the signal

from one SSPD (or any other source) to an antireflection splitter and by connecting

the outputs to the correlation card as shown in Fig. 2.5b. The same configuration

can be used to obtain the jitter of the correlation card. It should also be noted

that the amplitude of a detection pulse from an SSPD depends on the level of the

DC-bias, hence the trigger levels on the correlation card and the detector pulses

should be regularly verified.
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Chapter 3

Single QD spectroscopy

By spatially isolating a single QD in mesas or metallic apertures we measured

the power dependence of a single QD PL spectra and related the spectral lines to

specific charge configurations in the QD. An extraction efficiency grater than 10%

was obtained for QDs embedded in planar microcavities. By spectrally isolating a

single exciton transition line we measured the time dependence of the PL and used

the results to fit the power dependence of the integrated PL signal from the X and

BX lines with a simple rate equation model. Finally we discuss the experimental

evidence of a background emission revealed in time-integrated and time-resolved

measurements.

3.1 A single quantum dot device

The design of a single photon source device based on QDs requires considera-

tion of two fundamental problems: the extraction efficiency and the spatial isolation

of the emitter. As a first approximation a QD can be considered as an isotropic emit-

ter embedded in a semiconductor material (GaAs n≈3.4) with an index of refraction

greater that air. A simple analysis of the problem, using Snell’s law, shows that less

than 2% of the QD emission can be extracted in air in a cone of light from the

top of the sample. In most cases the efficiency is further reduced by the limited

NA of the collection optics. Numerous light extraction strategies have been devel-
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oped for the LED industry [45], but only few of them are applicable to our system,

manly due to the spatial resolution required to isolate a single QD. To optimize

the extraction efficiency into the NA of the objective we embedded our QDs in a

planar microcavity with the aim of reducing the allowed optical modes to which

the emitter can couple to [46]. This approach is more fundamental as compared to

other collection strategies, since emission of the source is modified by the cavity:

the emitted photons are funneled in the optical modes. A well designed microcavity

can couple a large fraction of the emission of the dipole to a single mode having

an angular distribution matching the extraction cone determined by the GaAs/air

interface. A planar microcavity consists of a spacer embedded between two planar

mirrors. The mirrors can be metallic, Distributed Bragg Reflectors (DBRs) or a

combination of both. DBRs are periodic multilayer structures with a unit cell of

two dielectric layers. Each unit cell, a DBR pair, consists of a low and high refractive

index material with an optical thickness equal to λ/4 for the designed wavelength.

The advantages of these mirrors is that they can be easily included in the device

structure during the epitaxial growth. The reflectivity of a DBR covers a limited

spectral range which changes with the incidence angle. The optical properties of

DBRs can be calculated with the transfer-matrix formalism [47]. The microcavity

designed for our quantum dots consisted of a bottom DBR (14 pairs of GaAs and

Al0.9Ga0.1As), a λ GaAs cavity centered around a layer of QDs and a top reflector

made by one DBR pair (see SEM photo Fig. 3.1a). The cavity was designed to

achieve an extraction efficiency of 9% into an external NA of 0.5. PL from QDs

embedded in the micro-cavity show more than an order of magnitude increase over

QDs, grown in the same conditions, embedded in bulk GaAs (Fig. 3.1b), as expected
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Figure 3.1: (a) SEM image of planar microcavity. (b) Comparison of PL intensity
for QDs in bulk and buried in a planar microcavity.

from the calculation. The spatial resolution required to isolate a single QD depends

on the QD density. The new growth method developed as part of this project [48],

achieved densities as low as 1-2dots/µm2 simplifying the task of QD isolation. Two

different approaches where tested for isolating a single QD[49]. Mesas of 1-2µm by

etching through the active region. The processing steps are described in Fig. 3.2a,

where the aim is to first form the SiOX masks used to define the mesas during the

RIE etching step. The fact that the QDs are not embedded any more in a planar

micro-cavities does not change significantly the pattern of the angular emission. The

alternative method consists in using metallic apertures with diameters ranging from

3µm down to 800nm to limit both the injection and collection area. A uniform

layer of resist (UV3) was spin-coated on the sample and the pattern was defined

by EBL. After a 2min baking at 140◦C the resist is developed and a Au-Ti alloy

120-140nm thick is evaporated onto the sample. Lift-off is realized in an ultrasonic

bath of acetone for a duration of 10 min to expose the apertures (Fig. 3.2b). Both

methods yield similar results as shown by the single QD PL in Fig. 3.2c. It was

observed that mesas provide improved spectral isolation since in the metallic aper-
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Figure 3.2: (a) Mesa processing steps. (b) SEM image of metallic apertures (pads
are 10x15µm). (c) Single quantum dot emission from the ground state isolated by
a mesa and metallic aperture.

ture, light is collected from dots in the vicinity of the aperture contributing to a

higher background. As compared to mesas, metallic apertures have a lower device

yield due to problems related to the lift-off process: for a successful process a ratio

of 10 is required between the thickness of the resist and the metal film. Thanks to

the success in growing ultra low density dots , we where not confronted with the
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problems reported in literature typical for high density QDs. High density samples

require small diameter mesas that influence the carrier dynamics in the QDs [50],

or small metallic aperture that cause losses due to diffraction effects.

For further reading on light propagation in optical media see [47], while for an

overview on light collection strategies for single photon sources see [51, 52, 35] and

for the concepts behind the design of planar cavities see [46, 53].

3.2 Non-resonant Photoluminescence

A QD can be optically excited in different ways, depending on where the

photo-generated carriers are created. One method consists in creating a reservoir

of carriers in the material surrounding the QD by tuning the laser energy to pro-

mote electrons into the conduction band of the wetting layer or of the bulk GaAs

(Fig. 3.3a). The carriers then relax to lower energy states, through scattering events,

and sequentially fill the confined energy levels of the QD and recombine through

spontaneous emission to emit a photon. The second approach consists in tuning

the laser to the energy states in the QD (see next section). Above-band excitation

is a convenient way of generating carriers for several reasons. It is efficient since

the absorber material (GaAs) is relatively thick requiring low power densities, and

scattered laser light can be efficiently filtered since the emission wavelength is far

from the emission of the QD. The photoluminescence spectrum of the ensemble of

QDs, shown in Fig. 3.3b for high power density, is characterized by several broad

peaks corresponding to the transitions represented in Fig. 3.3a between the confined

energy levels in the QD. The transitions are broadened inhomogeneously by the con-

tribution of the individual dots which emit at slightly different energies due to the
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Figure 3.3: (a)Schematic of carrier capture of QD under non-resonant excitation.(b)
PL from ensemble of dots at high excitation intensity, the background signal above
1000nm is due to emission from doping levels in the substrate.

size dispersion. The transition with the lowest energy corresponds to the emission

of excitons recombining in the GS. The higher energy peaks correspond to emission

from the higher excited states of the QD. At 940nm we identify an emission due to

the exciton population in the WL. Non-resonant excitation provides a practical tool

for investigating the confined energy structure of the QD: by increasing the excita-

tion intensity of the laser the sequential filling of the QD states can be controlled.

Assuming that the number of carriers excited above-band follow the same statistics

of the incident laser, the capture probability is random and independent from the

dot population, the probability (Pn) of finding n excitons in the QD is given by a

Poisson distribution:

Pn =
αn

n!
e−α (3.1)

where α is the average number of excitons in the dot and is proportional to the

intensity of the laser. Pn is plotted as a function of alpha for the first four excitons

in Fig. 3.4(b) together with the spectra from the GS of a single QD for increasing
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cw laser excitation. At the lowest excitation density a single line is present in

(a)

(b)

(c)

0.3

0.1

Figure 3.4: (a)Power dependence of the GS emission from a single QD.(b) Proba-
bility occupation as a function of average number of electron hole pairs in the dot
(alpha).(c) PL from smaller QDs showing similar spectral features.

the spectrum, corresponding to the QD populated by a single exciton (marker A in

Fig. 3.4b) in the GS. It should be noted that the position of the markers is only

indicative. As the power is increased the intensity of the X increases due to the

increased probability of finding an exciton in the QD, and more spectral lines begin

to appear on the low energy side of the X transition, these lines correspond to the

recombination of an electron-hole pair in the GS in the presence of other charges in

the QD (marker B in Fig. 3.4b), the shift in energy of the new transition lines is due

to the Coulomb interaction between the carriers (see below). At yet higher excitation
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intensities the spectrum becomes more complex with the appearance of more lines,

and the X peak reduces in intensity: due to the large number of carriers generated

there is a higher probability of finding multiexciton complexes in the dot rather than

the single exciton (marker C Fig. 3.4b). In general the intensity of any emission

line under cw excitation increases, reaches a maximum, and then decreases as the

excitation power is increased. It is interesting to note that there is a remarkable

similarity in the spectral signatures between our QDs and the QDs emitting in the

900nm region studied by J.J.Finley et al. [54]: the clean multiexciton transitions

indicates the presence of a larger confinement energy in our QDs (Fig. 3.4c).

Poisson statistics can also be used for describing the QD population for pulsed

excitation, but in this case the probability of occupation only describes the initial

condition after the laser pulse. The PL spectra at low power densities presents

similar characteristics to the cw spectra, as shown in Fig. 3.5 where we compare

the integrated PL intensities of the spectral lines marked X and BX as a function

of excitation intensity for the two pump regimes. At low excitation power, the PL

intensity dependence on the laser power P for both pump modes can be fitted by

the relation IX,BX ∝ P n, with n = 0.70 ± 0.05 and 1.35 ± 0.05 for X and BX

lines, respectively. This fit is only shown for the cw measurements. The fact that

the ratio of the exponents is equal to 2 (nBX/nX = 2) confirms that the BX line

corresponds to the biexciton emission. Under pulsed excitation at high power

densities, unlike the cw case, both lines reach a maximum then the PL saturates at

the same intensity: due to cascade emission the multiexciton state always decay to

the single exciton state, so that a photon from the exciton recombination is emitted

after each pulse. This is true only if the laser pulse duration is much shorter than
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Figure 3.5: Integrated PL for X and BX under (a) cw excitation with fit to low
power densities and (b) pulsed excitation with steady state solution to the system
schematically represented in the inset.

the X lifetime and the repetition period is much longer than the time it takes to

empty the dot. To model the change in PL intensity with excitation intensity, we

used the following system of rate equations for the simple two level model shown as

an inset in Fig. 3.5b:

dPX

dt
=

PBX

τBX

− PX

τX

− PNR

τNR

dPBX

dt
= −PBX

τBX

assuming the initial populations:

P0 = eα

PX = αeα

PBX = 1 − P0 − PX

Where PX and PBX are the exciton and biexciton population probabilities, with the

respective radiative lifetimes, τX and τBX , obtained from TRPL measurements on

the same QD(section 3.4). The steady state solution of this system is used to fit the

pulsed measurements in Fig. 3.5b. The only fitting parameter used in the model to
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fit the experimental data is the value of τNR which represents a non-radiative decay

channel for the exciton population and is responsible for reducing the saturation

intensity.

The energy difference between the multiexcitonic peaks and the single X tran-

sition represents the binding energy of the multi-charge complex. It should be noted

that there is no clear physical meaning in defining an exciton binding energy for a

QD since it is not possible to populate a QD with a single hole and a single electron

without them interacting [55]. In a QD the energy shift of an exciton transition due

to the presence of spectator charges is given by the sum of the three Coulomb terms

[56, 57]:

4E
(Ne,Nh)
e1,h1

= [εe1 − εh1 − Je1,h1 ]

− [
Ne∑

i=2

(Je1,ei
− Jh1,ei

) +
Nh∑

j=2

(Jh1,hj
− Je1,hj

)]

+ [∆
(Ne)
exch + ∆

(Nh)
exch ]

+ ∆(Ne,Nh)
corr . (3.2)

The first term represents the transition energy of the neutral exciton, given by

the sum of the single particles energies (εe1 and εh1) and the Coulomb energy (Je1,h1).

The second term describes the direct Coulomb interaction between the spectator

charges and the exciton. The third term takes into account the exchange energy

arising from the spin of the system (the Hartree-Fock model[58]). The last term takes

into account the correlation energy due to the change in the Coulomb interaction

as a result of the perturbation of the wavefunctions. In a strongly confined system

(Bohr radious>QD size) the electron and hole wavefunctions are determined by the

confining potential, as a consequence the direct Coulomb energy always dominates
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over the exchange and correlation terms. It should be noted that for a non-zero direct

Coulomb term (second term in eqn. 3.2) the spatial distribution of the electron and

hole wavefunctions must differ, for example in the case of InAs where the hole has

a higher effective mass leading to a more localized spatial distribution as compared

to the electron. As a consequence the addition of a hole to the GS of an InAs QD

populated with an exciton will cause a blue shift in the emitted spectra: in the

second term the first summation goes to zero while the second summation becomes

positive [59]. In Fig. 3.6 we show the spectra for a QD pumped non-resonantly with

a pulsed laser emitting at 750nm: the X and BX emission intensities have been

identified through the power dependence (Fig. 3.5b). At low power densities the

spectra is characterized by a sharp transition blue shifted with respect to the X

transition by 5nm, on the basis of the analysis made above we attribute this line to

the recombination of an electron hole pair in the presence of a spectator hole in the

GS.

Figure 3.6: PL spectra of a single QD for increasing power densities under pulsed
excitation.

37



In non-resonant excitation the spectra of a QD can change as the laser energy

is tuned to excite in the GaAS bulk or in the WL. In Fig. 3.7 we show the spectra

from a mesa that contains two QDs and for which we identify both the X and

X+ line (labeled X1, X
+
1 , X2, X

+
2 ). When exciting in the bulk a higher number of

spectral lines are present in the spectra and for both dots we observe a group of lines

redshifted by ∼10nm. For QD2 the lines overlap with the transitions of QD1. A

redshift in the binding energy suggest that the transition are due to negative charging

of the dot. For InAs QDs, larger binding energies for the X− as compared to the

X+ have been both calculated [60] and measured[61]. The emergence of negatively

charged excitons as the pump energy is tuned to excite in the bulk GaAs has been

already observed in InAs QDs and attributed to higher effective diffusivities[62].

Figure 3.7: Comparison of the PL of two QDs in the same mesa for excitation in
the GaAs and in the WL.
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3.3 Resonant Photoluminescence

In quasi-resonant excitation, the laser is tuned to a higher transition within

the quantum dot (Fig. 3.8a), so that electron-hole pairs are created directly, for

example in the ES1, and can then relax to the GS where it recombines. A much

larger laser power is required than for above-band excitation, since the absorption

cross-section of a single quantum dot is very small. PL excitation spectroscopy

(PLE) consist in measuring the intensity of the emission of the GS transition as the

laser energy is scanned across the excited states. This technique is used to study

the the relaxation mechanisms in QDs [63]. The major problem of making such

measurements on our QDs is that to excite in the ES states we require a laser that is

tunable between 1200nm and 1250nm. Although materials such as InGaAsP provide

optical gain in the required spectral range, there is no commercial application and

tunable lasers do not exist at these wavelengths. To pump in the excited state
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Figure 3.8: (a)Schematic of quasi-resonant excitation in the ES. (b) Spectra of the
cooled laser diode (black line) and the QD ensemble at 10K under non-resonant
excitation, showing the overlap of the laser with the ES1.
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we took a standard telecom pulsed diode laser emitting at 1300nm and cooled it to

approx 100K to achieve an emission around 1215nm to overlap the transition energy

of ES1(Fig. 3.8b), as demonstrated in section 2.1.1. Although a Fabry-Perot cavity

PL on QD1 PL on QD2

EL

EL

EL

EL

EL

EL

EL

EL

(c) (d)

Figure 3.9: (a) and (b) schematic QD energy diagram for neutral dot and charged
dot respectively. (c) PL for two QDs in separate mesas emitting at different energies
for different pump power energies.

laser can be tuned over a wide spectrum the emission is multi-mode limiting the

resolution of PLE measurements. The PL of the ground state of two QDs are shown

in Fig. 3.9 as the laser is scanned across the excited states. The emission lines are
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identified by comparison with the PL from non-resonant excitation. As the emission

energy of the laser is scanned across the excited states, the spectra from the two dots

present very similar features which are reproduced for the same relative change in

excitation energy. In spectra 2 and 4 (Fig. 3.9c,d) a high PL efficiency is observed,

with the neutral transitions dominating the spectrum: the laser energy is resonant

in the ES1 states (Fig. 3.9a). In the spectra 1 and 3 (Fig. 3.9c,d) the intensity of

the X+ line is enhanced, implying that the laser energy is resonant with the excited

states of the charged exciton as shown in Fig. 3.9(b): the presence of a hole in the

GS renormalizes the energy levels in the QD inducing a red shift.

The presence of charges in the surrounding of the QD also explains the origin

of the gaussian line shapes as opposed to lorentzian (Fig. 3.10) as would be expected

in quasi-resonant excitation [64, 65]. The advantages of quasi-resonant excitation

Figure 3.10: Positively charged exciton transition under quasi-resonant excitation
showing the Gaussian profile of the spectral line.

become evident when we raise the temperature of the sample to about 70K. Fig. 3.11
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compares the spectra of the same dot for an excitation wavelength of 750nm and

>1220nm at high temperature. Under resonant excitation we obtain a complete

suppression of the broad background emission and the recovery of the narrow PL

lines. To compare the spectra for similar QD populations under both excitation

regimes, a series of measurements showing the power dependence of the PL spectra

is need to obtain an accurate estimate of the background contribution to the PL

signal. The background emission is of particular relevance to our application since

it is a source of uncorrelated photon emission and deteriorates the single photon

light statistics of the device. A discussion on the background emission can be found

in the last section of this chapter.

QD 3

QD 2

Figure 3.11: Quasi-resonant PL at 70K compared to non-resonant excitation.

42



3.4 Time resolved Photoluminescence

To study the rate of depopulation of the excitonic states we used the TCSPC

setup described in section 2.2. This technique is well adapted for measurements on

our long-wavelength emitting dots since it takes advantage of the high sensitivity

of the single photon detectors. Other methods, such us up-conversion techniques

and streak-cameras, are not suitable due to the low sensitivity at these wavelengths.

The setup used in these experiments is more complicated as compared to standard

TCSPC measurements since the APD must be gated. The arrival time of photons

on the detector have to be synchronized with the opening of the gate and the time

window of the correlation card. It must be noted that the APD resolution depends

on the count rate hence it is important to measure the time resolution of the setup

(SRF:setup response function) at a rate close to the experimental one. Due to

the mismatch between the APDs spectral response and laser wavelength, the SRF

(Fig. 3.12a) was measured with a sample of GaNInAs quantum wells, emitting at

1300nm at room temperature, with a lifetime previously measured to be 50ps [66],

which is well below the temporal resolution of the detector (∼600ps).

DETECTOR DARK COUNTS

Figure 3.12: (a)Setup response function (SRF) measured on GaNInAs QW. (b) Raw
TRPL measurement on a single exction (continuous line) and detector dark counts
in a 100ns gate (filled gray area).
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In Fig. 3.12b we compare a raw TRPL measurement on the exciton transition

with a measurement of the same integration time but with the laser switched off:

the shape of the 100ns gate used to measure TRPL presents unexpected features.

The higher dark counts at the beginning of the gate are due to the way in which the

APD functions: when an avalanche is detected the bias on the APD is switched off

and for the remaining duration of the gate the APD is disabled. As a consequence

there will be a greater number of events recorded at beginning of the gate. The

ripples at the beginning and at the end of the gate are due to reflections in the

electronics.

Figure 3.13: TRPL on single X and BX emission. Inset: evidence of cascade emission
at short time delays.

By isolating the single X and BX transition with a narrow band pass filter

we measured the time dependence of the single exciton transitions. The continuous

lines in Fig. 3.13 show the least square fits to the decaying part of the PL for

the X and BX after dark noise subtraction. The least square fits are calculated

from the convolution between a two (one) term exponential decay function for the
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X (BX) and the SRF. The error on the fits is estimated at ±0.2ns. The delay

in the start of the decay of the X emission compared to the BX, is evidence of

cascade emission and validates the peak assignment (inset Fig. 3.13). The exciton

lifetime is characterized by a double exponential decay of 1.1ns and 8.6ns: the fast

component derives from the recombination of a bright exciton while, the slower

decaying part suggests the presence of a dark exciton state that is repopulating the

allowed exciton transition [67, 64]. A measurement of the temperature dependence

of the exponential decay will be required to validate this conclusion. The BX decay

time was measured to be 1.0ns: the ratio of 1.1 between the exciton and biexciton

lifetime is consistent with previous studies on single QDs [68]. When the QD size

is comparable to the Bohr radius, the Coulomb effects are not any more a small

perturbation to the dominating quantization of the kinetic energy. For holes, the

changes in the wavefunction spatial distribution are more significant, as compared

to electrons, due to their higher effective mass. As a consequence, a larger QD size

results in an increased spatial separation of the hole wavefunction, a reduction of

the overlap integral and an increased BX radiative lifetime. From the cross-sectional

TEM images (Fig. 1.5(f)) QDs have base dimensions of 37.5nm which is comparable

to the exciton Bohr radius in bulk InAs (34nm [43]).

3.5 Discussion on QD background emission

In chapter 4 we show that, like atoms, QDs can produce single photon states,

but unlike atoms QDs are not isolated from their environment. A constant reminder

that we are dealing with a quantized energy system coupled to a continuum of states

[63] is that the confined states in the QD can be populated by charges created in
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the barriers by optical or electrical injection. The most compelling evidence found

in literature that sets epitaxial QDs apart from atoms are the intensity correlation

measurements on single exciton transition. QDs behave as perfect single photon

emitters only under special measurement conditions. An increase in the number

of excited carriers or a rise in the temperature show a degradation of the light

statistics: the QD is emitting an uncorrelated signal together with the single photons

as demonstrated in Fig. 4.7. Few reports [69, 70] have tried to explain the origin

of this uncorrelated light and attribute the background emission to the overlap

of phonon-broadened spectral lines belonging to the same QD or a separate one,

but no clear evidence is presented that demonstrates the overlap of spectral lines.

Next we present an overview of the data collected during this thesis in which we

emphasize the presence of the background emission. In Fig. 3.14(a) we present the

PL spectrum of a single QD populated by optically exciting carriers in the WL

using a cw laser emitting at 835nm. At low power densities on average only a few

carriers populate the dot and the spectra is dominated by narrow spectral lines.

In contrast at high power densities a large number of carriers are present in the

dot and in the surroundings: the spectrum shows a weak and broad emission with

a few spectral features reminiscent of the narrow transitions. In Fig. 3.14(b,c

and d) we present the PL spectra, at 10K, of a single quantum dot populated by

carriers excited in the bulk using a pulsed laser. At 250pW the spectra is dominated

by narrow spectral transitions in which we can identify the X and BX, at 700pW

the BX is saturated and a background signal starts to emerge. Three order of

magnitude higher in power (262nW) the BX intensity has not changed but the

background emission has become more intense and has spread over the spectrum
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(a) (b)

(c) (d)

(e)
(f )

Figure 3.14: (a)Single QD PL under cw excitation at 835nm. (b,c,d) PL from
single QD under pulsed excitaion at 750nm for different power densities. (e) Quasi
resonant PL on single QD pumping in the excited state at 1221nm. (f) Comparison
between resonant and non-resonant excitation at 70K.
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of the GS. In Fig. 3.14(e) we present another QD pumped quasi-resonantly in the

excited state: while it has similar PL intensity and a similar X to BX ratio as the QD

in Fig. 3.14(d), it does not show the presence of any background emission. Similar

results have been obtained before on smaller QDs([71]). The difference between

the PL signals from the QD for different pump energies is amplified when we rise

the temperature of the sample to 70K Fig. 3.14(f): while the signal from the non

resonant excitation is dominated by a broad background with small narrow features,

the PL resulting from the quasi-resonant pumping shows a remarkable recovery of

the narrow exciton transitions. The quasi-resonant measurements reveal spectral

lines with broadened bases which are the typical signature of the coupling between

excitons and acoustic phonons [72, 73, 74]. This phonon broadened base cannot

account for the background emission.

We further investigated the temporal dynamics of exciton transitions and back-

ground emission. In Fig. 3.15(a) we present the time evolution of the biexciton

emission, spectrally isolated by a 0.8nm FWHM band-pass filter, for the same power

densities as shown in Fig. 3.14(b,c,d): at low excitation intensity the time evolution

of the PL shows the standard BX signature (section 3.4). As the pump power is

increased to 750pW to saturate the BX emission, the delay in the decay of the PL

increases to 1.5ns. A further increase in the excitation intensity by three order of

magnitude further shifts the decay of the BX to 4ns exposing another decay devel-

oping on faster time scales (with a risetime limited by the resolution of the setup) at

the same recombination energy of the BX. This new decay curve will be referred to

as the broadband emission. The same behavior is observed on the X emission, the

positive trion and on the ensemble of dots. There is a good correspondence between
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the increase of the background emission in the integrated PL data (Fig. 3.14(b,c,d))

and the emergence of the broadband emission: we tentatively associate the broad-

band signal in the TRPL to the background emission in the PL. In Fig. 3.15(b) we

compare preliminary TRPL measurements made by pumping in the excited state the

unpaterned QD sample. The spectrum for the resonant excitation (inset Fig. 3.15b)

is characterized by a single exciton transition that dominates the spectra and a few

other weak narrow lines. Indeed we observe a significant difference between the rise

time of the two curves: due to the time scales involved it is not possible to attribute

the different rise times to the delay caused by the capture time of the carriers. The

delay in emission from the GS under non-resonant excitation has to be attributed

to another process. Finally we isolate the broad background emission by placing

a narrow band pass filter in a region of the spectrum where narrow transitions are

absent (inset Fig. 3.15c) and measure the TRPL at a pump power of 262nW: the

rise of the luminescence is limited by the setup resolution.

The TRPL measurements on the BX line Fig. 3.15(a) imply the existence of

a reservoir of carriers that can repopulate the QD. Evidence for the presence of

long lived carriers in the WL is found in the TRPL measurements made on the WL

PL signal (Fig. 3.15e) using a 40nm bandpass filter (Fig. 3.15d). The PL decay

is characterized by a double exponential decay of 0.3ns and 4.9ns, obtained after

deconvolution with the SRF. The fast component is tentatively attributed to the

recombination of the exciton, while the slower decaying part is tentatively attributed

to free carrier recombination. Szczytko et al.[75] measure and calculate the evolution

of the population of excitons and free carriers in a QW, and present evidence for of

long lived free carriers in the WL in agreement with our measurements. In the same
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Figure 3.15: (a)TRPL for the same power densities as in Fig. 3.14b,c and d. (b)
TRPL of ensemble of QDs for excitaion in the P state. (c) TRPL on background
emission filtered through a narrow BP filter as shown in the inset. (d) TRPL
on the WL measured with a 40nm FWHM bandpass filter. The solid line is the
convolution between a two term exponential decay function and the SRF.(e) PL
power dependence of an ensemble of dots including the WL under cw excitation.
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work, the exciton formation process is explained through the coupling to optical

photons. The formation rate evolves with plasma concentration and temperature

affecting the probability of interaction with phonons. This explanation can be used

to justify the presence of the PL signal from the WL only at relatively high power

densities as compared to PL signal from the GS of the dots (Fig. 3.15e): at low

powers the carrier capture, relaxation and recombination in the QD is more efficient

that the exciton formation process in the WL.

Two conclusion can be drawn from the evidence presented: first, the back-

ground emission is coming from transitions between electron and holes in the GS

of the QD since there is no other energy structure in the system that can emit at

this wavelength. Second, the presence of carriers in the surrounding of the QD are

a playing a role in the uncorrelated broadband emission. The non-resonant TRPL

measurements suggest that the emission from the GS, at high power densities, is

characterized by distinct phases. In an initial phase, after the pump pulse, a large

density of free carriers surrounding the QD is causing a featureless broadband mul-

tiphoton emission from the ground state. As the number of carriers in the wetting

layer is reduced, by radiative, non-radiative recombination and repopulation of the

dot, we observe the expected decay from the undisturbed exciton transitions in the

QD. This picture is confirmed by the steady state carrier populations obtained un-

der cw excitation: at high power intensities only a featureless and broad signal is

measured in the PL spectrum Fig. 3.14(a). As the power is reduced fewer carriers

are interacting with the excitons in the QD and we see a mixture of both narrow

transitions and broad background.

It is interesting to investigate the carrier dynamics that are required to give
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Figure 3.16: Fit to the TRPL data at 262nW. On the right side: a schematic of the
model with the fitting parameters.

origin to the unusual time-dependent PL signature measured on our QDs. We chose

to represent the energy of the system, after the laser pulse, with n-excitonic levels

which undergo cascade emission. The model consists of 5 multi-excitonic states and

the BX state schematically represented in Fig. 3.16. There is no specific reasoning

behind the choice of the number of levels, the system could be well modeled by more

levels and different recombination times. We have neglected the X transition since

it does not influence the PL dynamics of the higher laying levels. The following

system of equations was used:

dPn

tn
= −Pn

tn
+

Pn+1

tn+1

−→ 1 ≤ n ≤ 5 (3.3)

and for the last level (n=6):

dPn

tn
= −P6

t6
(3.4)

Where Pn is the population probability of the energy level n and tn is the radiative
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lifetime. The broadband emission (B) measured in the TRPL data emerging at high

powers and shifting the BX emission to longer time delays is given by the sum over

the steady state solutions for the levels above the BX:

B =
6∑

n=2

Pn

tn
(3.5)

In the initial condition the system is in it’s highest energy state (P6 = 1 and Pn<6 =

0), corresponding to the instant when carriers are excited in the bulk by the laser

pulse. We then let the carrier populations evolve through cascade emission down

to the lowest level. The change in excitation intensity is simulated by removing

energy levels. The level at n=1 corresponds the QD dot populated by the BX, with

a radiative lifetime of 1ns. To simulate the effect of the BP filter on the collected

intensity we reduce by a factor of IB/IBX the broadband emission: an initial guess of

this factor was obtained from comparing the narrow BX transition to the broadband

emission and taking into account the profile of the band pass filter. Fig. 3.16 shows

the fit made to the experimental data obtained for an excitation of 262nW on the

BX and on the background, using values of τ shown in the diagram of Fig. 3.16. The

model fits the data to a good accuracy except for long time delays. We note that we

can simultaneously fit the broadband emission ( measured at the same power density

Fig. 3.15(c)) and the filtered TRPL signal from the BX emission, only the intensity

of the measurements have been scaled. At lower excitation densities (Fig. 3.17)

the model is reduced to a three level system and the characteristic rise time is well

described by the model. A better fit could be achieved with a higher number of

energy levels to increase the resolution of the model, but more experimental data is

required to help in the non-trivial task of refining the values of the fitting parameters.
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Figure 3.17: Fit to the TRPL data at 700pW. On the right side: a schematic of the
model with the fitting parameters.

In agreement with the interpretation of the experimental data made above, the

model suggests that for each laser pump pulse several excitons are recombining in

the GS of the QD: the GS is being fed by a reservoir of charges which modifies

the radiative lifetime and emission energy. A dedicated series of PL and TRPL

measurements are required to establish the correlation between the emission from

the ground state of the QD and the WL under the same excitation conditions. To

gain further insight into the origins of the interaction on the carriers confined in

the QD, it would be interesting to measure the PLE to investigate the onset of the

continuum in these deeply confined QDs.

This model was developed independently without the knowledge of the exis-

tence of similar work [76] used to give a quantitative explanation of a BX sideband

in shallow QDs.
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Chapter 4

Counting single photons

In Chapter 3 we showed that we are able to isolate a single X transition

and measure the time evolution of the photoluminescence. In this Chapter we

measure the light statistics from this transition and show that the QDs can emit

single photons under pulsed and cw excitation. We provide an analysis of the setup

efficiency and suggest ways of improving the efficiency to make the devices suitable

for QKD applications. Finally we measure the second order correlation function

on the emission from the single exciton transitions under quasi-resonant excitation

using novel detectors based on superconducting nanowires.

4.1 Measurement of g(2)(0)

The standard technology used for single photon detection at telecom wave-

length is based on InGaAs APDs. Due to the high noise levels and low QEs these

detectors must be operated in Geiger mode, i.e. the APD is biased above avalanche

to achieve single photon sensitivity for short times, of the order of a few nanosec-

onds. As a consequence a measurement of the g(2)(τ) is not possible since it requires

photon correlations spanning the lifetime of the two level system. For this reason

we excite the QD with laser pulses at a well defined repetition rate and synchronize

the opening of the gate on the APDs with the expected arrival time of the pho-

tons. For an application to QKD this operation mode does not present a limitation
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since synchronization is required between parties. In these conditions the intensity

correlation function is defined as [77]:

g(2)[i] =
〈C2[i]C1[i]〉
〈C2〉〈C1〉 (4.1)

where C1 and C2 are the counts recorded on the detectors for pulse [i]. A plot of this

function (Fig. 4.5) is characterized by a series of peaks separated by the repetition

period of the laser: the peaks at i 6= 0 correspond to events when photons are de-

tected from two different pulses while the central peak at i = 0 corresponds to events

where two photons are detected from the same pulse. This measurement technique

is useful only for obtaining a value for the g(2)(0). The number of coincidences (CC)

in each peak are:

CC = CR1 ∗ CR2 ∗ T ∗ P, (4.2)

where CR1,2 is the count rate recorded on each detector, T is the integration time and

P the laser repetition period. For a coherent source all peaks have the same area,

while for a single photon source the central peak goes to zero. In this discussion

we are assuming that the source properties are periodic, so that all expectation

values are unchanged when the pulse number index is shifted. In characterizing a

single photon source, it is evident from equation [ 4.1] that any uncorrelated event

that produces a count on the detector will contribute to the g(2)(τ = 0) and if the

uncorrelated events are a significant part of the total events, it will not be possible

to correctly characterize the light statistics of the source. To quantify the influence

of uncorrelated noise on the measured g(2)
m (0) we can write the correlation function

taking into account the noise N1,2 at each detector [30]:

g(2)
m (0) =

〈C1C2 + N1C2 + C1N2 + N1N2〉
〈C + N〉2 (4.3)
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(a) (b)

Figure 4.1: (a) Intensity correlation function at t=0 as a function of SNR. (b) Time
resolved PL measurement on the X transition.

which can be simplified to give:

g(2)
m (0) = 1 + ρ2g(2)(0)− ρ2 (4.4)

where: ρ = C
C+N

for C1 = C2 and N1 = N2. The simulation of the g(2) (eqn. 4.4)

calculated for a perfect single photon source in the presence of uncorrelated noise is

plotted in figure 4.1a as a function of the ratio C/N. In figure 4.1b we show the

raw data obtained for the lifetime measurement on the X line: from this plot we

can estimate the C/N ratio by comparing the grey area (noise) and the signal from

the exciton to be approximately equal to 0.7 which gives a g(2)(0) = 0.83.

This is the minimum value we could ever hope to measure from a perfect single

photon source. The signal in the TRPL measurements is already optimized as

discussed in the previous chapters: the QDs are embedded in a planar micro-cavity

to optimize the extraction efficiency into the objective, a narrow BP filter is used to
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isolate the single X transition and the sample is kept at low temperature. The only

possibility of demonstrating single photon emission is to reduce the detector dark

counts.

4.1.1 The APD

An APD is affected by two sources of noise, dark noise and afterpulsing. Dark

noise is due to the thermal excitation of electrons in the ionization region. The dark

noise is reduced by adjusting the temperature and the reverse bias, which reduce

also the QE. Afterpulsing is due to the trapping of electrons during an avalanche

in defect levels in the ionization area of the APD. The trapped charges trigger an

avalanche during the next gate. An easy way to reduce the afterpulsing is to use a

dead time longer than the lifetime of the trapped carriers, which is of the order of

several microseconds. For the APD we define a dark count probability (DCP) per

gate, which can be calculated from:

DCP =
No.OfDarkCountsPerSecond

TotalOpenT ime
(4.5)

where: Total Open Time = No Of Gates In One Second * Gate Length.

The APDs used in our experiments are operated at an optimized temperature

and the reverse bias is adjusted so that for the predefined nominal gate length (2.5,

5, 20, 50 and 100ns) the QE is 10%. It is important to note that for these detectors

there is a difference between the nominal gate and the optical gate. The optical gate

is the actual time during which the APD is optically sensitive, while the nominal

gate is the time during which the reverse bias is applied. To measure the optical

gate the detector is arranged in a set-up similar to the one used in time-resolved
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PL measurements (section 2.2), except that the optical input is illuminated by a

cw source. The remarkable difference between the nominal gate width and optical

gate width is shown in Fig. 4.2 for the settings used in the single photon correlation

experiments. It is important to be aware of the difference for two reasons:

a - A measurement of the DCP requires normalization to the optical gate width

and,

b - The APD optical gate duration must be tuned to the X lifetime to optimize the

ratio C/N.

Figure 4.2: Comparison between optical gate and nominal gate on the idQ200.

Figure 4.3a shows the DCP as a function of the gate width: below a nominal

gate width of 5ns the DCP drops down by an order of magnitude. Although the

optical gate width is significantly smaller than the X lifetime (Fig. 4.2), by fine

tuning the duration of the gate (Fig. 4.3b) we obtain a C/N ratio of 10 which is

acceptable for characterizing single photon sources. It turns out that the optimal

optical gate width (∼300ps) corresponds to a nominal gate of about 2.8ns which is

close to a standard setting in the APD for which the bias voltage is tuned to give a

QE of 10%. This reduction of DCP for short gates is not understood and it is not
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repeatable from chip to chip.

(a) (b)

C
/N

C/N

a.u.

Figure 4.3: (a) Measured values of DCP as a function of gate width. (b) Optimiza-
tion of the gate width to obtain the highest C/N on the X emission.

A source of correlated noise to be aware of is the cross talk between the de-

tectors. When an avalanche is triggered in the APD, a burst of electromagnetic

radiation is emitted with a spectral range overlapping the APD response curve. We

tested this in the setup in Fig. 4.4(a) where we connect the optical input of APD1

(acting as the source of the em radiation) to the optical input of APD2 (acting as

the detector of the em radiation emitted by detector1) via an optical fiber. The

delay can be set to 0ns or 50ns. When the delay is 50ns the gate on detector 2 is

synchronized with the arrival time of the photons emitted from detector1 and the

average count rate is about 530Hz (Fig. 4.4(b)). When the delay is 0ns the detector

2 opens too soon to detect the light signal emitted from detector 1 and we measure

the dark counts of detector 2 (480Hz). In Fig. 4.4(b) we show the counts on detector

2 while the delay is switched repeatedly from 0 to 50ns: there is a clear correlation

between the delay and the count rate, demonstrating that an avalanche in the APD

generates a burst of em radiation that can interfere with single photon measure-

ments. The antibunching measurements should not be affected by the APD optical
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emissions since the detectors are operated simultaneously at a repetition period of

250ns and the optical delay between the detectors is 10ns.

Detector2

Delay generator

Detector1

TRIG

Optical

     in
Optical

     in

TRIG

Optical delay

Delay = 0

 or

Delay=50ns=Optical delay

(a)

DETEC.

OUT

Figure 4.4: (a) Setup for measuring the APD emission. (b) Correlation between
delay and counts on detector 2.

4.1.2 Results

The correlation setup described in section 2.3 is used to measure the intensity

correlation function at zero time delay for a single exciton transition selected by

the 0.8nm band-pass filter. The results are show in fig. 4.5 for increasing power

densities and a summary of the experimental parameters are reported in table 4.1.

For calculating the suppression of multiphoton probability the counts in the time

bins at t 6= 0 must be normalized using equation 4.2. For each measurement the

calculated number of coincidences (using eqn. 4.2) is in agreement with the average

number of correlations in time bins at t 6=0. Moreover the standard deviation is close

to the square root of the average which indicates that the fluctuations in the bins

are random. The measured g(2)
m (0) decreases from 1 at a pump power of 350nW to

0.38 at 0.6nW, then increases again for a pump of 0.4nW. The fact that the g(2)(0)
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Figure 4.5: Antibunching measurements for increasing excitation power.
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goes below 0.5 implies that the device is emitting less than two photons per pulse.

While the detector dark counts (ND) can be easily measured by switching the

pump laser off, it is more difficult to get an estimate and to establish the origin

of uncorrelated counts (NU) during a measurement. There are two types of uncor-

related events: those due to the detection of an uncorrelated signal from the QD

emitted together with the single photon signal and those due to imperfections in

the setup such as detector afterpulsing and stray light. Assuming that the intensity

of the uncorrelated light from the QD is power dependent, as the reduction of the

g(2)
m (0) implies, it is possible to get an estimate of the detection events generated

through the power dependence of the g(2)
m (0). In table 4.1 are shown the measured

values of g(2)
m (0) for the different pump powers and in column SNRm the calculated

values of the ratio of single photons to the total noise ND + NU (using equation

4.4) required to give the measured g(2)
m (0). The total count rate measured on the

single photon detector during an experiment can be expressed as a sum of there

components:

1 - detector dark counts ND; detector counts due to thermal excitation of charges in

the ionization region during a gate. Can be measured by switching the pump laser

off.

2 - uncorrelated noise NU : the number of clicks per second due to uncorrelated

events which are not included in the detector dark counts ND;

3 - photon counts C: number of clicks per second due to detection of single photons.

During an experiment the count rate measured on the detector is the sum of the

three terms mentioned above. The quantity C + NU = S can easily be deducted

by measuring the detector dark counts(ND): in the analysis that follows we sepa-
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rate the uncorrelated noise (NU) from the single photon counts (C) and calculate

the values of the power dependent and constant components that contribute to the

value of the uncorrelated noise (NU). The SNRm can be expressed as:

SNRm =
C

ND + NU

=
S −NU

ND + NU

(4.6)

where all the quantities are known from the experiment, except for NU . Note that

the sum C + NU has the same power dependence as the exciton integrated PL

intensity measured (chapter 3) on similar QDs (fig. 4.6). Solving for NU gives:

NU =
S −ND ∗ SNRm

1 + SNRm

. (4.7)

The calculated values for NU and C are reported in table 4.1.

Table 4.1: Antibunching data. The reported values are: S=C+NU , ND: detector
dark counts, C: single photon counts, NU : uncorrelated counts, g(2)

m (0): calculated
from raw correlation data, SNRm: required SNR to give g(2)

m (0), g(2)(0): calculated
after noise (ND + NCB) subtraction.

Power Int.Time S ND g(2)
m (0) SNRm NU C g(2)(0)

[nW ] [hrs] [Hz] [Hz] [Hz] [Hz]

6 0.6 602 33 0.78 0.88 305 297 0.75
2.5 0.6 537 33 0.58 1.85 107 370 0.45
1 0.5 397 33 0.42 3.21 69 327 0.41

0.6 2 30.7 33 0.38 3.7 39 268 0.09
0.4 2 227 33 0.44 2.94 33 194 0.19

As the excitation power is reduced the photon counts (C) decrease and the

uncorrelated noise NU decrease too but with a different rate as revealed by the ratio

C/NU fig. 4.7(a). It is this ratio that determines the trend of the correlation function:

the g(2)(0) decreases because of an improvement in the SNR due to a reduction of

the uncorrelated photon emissions at lower powers, below 0.6nW the uncorrelated

photon emission does not reduce any further, in contrast to the PL signal, revealing
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a constant background of 33Hz (NCB). The different contributions of the noise are

plotted in Fig. 4.7b: the noise NU can be separated into two components: a constant

background (gray area) and a power dependent component (grid patterned area).

Contributions to the power dependent part of NU are mainly dominated by

Figure 4.6: Integrated PL measured on the APD and on the InGaAS array.

uncorrelated light from the QD due to interactions with the carriers surrounding

the QD. A discussion on the QD background emission was presented in section

(3.5). A small contribution to the power dependent noise is given by: multiphoton

emissions due to repopulation of the X state (laser line width is about 5% of the X

lifetime) and afterpulsing events due to the increase in count rates. The increase in

afterpulsing is very small since there is no change in the PL intensity dependence

on power when compared to PL integrated measurements made with the InGaAs

array detector (fig. 4.6).

Finally we can calculate the ’true’ values of g(2)(0) that characterizes our

source. The signal originating from the single QD device is given by SD = C +

NU −NCB, while the noise from the experimental setup is: NS = ND + NCB. Since
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Figure 4.7: (a) SNR as a function of excitation power. (b) Breakdown of the com-
ponents that add-up to make the signal measured during antibunching experiments.
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the difference between the detector counts is small we can assume that the bright

and dark events are the same for each detector hence the number of coincidences

contributed by the noise is (from eqn. 4.2): 2 ∗ SD + N2
S ∗ T ∗ P . Subtracting

these values from the raw coincidence counts we get the g(2)(0) values reported in

table 4.2: a minimum of 0.09 is reached which fulfills the requirements for a single

photon source for QKD applications [78].

4.1.3 Single photon efficiency

Having established that the QD embedded in the planar microcavity emits

single photon states, the next step is to examine the single photon efficiency since

it has a direct impact on the security of a quantum transmission. During a QKD

session the two parties detect the presence of an eavesdropper by counting the

number of errors in the bit sequence. The problem is that discrepancies between

the exchanged keys also happen because of experimental imperfections. The QBER

is defined as:

QBER =
NoOfWrongBits

TotalNoOfBits
. (4.8)

In a practical QKD system many factors contribute to the QBER [10], here we

consider only the contributions from the dark count rate of the detectors used in

our experiment and the resulting error rate from the single photon efficiency:

QBER =
DarkCounts/2

DarkCounts + PhotonCounts
=

(ND + NCB)/2

ND + NU + C
=

(33 + 33)/2

33 + 39 + 268
= 0.1,

(4.9)

The QBER security limit is 11% [79] which is just satisfied by our system: realistic

implementation of the single QD device for fiber based QKD requires at least an or-
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der of magnitude decrease in the QBER since losses are to be expected in the optical

circuits used for processing the qbits and from the attenuation in the fiber optic link.

Improvements in the detectors SNR and optimization of the single photon efficiency

at the fiber output are required. During this thesis the SNR of the APDs has been

pushed to the limit (section 4.1.1), an improvement of an order of magnitude is not

to be expected from this technology. New single photon detection technology based

on superconducting nanowires promise orders of magnitude improvement in SNR

over the APDs. In section 4.2.2 of this chapter we investigate the properties of a

prototype device based on these detectors.

An analysis of the optical losses in our system is presented in the following. In

Fig. 4.8 we present a schematic of the optical setup used in the single photon cor-

relation measurements with the transmission efficiency for each stage in the optical

circuit. There are two stages, each of which introduces an order of magnitude loss in

the optical signal: the coupling to the single mode fiber and the light extraction from

the QD. To assess the the coupling efficiency to the optical fiber we set an upper

limit of 4dB by measuring the coupling efficiency between two SMFs and a lower

limit of 10dB by comparing the PL intensity from the ensemble of QDs collected by

the objective and dispersed into the spectrometer, and the intensity measured by

coupling the signal from objective into the SMF fiber and back to free space into

the spectrometer. The actual single QD coupling efficiency can never be lower since

the image of the fiber on the sample is smaller than the laser spot. From the planar

cavity design the extraction efficiency of the QD spontaneous emission into the NA

of the objective was calculated to be 9%. This figure is confirmed by the thirteen-

fold increase in PL intensity from single QDs in the microcavity as compared to the
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QD extraction into 0.5 NA obj.: ~ 10dB

Objective transmission: ~ 2.2dB

SMF coupling: ~2.2 to 10dB

Band-Pass filter: ~ 2.2dB

50/50 BS: ~ 3dB

Detector QE: ~ 10dB

Laser filter: ~1.5dB

QD extraction into 0.5 NA obj.: ~ 10dB

Objective transmission: ~ 2.2dB

SMF coupling: ~2.2 to 10dB

Band-Pass filter: ~ 2.2dB

50/50 BS: ~ 3dB

Detector QE: ~ 10dB

Laser filter: ~1.5dB

Figure 4.8: Schematic of antibunching setup with the optical efficiency for each
component.

intensity from QDs in bulk GaAs (Fig. 3.1b). The calculated extraction efficiency

in bulk GaAs into the objective NA is 0.55%. The total estimated setup efficiency

adds up to 38.9dB (for a SMF coupling efficiency of 10dB), a further 0.5dB has to

be added since single photon emission is obtained below the saturation of the X

transition, as shown in Fig. 4.7. The total estimated efficiency compares well with

the measured efficiency of 41.6dB obtained by taking into account only the emission

from the sample (C+NU -NCB=274Hz (see table 4.1) at a repetition rate of 4MHz)

and assuming that for every laser pulse the QD emits a photon in the microcav-

ity. Similar correlation experiments made on single quantum dots by other groups

[6, 5] using fiber-coupled APDs measure efficiencies similar to ours. Anticorrelation

measurements on QDs emitting below 1000nm report efficiencies between 30dB and

40dB [80, 81, 82, 16, 83]. In planar micro cavities there is no in plane confinement

so most of the SE from the QD is guided in the plane of the cavity and lost in the

leaky modes propagating in the DBR beyond the stop-band: only a small fraction
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(14% in our case) is coupled to air, of which 9% is collected by the objective. Small

diameter micropillars, on the contrary, can achieve very high extraction efficiencies

into air, up to 70% has been predicted [35], through careful optimization of the

mode density around the emitter (Purcell effect [23]). But as the pillar diameter

is reduced, to achieve higher Purcell factors, the funneled photons in the extracted

mode are lost because the divergence of the mode is not compatible with the NA

of the collection optics. It would appear that a significant increase of the collection

efficiency could be obtained by combining the Purcell effect in microcavities with

a careful design of the far-field, to mach the numerical aperture of a SMF directly

coupled to the cavity to avoid the loss in the objective and focussing in the fiber

[84]. But in the realization of such a device one will run into the following setback

problems: first the technological complexity involved is mindboggling, and second

for a large micropillar, required for compatibility with the spatial mode of the fiber,

it is difficult to isolate a single QD in the antinode of the field to achieve a high

device yield.

4.2 Measurement of g(2)(τ)

While the measurement of g(2)(0) is important for the characterization of the

light statistics for single photon emitters, many important physical properties of

the system are hidden in the correlation function g(2)(τ) for any delay [85, 60, 80].

The measurement of the g(2)(τ) with APDs is exceedingly difficult since the use of

relatively long (> 10ns) gates would drive the experimental C/N ratio below unity.

The recent development of single-photon detectors based on NbN superconducting

nanostructures [86], promise orders-of-magnitude improvement over InGaAs APDs
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in sensitivity, dark count, jitter and repetition frequency. This is why this new tech-

nology is attracting a lot of attention in the single photon and QKD community. In

collaboration with the authors in ref. [86], who provided the detectors, we measured

the correlation function on the single states produced by our QDs.

4.2.1 The SSPD

The detection principle of the SSPDs is based on the local inhibition of super-

conductivity in a current-biased ultra-thin superconducting nanowire due to the ab-

sorption of a light quantum [87]. The detection principle is illustrated in Fig. 4.9: as

Figure 4.9: Detection principle of SSPDs.

the superconducting energy gap is about 2meV for NbN, an absorbed near-infrared
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photon supplies a sufficient amount of energy to split a Cooper pair and promote

an electron to a highly excited state. During the relaxation process secondary car-

riers are efficiently generated and the local electron effective temperature exceeds

the superconducting critical temperature, thus creating a ’hot spot’. As the super-

current avoids the hot spot and accumulates towards the edge of the nanowire, the

critical current density may be reached inducing a transition to a resistive state and

a subsequent pulse in the external circuit.

Figure 4.10: SEM image of the 10x10µm2 NbN meander composed of 100nm wide
and 3.5nm thick wires.

The SSPDs used in this work consist of 10x10µm2 meanders (Fig. 4.10) made of

a 100nm wide, 3.5nm thick NbN nanowire. The fabrication technology is described

in [88]. Two SSPD chips are mounted on a micromechanical support and aligned

to a pair of single mode fibers, the system is then cooled down to 2.3K in a liquid

He insert. Input fiber connectors and output SMA cables are mounted at room

temperature on the flange of the cryogenic insert. The high frequency components
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of the detector output are fed to a 60 dB-gain amplifier with a 2.5 GHz bandwidth.

The efficiency of the fiber coupled detector is measured using a gain-switched diode

laser at 1300nm and a calibrated InGaAs APD as a reference. The dependence

Figure 4.11: (a) SSPD detection efficiency and dark count rate plotted as a function
of bias current at 2.3K. (b) Comparison between SSPD and APD performance.

of the detection efficiency (DE) as a function of bias current is shown along with

the dark count rate (DCR) in Fig. 4.11 for the best SSPD. The DE for the SSPD

refers to the percentage of single-photon pulses coupled to the fiber that produce an

output signal. Both DE and dark counts increase with increasing bias current. At a

bias current of IB = 22µA an efficiency DE = 4.8% and dark count rate DCR=13Hz

are measured. The other SSPD had lower efficiency (2.5%) for the same DCR. The
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corresponding DE/DCR ratios are over a factor of 10 higher than previous reports

for fiber-coupled SSPDs [89, 90]. The tail in the DCR, measured below a bias

current of 25µA (Fig. 4.11a), is attributed to the room temperature background

radiation entering the system, which can be suppressed by a cold filter. A very

attractive property of this detector is the low dark count rate. A quantification of

the improvement of the SNR of the SSPDs as compared to APDs is difficult due to

the very different operating regimes of the two detectors. Due to the gated operation

mode of APDs, only a dark count probability (DCP) per gate can be defined, which

is a function of the gate width. We define the SNR=DE/DCP as a figure of merit,

where the DCP is measured for a gate width of 1ns. In Fig. 4.11b the SNR values

for the SSPD are deduced from the data presented in Fig. 4.11a. For the APD: the

DCP (for a 1ns gate) was extrapolated from the dark count rate (33Hz) measured

during in a 300ps optical active window and at a repetition frequency of 4MHz.

These values correspond to the optimized working regime used for antibunching

measurements presented in the previous section. The SSPD displays several orders

of magnitude improvement in the SNRs.

The SSPDs also provide improved temporal resolution: Fig. 4.12 reports the

temporal dynamics of a laser diode pulse as measured directly using a sampling

oscilloscope and by TCSPC using the SSPD and the APD. From the jitter charac-

teristics of the correlation card, we estimate the time resolution of the SSPD and

APD at 150ps and 400ps respectively. Lower jitter values (18ps have been reported

[91]) could be achieved by improving the amplification electronics. We note that the

SSPD response follows a Gaussian distribution, while the APD presents an asym-

metric profile, which depends on the count rate and limits their application for
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Figure 4.12: Measurement of the jitter of the detectors. Dotted line: laser pulse
(FWHM=88ps) measured on a sampling oscilloscope (OSC) with 24GHz bandwidth.
Continuous line: temporal response of the APD (FWHM=480ps). Dashed line:
temporal response of the SSPD (FWHM=320ps).

TCSPC experiments.

4.2.2 Results with SSPDs

Although the SSPDs present a very attractive alternative to APDs the oper-

ational complexity of the detector is high. Difficulties arise from two causes: the

prototype packaging and the high sensitivity. While the meander alignment to the

optical fiber is stable, the electrical contact to the detector deteriorates quickly as

the system goes through each thermal cycle (2K to 300K). Due to the high sen-

sitivity of these detectors, any kind of em noise such as mobile phones, electrical

machines or a light switch operated in the vicinity of the detector will induce a

peak in the dark count rate of several kHz. During an antibunching experiment

the count rates have to be constantly monitored since on occasions the detectors
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become unstable and the dark count starts to oscillate with increasing amplitude

due to external interferences.

Using the setup described in section 2.3, and adjusting the bias current on the

SSPDs to obtain a dark count of 10-30Hz, the setup is tested by measuring the cor-

relations between the output detection signal of the two SSPDs illuminated by laser

pulses emitting at 750nm (Fig. 4.13). As expected the histogram in characterized

by a series of peaks whose integrated areas are all the same within the statistical

fluctuation of the measurement: this is the signature of the intensity correlation

function for a coherent pulsed source. The FWHM=440ps of the peaks corresponds

to twice the jitter of the system. Using the same setup we measured the g(2)(0)

Figure 4.13: Intensity correlation measured on a pulsed laser.

for a single X line from a QD. As we have seen (section 4.1.2) the choice of the

power density is very important and to avoid investing a lot of time in measuring

the correlation function at different power intensities, a convenient way of finding
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the optimum regime is to plot the power as a function of the count rates and per-

form a first correlation measurement at 50% of the saturation power. A preliminary

measurement is shown in Fig. 4.14 made at a power of 50nW at 750nm and repeti-

tion frequency of 80MHz. We remark that this repetition frequency is unachievable

with our APDs. Although a recent demonstration of gated operation at a repeti-

tion frequency of 800MHz has been achieved [92], the SNR is still to low for single

photon experiments. The coincidence histogram is characterized by periodic peaks

separated by the laser repetition period except for zero delays; this is the signature

of a single photon emitter under pulsed excitation. The peaks are well fitted by

Gaussian time distributions with an offset of 3 coincidences and a FWHM = 2.2ns

that corresponds to twice the X lifetime [93]. The coincidences between the peaks

are due to uncorrelated light entering the system and detector dark counts.

A more interesting measurement which reveals the dynamics of the charge

population of the QD is the measurement of the g(2)(τ). The measurement was made

on the positively charged exciton emission (inset Fig. 4.15b) under cw excitation by

pumping resonantly in the excited state of the trion (section 3.3). The resulting

histogram, measured for a pump power of 0.2mW, is shown in Fig. 4.15a for long

delays (0.5µs). For time delays between 3ns and 200ns an increase of the correlation

function is observed: this bunching behavior, already studied for short-wavelength

QDs [94], shows that after emission of a photon from the positive trion the QD

remains charged allowing the re-excitation of the charged exciton state. For short

time delays <3ns, (see Fig. 4.15b), an antibunching dip is observed, confirming the

sub-Poissonian statistics of the light emitted by the trion line. The bunching and

antibunching behavior can be modeled in a three level system with the following
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Figure 4.14: (a) Spectrum of the single QD showing the X line used for the photon
autocorrelation measurement(b) under pulsed excitation obtained with an integra-
tion time of 1.8hrs and a time bin of 560ps. Solid (red) line is a sum of Gaussians
with FWHM=2.2ns and an offset of 3 coincidences..

expression [29]: g(2)(τ) = 1−(1+a)∗exp(−τ/τ1)+a∗exp(−τ/τ2). To account for the

limited setup resolution, detection of uncorrelated photons and dark counts, we fitted

the experimental data by convolving a gaussian time distribution (FWHM=220ps)

with the correlation function corrected for noise [85]: g(2)
n (τ) = 1 + ρ2(g(2)(τ) − 1).

The fit provides the values, a=0.8, τ1=0.62ns, τ2=170.8ns and g(2)(0) = 0.18± 0.02.

Although the analytical expression for the correlation function derived in Ref.[29]

is applicable to our case and describes the light statistics correctly, for a physical

interpretation of the fitting parameters we cannot use the expressions derived in

Ref.[29] since the system of rate equations is not compatible with our system. We

used the three level system described in Fig. 4.16, and the related system of rate
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Figure 4.15: a) Measurement of g(2)(τ) under resonant excitation, with a time bin
of 139ps. (b) Blow-up at short time delays demonstrating antibunching. Inset: PL
spectrum of the positive trion under resonant excitation (T=10K). Solid (red) line
in (a) and (b) is the fit of the correlation function g(2)(τ).

equations:

dw3

dt
=

w2

t1
− w3

t2

=
w1

t3
+

w3

t2
− w2

t1
− w2

t4

= −w1

t3
+

w2

t4
,

where w1,2,3 represent the probability of finding the dot empty, occupied by a single

hole in the GS, or by an exciton and a hole in the GS, respectively. The time con-

stants t3 and t4 are the capture time and escape time for a single hole: the presence
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of holes in the VB are due to unwanted impurity doping levels. Only when the dot is

charged by a hole the energy of the laser beam is resonant with the charged P state

and can excite an electron into the conduction band, which then relaxes on a time

scale of a few ps to the S state and forms the X+. Since the relaxation time is much

faster than the X+ radiative time (t2), in the model we assume that the laser excites

directly in the charged S state with a time constant t1. The intensity correlation

function is related to the the probability of emitting a photon at a time t+τ after

a photon has been emitted at time t: a photon emitted from the recombination of

the charged exciton ensures that the QD is prepared in the charged state, this state

represents the initial conditions of the system (w1 = 1 and w0 = w3 = 0). The g(2)

is then determined by the probability of the QD population evolving into the X+

state. The model was used to fit two intensity correlation measurements taken at

different excitation powers. All the time constants are different between the two fits:

although t1 and t2 are expected to depend on the excitation intensity, the escape

and capture time of the holes where not. This implies that other mechanisms are

involved: photoabsorbtion by the holes in the VB of the QD and subsequent escape

into the continuum, or scattering processes originating from the relaxation of the

exciton from ES to the GS expelling the hole. More experimental data and a more

complex model involving the formation of other exciton spices are required to build

a realistic simulation of the charge dynamics in the QD.
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Figure 4.16: (a)Model of the three level system. (b) fitting parameters. (c and d)
Fit (black thick line) to the experimental data.
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Chapter 5

Purcell-LEDs

We have shown that our QDs can be optically excited to generate single pho-

ton states. However for practical applications, electrical pumping would be much

preferred to avoid the need of pulsed pump lasers and micro-photoluminescence ap-

paratus. We have also discussed the need to increase the extraction efficiency into

the collection optics. One method consists in coupling the QD emission to the fun-

damental mode of a wavelength-sized microcavity with high quality factor (Q) and

small mode volume. In such a structure the spontaneous emission (SE) rate can be

increased over the bulk volume as originally predicted by Purcell[23], and experi-

mentally demonstrated in the solid state[95, 96, 97]. This SE increase implies that

most photons are emitted in the microcavity mode, which in principle can be easily

extracted and leads to a much improved efficiency and higher repetition rates. Elec-

trically pumped single QD emission has been demonstrated by post filtering [98],

with a small metal aperture, with no carrier and no optical confinement. Control

of carrier injection, in a submicrometer area, has been proposed [99] and achieved

[100] using an oxide current aperture surrounded by a weakly confined optical cavity.

On the other side, vertical cavity surface emitting lasers (VCSEL), that commonly

employ DBRs and oxidized current apertures, achieve electrical and optical confine-

ment with much larger dimensions (typically > 2µm). In this chapter, we introduce

the Purcell-LED, a microcavity QD LED structure that uses an oxidized aperture

and DBRs to confine at the same time the carrier injection and the optical mode in
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a sub-micrometer volume.

5.1 Purcell-LEDs device fabrication

The structures have been processed from a planar micro-cavity grown by MBE

on (001) oriented n-doped GaAs substrate. The active region consists of a single

array of self assembled QDs formed from 3 mono-layers of InAs and capped with a 5

nm strain-reducing In15Ga85As layer to extend the emission into the near infrared.

In this first test, we used high-density QDs (3 ∗ 1010dots/cm2) emitting at 1300nm.

The QDs are embedded in undoped GaAs. Lateral current and optical confinement

is provided by an Al0.85Ga0.15As layer, deposited on the top (p-side) of the GaAs

layer, which is laterally oxidized resulting in an insulating, low-index (n∼1.6) aper-

ture. An optical cavity with a target Q (from a 1D simulation neglecting lateral

loss) of ∼1000 is obtained by embedding the active region between a top mirror

composed of 5 Al0.75Ga0.25As/GaAs quarter-wave pairs plus a top Au layer, and

a bottom (output) mirror composed by three pairs of oxidized AlAs/GaAs and 3

pairs of Al0.9Ga0.1As/GaAs. Using optical lithography and reactive ion etching we

fabricated cylindrical mesa structures with diameters ranging from 10.5µm down to

1.2µm. The etching was stopped in the Al0.85Ga0.15As aperture layer, which was

then oxidized, at 400C for 90min in an H2O atmosphere. In the same oxidation

step the AlAs layers where laterally oxidized from trenches etched at 20µm distance

from the mesa. The etched surface was electrically insulated with an Si3N4 layer

deposited by plasma-enhanced chemical-vapor deposition. Au pads were deposited

on the mesas to form the p-contact and a layer of Au on the substrate was used as

n-contact.
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Figure 5.1: SEM cross sectional image of an aperture of 360nm. The darker regions
represent the oxidized AlGaAs and AlAs layers.

5.2 Purcell-LEDs characterization

In order to determine the aperture area, a first estimation of the lateral oxidised

distance was obtained on etched stripes from cross-sectional SEM images, as shown

on Fig. 5.1. The aperture diameter in the mesa was further verified by measuring the

scaling of the current-voltage characteristic for different nominal device diameters.

As shown in [100] we expect current spreading and carrier diffusion to be negligible

in this structure. Despite a high turn-on voltage (due to unoptimized p-doping in

the top mirror), all curves can be fitted with a single oxidized length parameter that

is also consistent with the SEM estimate.

Figure 5.2 reports light versus current characteristics at room temperature

for a range of devices with different oxide apertures, showing that light is extracted

from devices as small as 400nm in diameter. The measured efficiency is 3.1∗10−4 for

the largest devices (9.5µm) and decreases to 1.4∗10−4 for the 400nm LEDs. The low

efficiency is mostly due to the mismatch between the cavity line width and the source

spectral width: the QD emission is limited by the inhomogeneous broadening. The

QD LEDs are designed to be efficient devices only for the one or few QDs that are
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Figure 5.2: Light versus current characteristics (293K) curves for devices with dif-
ferent aperture diameter a.

resonant with the cavity mode: the ultimate goal is to demonstrate enhancement of

spontaneous emission from a single emitter which requires high quality factors and

small mode volumes. Optimization of these parameters compromises the efficiency

for the QD ensemble.

The cw electro-luminescence spectra at 293K are presented in logarithmic scale

in Fig. 5.3 for devices with decreasing oxide apertures. The devices where individ-

ually contacted on the Au pads and the luminescence was collected with a 100µm

core optical fiber in contact with the substrate side, and dispersed into a spectrom-

eter equipped with a liquid nitrogen cooled InGaAs near infrared detector. The

individual measurements are characterized by several spectral lines corresponding

to the resonant cavity modes. When compared to the single peaked spectra of the

planar cavity at 1180nm, this is evidence of strong optical confinement. The ground

state transition of the QD is centered at 1245nm (at 293K), the cavity modes are
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Figure 5.3: Electroluminescence spectra (293K) of microcavities with different oxide
apertures (aperture diameter is indicated for each spectra). The arrows indicate the
positions of the modes predicted by the effective index model. The modes indicated
on each spectrum are respectively from right to left: HE11HE21 and EH01, according
to the standard convention[101].

therefore pumped by the excited states of the QDs. The inhomogeneous broaden-

ing of the QD emission (measured to be 18nm on similar samples without cavity),

ensures that the narrow spectral features are related to the cavity modes and not

to QD electronic states. As the diameter of the current aperture is reduced we ob-

serve a blue shift of the cavity ground state transition (Fig. 5.4(a)) and an increase

in the splitting between cavity modes consistent with the conventional theoretical

trend for increased lateral confinement. We stress that the energy shift (45meV for

the 0.7µm diameter devices) is much larger than the shift commonly measured in

VCSELs and comparable to the shift observed in micropillars.

The standard approach [102] used for quantitatively analyzing the optical con-

finement in cylindrical dielectric structures is based on the assumption that the
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(a)
(b)

Figure 5.4: (a) Comparison of the experimental shift of the fundamental cavity
resonance (dots) and prediction by the effective index model (continuous line). (b)
Cavity quality factor is plotted as a function of the shift in energy with respect to
the planar cavity emission.

transverse component of the resonant electromagnetic field is independent from

the longitudinal component, assumption usually correct for planar cavities or 3D

cavities with dimensions larger than the wavelength [101]. In this effective in-

dex approach[102], the cavity is treated as a 2D circular waveguide with core and

cladding indexes given by an effective index weighted by the standing field in the

axial direction. In this framework, we solved numerically the eigenvalue equation

for the longitudinal standing wave in the core (unoxidised region) approximated to a

planar cavity. The resonant wavelength obtained was 1193nm while the averaged re-

fractive index weighted with the standing field intensity was 3.053. For the cladding

(oxidised region) the refractive index was calculated to be 2.757 from the relation

[102]: ∆λ/λ = ∆n/n. Using these values we applied the numerical methods used for

evaluating the confined modes for a step index optical fibre [101] (shown as arrows

in Fig. 5.3 and as a continuous line in Fig. 5.4(a)). Good agreement was found be-

tween experimental evidence and calculated modes for apertures down to 2.0µm, see

figure 5.3, below which the cavity dimensions become comparable to the resonant
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(a) (b)

Figure 5.5: (a) Comparison of the experimental shift of the fundamental cavity
resonance (dots) and prediction by FEM simulations (continuous red line). (b)
Calculated field showing diffraction losses at the oxide aperture. [103]

wavelength and we observe a significant difference between the experimental and

theoretical splitting of the cavity modes, thus confirming that the confinement of

the transverse component becomes substantial in the smaller devices where the ap-

proximation in the effective index model is no longer valid. It is interesting to note

that the model predicts single mode propagation when the normalized frequency

falls below 2.405 (the first zero in the Bessel Jo function) which corresponds to an

oxide aperture of 690nm in our devices. In Figure 5.3 the QD LEDs with apertures

estimated at 0.7µm do not indeed show any evidence of multimode confinement,

at least within the broad emission spectrum of the QDs. We observe a significant

spread in the resonant energies for devices with the same nominal diameter. This

can be attributed to variations in the mesa diameters and oxidized length.

Because actual diameters can vary among nominally identical devices we plot

in Fig. 5.4(b) the quality factor measured in over 40 devices as a function of the

resonant energy shift. Beside the variations in the Q value, probably due to the

fluctuating quality of the mesa etching (the dimensions being comparable to the
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resolution of our optical lithography) a clear trend of decreasing Q for increasing

lateral confinement is observed. To gain further understanding of the influence of

the cavity geometry on the Q, the optical modes of the microcavities are determined

by solving Maxwell’s wave equation employing vectorial finite elements [103] (the

simulations were done at the ETHZ by M.Streiff and B.WItzigmann). Excellent

agreement is achieved between measurements and simulations 5.5(a). The strong

degradation of the Q factor observed for oxide confinements with diameters smaller

than 1µm are attributed to excessive diffraction losses at the oxide aperture as shown

by the calculated field for an aperture of 0.8µm 5.5(b).

In conclusion the degradation of the Q of the cavity seems to be intrinsic

to the oxide aperture, making it difficult to obtain a significant enhancement of

the spontaneous emission. The high voltages required to inject carriers in the QD,

due to unoptimized growth of DBRs, prevented operation at low temperature. For

these reasons, we are developing and modeling (at ETHZ) electrically pumped PC

cavities.
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Chapter 6

Conclusions

The goal of this project was to study and develop a QD based single pho-

ton source at telecom wavelength. In particular this thesis dealt with the optical

characterization of the single QD device emitting at 1300nm. Thanks to the de-

velopment and optimization of a novel growth technique we where were able to

achieve at the same time emission at 1300nm and ultra low QD densities. A low

dot density requires less spatial resolution to selectively inject carriers and/or ex-

tract light from a single QD, as a result device fabrication requires less complex

technology. To increase the extraction efficiency we embedded the dot in a planar

microcavity which yielded an order of magnitude increase in the light extracted as

compared to QDs buried in bulk GaAs. The optical properties of the QDs where

studied under different optical excitation conditions. Commercial lasers where used

to photogenerate carriers in the bulk material and WL. To pump resonantly in the

excited states of the QD we developed a temperature control system to tune and

stabilize a standard telecom laser from 1210nm to 1300nm. With integrated and

time resolved PL measurements we studied the carrier population and dynamics

at the single exciton level. Our single QD devices present clear and reproducible

spectral signatures in which we can identify X, BX and charged exciton transitions.

Quasi-resonant excitation at 70K demonstrates background free single exciton tran-

sitions which is very promising for the realization of a single photon device operating

at temperatures in easy reach of cryogen-free coolers. Taking advantage of the high
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sensitivity of single photon InGaAs APDs we built a TCSPC setup and measured

the radiative lifetimes of single exciton transitions. We have also found new evi-

dence confirming the presence of a background emission superposed to the narrow

spectral transitions. Antibunching measurements at these wavelengths required the

nontrivial task of building a setup to detect fiber-coupled single photons in a 300ps

time window, emitted from a nano-device in free space at cryogenic temperatures,

with the capability of maintaining the optical alignment on a micrometer scale for

several hours. With such a setup we have demonstrated that our QDs can generate

single photon states at 1300nm. We used this single photon source to characterize

novel detectors based on superconducting nanowires and measured for the first time

the intensity correlation function at 1300nm on single photons from a QD. These

detectors show at least 2 orders of magnitude improvement on the signal to noise

ratio as compared to InGaAs APDs, this is very important since for a QKD system

the detector noise, amongst others, determines the maximum distance over which

a secure key can be exchanged. It should be noted that due to the difficulties in

these measurements, to date there has been only one other clear demonstration of

single photon emission at 1300nm. As compared to that work our single QD devices

present clear X, BX and charged exciton identification through PL and TRPL mea-

surements. It should also be noted that the extraction efficiency of our device into

the collection optics is amongst the highes reported in literature for QDs embedded

in a variety of structures emitting above and below the silicon spectral window.

Besides the demonstration of single photon emission in the telecom wavelength

range, this thesis has contributed to demonstrating that due to the the deeply con-

fined structures these QDs offer a new tool for investigating the interactions between
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the confined exciton states and the carries surrounding the QD. There is the po-

tential to achieve significant results with a campaign of dedicated measurements:

understanding of the mechanisms involved in the carrier dynamics can lead to the

design of devices with improved single photon properties. In the antibunching ex-

periments the single photon efficiency measured in the fiber is close to the security

limit for QKD applications, but replacing the APDs with stable SSPDs brings the

SNRs within acceptable levels. Nevertheless the efficiency of the source is a problem

that must be addressed since a device with 40dB efficiency cannot be termed ’single

photon source on demand ’. The solution of the efficiency problem must address

two issues: the losses in the light extraction from the device and in the SMF cou-

pling stage. Coupling directly the mode from a micropillar structure into the fiber

guided mode, although technologically complex, has the potential for improving the

efficiency by at least one order of magnitude. Another possibility comes from the

new generation of devices based on photonic crystal defect micro cavities. These

devices are very attractive since they can achieve high Purcell enhancement factors

due to the small mode volumes: extraction efficiencies as high as 50% are predicted

for devices without a bottom mirror. Preliminary calculations show that the spatial

distribution of the mode is compatible with 0.5NA collection optics. But a success-

ful and efficient implementation of the collection strategies mentioned above relies

on the development of growth techniques for controlling the nucleation sites of QDs.
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