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Abstract

Real-world phenomena involve complex interactions between multiple signal modalities. As a con-

sequence, humans are used to integrate at each instant perceptions from all their senses in order to

enrich their understanding of the surrounding world. This paradigm can be also extremely useful

in many signal processing and computer vision problems involving sets of mutually related signals,

called multi-modal signals. The simultaneous processing of multi-modal data can in fact reveal

information that is otherwise hidden when considering the different modalities independently.

This dissertation deals with the modelling and the analysis of natural multi-modal signals. The

challenge consists in representing sets of data streams of different nature, like audio-video sequences,

that are interrelated in some complex and unknown manner, in such a way that useful information

shared by the different data modalities can be extracted and intuitively used. In this sense signal

representation have to make an effort to model the structural properties of the observed phenom-

enon, so that data are expressed in terms of few, meaningful elements. In fact, if information can

be represented using only few components, this means that such components capture its salient

characteristics. In order to efficiently represent multi-modal data, we advocate the use of sparse

signal decompositions over redundant sets of functions (called dictionaries).

In this thesis we consider both application-related and theoretical aspects of multi-modal signal

processing. We propose two models for multi-modal signals that explain multi-modal phenomena in

terms of temporally-proximal events present in the different modalities. A first simple model is in-

spired by human perception of multi-modal stimuli and it relies on the representation of the different

data streams as sparse sums of dictionary elements. This type of representation allows to intuitively

define meaningful events present in the different modalities and to discover correlated multi-modal

patterns. Taking inspiration by this first model, we introduce a representational framework for

multi-modal data based on their sparse decomposition over dictionaries of multi-modal functions.

Instead of separately decompose each modality over a dictionary and seek for correlations between

the extracted patterns, we impose some correlation between modalities at the model level. Since

such correlations are difficult to formalize, we propose as well a method to learn dictionaries of

synchronous multi-modal basis elements.

Concerning the applications presented in this dissertation, we tackle two major audiovisual fusion

problems, that are audiovisual source localization and separation. Although many of the ideas de-

veloped in this work are completely general, we consider this field since it is the one that presents the

vastest possibilities of application for this research. The theoretical frameworks developed through-

out the thesis are used to localize, separate and extract audio-video sources in audiovisual sequences.

Algorithms for cross-modal source localization and blind audiovisual source separation are tested

on challenging real-world multimedia sequences. Experiments show that the proposed approach

leads to promising results for several newly designed multi-modal signal processing algorithms and

ix



x Abstract

that a careful modelling of data structural properties can convey interesting, useful information to

understand complex multi-modal phenomena.

Keywords

Multi-modal signal processing, sparse representation, redundant dictionary,

audiovisual blind source separation, cross-modal localization, dictionary learning.



Version abrégée

Les phénomènes réels impliquent des interactions complexes entre plusieurs modalités de signal.

Les humains sont habitués à intégrer à chaque instant les perceptions issues de tous leurs sens

afin d’enrichir leur compréhension du monde environnant. Ce paradigme peut être extrêmement

utile pour beaucoup de problèmes en traitement des signaux impliquant des ensembles de données

conjointement corrélés appelés signaux multi-modaux. Le traitement simultané des données multi-

modales peut, en fait, révéler de l’information qui est cachée lorsque on considère les signaux

indépendamment.

Cette thèse traite de la modélisation et de l’analyse des signaux multi-modaux naturels. Le défi

consiste à représenter des ensembles de flux de données de nature différente, tel que les séquences

audiovisuelles, qui sont liés de façon complexe et inconnue, de telle manière que l’information utile

partagée par différentes modalités puisse être extraite et utilisée. Il faut faire un effort au moment

de la représentation des signaux afin de modéliser les propriétés structurales des phénomènes ob-

servés, de sorte que les données soient exprimées avec un petit nombre d’éléments significatifs. Si

l’information est représentée par un petit nombre de composants, cela signifie que ces composants

capturent ses caractéristiques les plus importantes. Afin de représenter efficacement des données

multi-modales, nous préconisons l’utilisation des décompositions parcimonieuses dans des ensembles

redondants de fonctions (appelés dictionnaires).

Dans cette thèse nous considérons des aspects théoriques et applicatifs du traitement des signaux

multi-modaux. Nous proposons deux modèles qui expliquent des phénomènes multi-modaux en ter-

mes d’événements temporellement proches dans les différentes modalités. Un premier modèle simple

est inspiré par la perception humaine des stimuli multi-modaux et se fonde sur la représentation

des différents flux de données par des sommes parcimonieuses d’éléments de dictionnaire. Ce type

de représentation permet de définir intuitivement des événements signicatifs dans les différentes

modalités et de découvrir des motifs multi-modaux corrélés. Nous présentons aussi un cadre

représentatif pour des données multi-modales basé sur leur décomposition parcimonieuse dans un

dictionnaire de fonctions multi-modales. Au lieu de décomposer séparément chaque modalité dans

un dictionnaire et de rechercher par la suite des corrélations entre les motifs extraits, nous imposons

une certaine corrélation entre les modalités au niveau du modèle. Etant donné qu’il est difficile de

formaliser de telles corrélations, nous proposons aussi une méthode pour apprendre des dictionnaires

d’éléments de base multi-modaux synchrones.

Les applications présentées dans cette thèse traitent deux problèmes majeurs dans le domaine de

la fusion des signaux audiovisuels : la localisation et la séparation de sources audiovisuelles. Bien que

plusieurs idées développées dans ce travail soient complètement générales, nous considérons ce champ

puisqu’il présente le plus grand nombre d’applications. Les cadres théoriques qui ont été développés

dans la thèse sont employés pour localiser, séparer et extraire des sources dans des séquences audio-

xi
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vidéo. Des algorithmes pour la localisation et la séparation des sources audiovisuelles sont testées sur

des séquences naturelles complexes. Les expériences prouvent que l’approche proposée mène à des

résultats très prometteurs pour plusieurs nouveaux algorithmes pour le traitement des signaux multi-

modaux et que la modélisation des propriétés structurales de données peut fournir de l’information

utile et intéressante pour la compréhension des phénomènes multi-modaux complexes.

Liste des mots-clefs

Traitement des signaux multi-modaux, décomposition parcimonieuse,

dictionnaire redondant, séparation de sources audiovisuelles,

localisation de sources, apprentissage de dictionnaires.
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Introduction 1
1.1 Motivation

Figure 1.1 shows four sample frames taken from an audiovisual sequence. The movie involves a boy

and a girl speaking in front of a camera. Actually they are saying series of digits in English. It

should be clear, looking at the pictures, that both of them are moving their lips as if they were

uttering some words. However, if one could listen to the movie soundtrack, it would be immediately

clear that only one person is speaking. But how can one know which of the two is the speaker? This

could be quite an interesting information, for example if the speaker is telling us her/his telephone

number.

Figure 1.1 – Who is giving you her/his telephone number? Sequence taken from the CUAVE database [88].

In this particular case a human listener could recognize, in absence of significant noise, whether

the speaker is a boy or a girl and associate the speech to the correct person. However, not only this

reasoning would fail if both people are of the same gender, but it also involves a complex, high-level

process of gender recognition both in the audio and video domain. It is interesting to notice that this

type of approach requires an independent analysis of the audio and video signals. The information

deduced (the gender of the persons on the video and the gender of the speaker) is then trivially

combined to associate speech and speaker.

On the other hand, it has been shown that there is a more simple and basic mechanism that

strongly contributes to the integration of acoustic and visual stimuli, the synchrony between the

presence of a sound and a visible movement [11, 39, 58, 75, 113]. Such process is not cognitive but

1



2 Chapter 1. Introduction

it exploits the physical nature of the observed phenomenon : we are hearing a sound and thus it is

likely that some mechanical, visible action has produced it. Interestingly, this type of mechanism

acts at the stimuli level and no complex inference has to be done. In contrast, the different signals

have to be analyzed together.

This thesis deals with a family of signals, called multi-modal, that like audiovisual sequences are

constituted of different data streams (or modalities) that have a certain degree of correlation since

they describe the same physical phenomenon. The interest of studying these type of signals resides

in the fact that many useful information can be extracted from the joint analysis of the different

modalities that is otherwise unavailable if the signal modalities are considered independently. In

the example above, it is difficult to say if it is the girl or the boy who is speaking, if one looks at

the audio and video signals separately. However, if one observes the two modalities together and

seeks for synchronicity between sound and lips movements, it becomes possible to understand that

the speaker is in fact the boy.

In this manuscript the attention will be focused on a broad class of multi-modal data that

exhibit correlations along time. In fact, throughout this dissertation we will consider the case study

of audiovisual sequences. The are several reasons to do that. The first and more prosaic one is that

the analysis of audiovisual data has been the starting point of the research underlying this work,

providing tools and ideas for a study that later has led to the definition of more general techniques.

Secondly, audiovisual sequences represent well most of the challenges involved in the analysis of

multi-modal signals. Finally, audiovisual data processing is the most important field of application

for this research and insights in this field would help facing many multimedia signal processing

problems.

The main objective of this work is to understand and model correlated multi-modal data arrays

in order to develop effective and intuitive techniques to jointly analyze this type of signals and thus

to extract the useful information “hidden” in the data. As we were underlying before, multi-modal

signals describe different aspects of a same physical phenomenon. In our understanding, if we want

to retrieve correlations between different signal modalities, it is of paramount importance to capture

the structure of such phenomenon. In this sense effective data modelling should be able to represent

signals in terms of few, important data structures, in such a way that dimensionality gets reduced

and only relevant signal information is used. In fact it seems that this is what the human brain

does when it localizes the source of a sound in the space by associating salient features like visual

motion and presence of a sound. In addition, advances in the understanding and modelling of this

type of data can be extremely valuable in a relatively young and barely explored research field like

that of multi-modal signal processing. In order to effectively model multi-modal data we want to

exploit the structural properties of the considered signals, and in this thesis we will show how this

can be done using sparse signal representations over redundant dictionaries of functions.

To summarize, in this research work we consider and develop these three main issues :� Why it is useful to jointly analyze correlated multi-modal data;� Why it is important to carefully model the structural properties of such data;� How redundant dictionaries can be used to effectively model multi-modal signals.

1.2 Organization of the Thesis and Main Contributions

At this point let us introduce the outline of the thesis. This dissertation pivots around the central

idea that in order to catch the correlations between complex signal modalities we need to model the
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observed phenomenon in such a way that few significant data structures are highlighted. This idea

is developed through four main parts presented in Chapters 3, 4, 5 and 6, that are preceded by an

introductory chapter.

More precisely, Chapter 2 analyzes the first two points stated at the end of previous section.

We start by defining what are in our understanding multi-modal signals and we present examples of

multi-modal data analysis borrowed from different disciplines, from economics to medical imaging

and audiovisual data processing. This highlights the importance that has been given in the last

years to the study of this type of signals. We focus then our attention on recent advances brought

up in the field of audiovisual signal fusion, with particular emphasis on the audiovisual source

localization and separation problems, that are the principal applications targeted in this thesis. A

detailed literature survey is carried out and advantages and limitations of existing audiovisual fusion

methods are discussed, motivating the choice done in this work to adopt an approach that aims at

modelling audiovisual signals as synchronous salient audio-video structures.

Chapter 3 introduces an audiovisual localization framework based on the detection of correlated

audio-video events in multimedia sequences. The problem that is faced in this chapter is the one

proposed at the beginning of this introduction : if one has a video sequence showing several possible

video sources and an audio signal associated to one of these sources, how can we link the acoustic

stimulus to the correct visual structure and thus localize on the video the sound source? As discussed

above, this task is trivial for humans, but it is a real challenge for automatic systems. In this chapter

we propose a source localization model inspired by human perception and that thus exploits the

synchrony between audio and video events. Audio and video signals are represented as sparse

sums of few representative functions taken from a large set of candidate basis waveforms (called

redundant dictionaries). In this way salient signal features are extracted and perceptually meaningful

audiovisual events are defined. We will show how this principle can be used to detect existing cross-

modal correlations between audio-video signals even in presence of distracting motion and acoustic

noise. Results show that temporal proximity between audiovisual events is a key ingredient for the

integration of information across modalities and that it can be effectively exploited for the design

of multi-modal analysis algorithms.

The proposed approach is based on signal representation methods that decompose multi-modal

signals over redundant dictionaries of functions, obtaining concise descriptions of the structural

properties of the data. Audio and video representation techniques are analyzed more in details in

Chapters 4 and 5, where their characteristics, flaws and strengths are studied.

In Chapter 4 the video representation algorithm is considered. This chapter presents a frame-

work and an algorithm for tracking relevant visual structures. Important image contours to be

tracked are picked up from a redundant dictionary and ranked. Based on the ranking, the contours

are automatically selected to initialize a Particle Filtering tracker. The proposed algorithm deals

with salient video entities whose behavior has an intuitive meaning, related to the physics of the

signal. Moreover, as the interactions between such structures can be easily defined, the inference

of higher level signal configurations can be made intuitive. We will see how the proposed method

improves the performance of existing video structures trackers, while reducing the computational

complexity.

In Chapter 5 instead our attention is turned to the audio signal. In this chapter we introduce

a new concept, Audiovisual Source Separation, that lies on the edge of two very different research

areas : audiovisual fusion and one-microphone blind audio source separation. These two fields are

typically considered to be separated, but we will see in this chapter how the ideas developed in

these two areas can be helpful to extract correlated audio-video sources exploiting the information
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contained in the mono soundtrack and in the associated video sequence. The method builds corre-

lations between acoustic and visual structures that are represented using functions retrieved from

redundant dictionaries. Video structures that exhibit strong correlations with the audio track and

that are spatially close are grouped together using a robust clustering algorithm that can confident-

ly count and localize audiovisual sources on the image plane. Then, using such information and

exploiting the coherence between audio and video signals, audio sources are localized as well and

separated.

In Chapters 3, 4 and 5 audio and video modalities are represented with basic forms taken from

redundant dictionaries. Audio-video structures are extracted separately using general codebooks

of functions, and then correlations between them are searched. We argue that a more efficient

strategy would be to jointly extract meaningful multi-modal structures, introducing cross-modal

correlations at the model level. Chapter 6 explores this paradigm introducing a completely new

model for multi-modal signals. The model considers multi-modal data to be composed of a sum

of recurrent synchronous multi-modal structures retrieved from a dictionary of functions. Since it

is not trivial to design a dictionary of meaningful multi-modal basis functions, we propose as well

an algorithm to learn a collection of such basis waveforms from training data, enforcing synchrony

between the different modalities and de-correlation between the dictionary elements. The model and

the learning method are completely general, but we have employed them to represent audiovisual

sequences. The learned audio-video dictionaries seem to effectively capture underlying structures

present in the data. The dictionary functions are used to analyze complex multimedia clips, showing

the ability to detect meaningful correlated audio-video structures and to localize the sound source

in the video sequence.

Finally, in Chapter 7 the entire thesis is discussed and conclusions are drawn. We propose as

well possible developments and future research directions for the presented work.

To summarize, the main contributions presented in this dissertation are the following :� We propose the use of redundant dictionaries of functions to represent, in terms of salient

signal structures, audio and video data. This representation allows the intuitive definition of

multi-modal correlated structures that can be effectively detected and extracted;� We introduce a novel framework for the tracking of visual structures. The tracker follows

relevant image contours defined with functions retrieved from a redundant dictionary using

the Particle Filtering method;� We propose a new approach to audiovisual source separation that exploits audiovisual coher-

ence between a single-microphone audio signal and the associated video sequence to separate

correlated sources;� We define a model of multi-modal signals that are represented as sparse sums of recurrent

multi-modal functions taken from codebooks of functions. A learning algorithm to build such

multi-modal dictionaries from training data is proposed as well.
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Analysis 2
2.1 What are Multi-Modal Signals

We continuously combine stimuli from our senses to enhance our perception of the world. In fact

several research works have investigated this issue, demonstrating that humans are used to inte-

grate acoustic and visual signals [39, 75, 113, 116] or tactile and visual inputs [15, 112]. Several

signal processing algorithms used to analyze sets of interrelated data successfully exploit this same

principle.

Multi-modal signals are sets of heterogeneous data arrays that exhibit some mutual dependency,

since they represent the same physical phenomenon. Different modalities in fact are often captured

by different sensors, and thus they can have different dimensionality and resolution, which often

makes the definition of cross-modal correlations difficult and the joint analysis of this type of signals

challenging. However, the simultaneous processing of different signal modalities allows to discover

structures in the data revealing information that is unavailable when considering the modalities

independently. Several researchers in various fields have tackled the problem, suggesting different

definitions of multi-modal signals and different techniques to represent and jointly analyze signal

modalities.

We would like to start this dissertation by clearly defining what multi-modal signals are in our

understanding. We term multi-modal signals sets of correlated multi-channel heterogeneous

signals. Each channel is considered to represent a modality. Signal modalities can be heterogeneous

both in resolution (e.g. if modalities are captured with different devices) and in dimensionality (they

can be data arrays in 1D, 2D, 3D. . . ), but they are supposed to describe the same phenomenon and

thus to be somehow correlated. Following this definition, we can classify multi-component signals

according to their degree of multi-modality :

Signals homogeneous in dimensionality and resolution (multi-channel signals) - These

signals are often termed as multi-modal, even if we prefer to call them multi-channel signals.

This type of signals are typically analyzed in economics, where the joint processing of different

economic time series (1D) is of paramount importance to build effective macroeconomics or

5
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Figure 2.1 – Econometric time series are multi-channel signals. These are 1D signals typ-

ically sampled at an homogeneous frequency (one sample per year in this case). Source :

http: // www. e. u-tokyo. ac. jp/∼hayashi/ hayashi econometrics. htm .

financial economics models [1, 53, 71]. Other examples come from remote sensing, where

satellite images are segmented and classified using image versions at different wavelengths [44,

100]. In Fig. 2.1 an example of multi-channel signal taken from [53] is shown. Here the values

of four econometric indexes are plotted as a function of time : the natural logarithm of US

M1 money stock, of the US net national product price deflator and of the US net national

product, together with the commercial paper rate in percent at an annual rate (see [53] or

http://www.federalreserve.gov for further details on the meaning of these values). These

four indexes are jointly studied to analyze the US money market and build models of “money

supply”. All signals are 1D and they are sampled at an homogeneous frequency of one sample

per year.

Signals homogeneous in dimensionality and heterogeneous in resolution - These signals

are typically captured using different sensors and they can be considered a simple case of multi-

modal signals. This type of data are extensively analyzed in medical imaging, where the spatial

correlation between different modalities is exploited for the segmentation and registration of

magnetic resonance (MR) and computed tomography (CT) scans [18, 72]. In remote sensing

as well, multi-spectral satellite images are jointly segmented using measurements from visible,

infra-red and radar sensors [41] or ice charts are built combining information from satellite

images captured with very high resolution radiometer, synthetic aperture radar, operational

line scanner and sensor microwave/imager [86]. Figure 2.2 shows a pair of corresponding

sections of MR [Left] and CT [Right] scans. The two modalities in this case are both 3D

volumes that are however acquired using different devices and at different resolutions. In this

example the MR scan is composed of 150 slices of 256×256 pixels images like the one shown in

Figure 2.2, while the CT scan has a higher resolution being made up of 150 slices of 512× 512

pixels. In addition, the patients usually lie in different positions when the scans are acquired,

making the correspondence between the two signals even more complex to be established. MR

http://www.e.u-tokyo.ac.jp/~hayashi/hayashi_econometrics.htm
http://www.federalreserve.gov
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Figure 2.2 – A pair of MR [Left] and CT [Right] scans is a multi-modal signal whose modalities have the

same dimensionality (3D) but different characteristics and resolutions. Two corresponding sections of the MR

and CT volumes are shown.

and CT images are jointly used for registration-segmentation purposes since MR images are

best suited for soft, non-calcified tissues, while CT scanners represent well dense tissues (e.g.

bones), offering thus complementary information.

Signals heterogeneous in dimensionality and resolution - This is the most general type of

multi-modal signals. This type of data can be very difficult to study, due to the differences

in resolution and dimensionality. However the joint analysis of the different channels can be

extremely fruitful, since each modality provides information about the observed phenomenon

that is typically very different and often complementary with respect to the other modalities.

Examples of these techniques come again from medical imaging, where 3D magnetic resonance

angiography is aligned with 2D X-ray angiographic images to obtain a richer visualization [55].

In neuroscience, 1D electroencephalogram (EEG) and 4D functional magnetic resonance imag-

ing (fMRI) data are jointly analyzed to study brain activation patterns [74]. In environmental

science, connections between local and global climatic phenomena are discovered by correlat-

ing different spatio-temporal measurements [21]. Finally, the class of multi-modal signals that

has been investigated more in detail in the last years is surely that of audiovisual sequences.

Many multimedia signal processing problems involve the simultaneous analysis of audio and

video data, e.g. talking heads creation and animation [24], speech-speaker recognition [70, 92]

and detection [13, 120], audio filtering and enhancement based on video [31, 45, 46], or sound

source localization [18, 27, 42, 52, 54, 62, 82, 102, 103]. Figure 2.3 shows an example of

audiovisual signal. The audio component [Left] is a 1D signal that is typically sampled at

O(104) samples/sec, while the video component [Right] is a 3D signal sampled with consider-

ably lower temporal resolution (O(101) frames/sec) and with a spatial resolution typically of

O(102)×O(102) pixels.

In this thesis we study this last type of multi-modal signals, i.e. multi-channel heterogeneous

signals. In particular we will develop algorithms to analyze a broad class of signals exhibiting

correlations along time, like EEG-fMRI data or audiovisual sequences. The case studies that will

be considered throughout all the manuscript are the cross-modal audiovisual source localization

and source separation problems, since they represent well the challenges involved in the analysis

of multi-modal data and because they constitute some of the major fields of application for this

research.



8 Chapter 2. Multi-Modal Signal Analysis

Figure 2.3 – Audiovisual sequences are multi-modal signals that are heterogeneous both in dimensionality and

resolution. The audio component [Left] is a 1D signal typically sampled at O(104) samples/sec, while the video

component [Right] is a 3D signal sampled with considerably lower temporal resolution (O(101) frames/sec) and

with a spatial resolution typically of O(102) ×O(102) pixels.

2.2 Existing Audiovisual Fusion Methods

Even though some of the techniques that we will present are completely general, we will target

applications in the audiovisual signal processing field. There exist several methods that face the

audiovisual source localization and separation problem using multi-microphone systems : stereo

triangulation is used to estimate the spatial location of sounds [8, 91] while in [97, 104] video

information is integrated in Blind Audio Source Separation (BASS) algorithms to perform speech

separation. Instead, here we want to achieve cross-modal source localization and separation using

only an image sequence and one microphone, exploiting thus the correlation between audio and

video at the signal level. We believe in fact that when modality-fusion takes place at the decision

level, many of the joint (and useful) signal characteristics get lost. Although decision level fusion

schemes may be based on simple statistical measures, such simplification typically results in a

reduced capability of modelling the observed phenomena.

In the next sections we will review the main contributions in the field of audiovisual fusion and

localization. In particular, the attention will be focused on the features used to represent audio-video

data and on the techniques that are adopted to estimate correlations among them.

2.2.1 Seminal Works on Multi-Modal Fusion

The problem we are challenging is that of correlating audio and video signals in multimedia sequences

to detect consistent audiovisual pairs that could originate from the same physical phenomenon. The

topic was first faced by Hershey and Movellan [54], that proposed to measure the correlation between

audio and video using an estimate of the Mutual Information (MI) [26] between the energy of an

audio track and the values of single pixels. Since a per-pixel measure is used, the hypothesis that

pixels are independent of each other conditioned on the speech signal is introduced. In [54], Mutual

Information is derived from the Pearson’s correlation coefficient [4], assuming thus that the joint

statistics are Gaussian and that audio-video representations are linearly related.

Slaney and Covell [102] generalized this approach looking for a method able to measure the

synchrony between audio signals and video facial images. In order to deduce a relationship between

the cepstral representation of the audio and the video pixels, the authors use Canonical Correlation

Analysis (CCA), which is equivalent to maximum Mutual Information projection in the jointly

Gaussian case [42]. CCA allows to compare sequences of different dimensions, allowing thus to

estimate correlations between an audio feature and the whole video frames (and not just the single
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pixels). Several audio descriptors are investigated in this work, such as Mel-frequency Cepstral

Coefficients (MFCC) [93], linear-predictive coding [93], line spectral frequencies [105], spectrograms,

and raw signal energy. The authors report similar results for the first three methods, while raw

energy and spectrograms result less effective since more noisy. They end up using MFCC analysis,

like many other researchers, because it is a favorite front-end for speech-recognition systems.

Recently a CCA-based approach was suggested in [62]. The authors perform a rigorous analysis

of the multi-modal localization problem and propose an algorithm that provides a unique solution

to the problem imposing sparsity of the result. The video signal is represented using the wavelet

coefficients of difference images while the audio feature is the average acoustic energy per frame.

The algorithm is tested on two sequences with substantial audio-video distractors and it exhibits

promising localization results.

Nock and co-workers [82] carried out a first extensive study evaluating three different audiovisual

synchrony measures and several video representations in a speaker localization context. Two of the

considered methods are based on MI : one assumes discrete distributions [81] and the other one

considers multivariate Gaussian distributions as in [54]. These two measures, like those proposed

in [54, 102] are general statistical measures of correlation between random variables and make no

assumption about the structure of the analyzed signals. The third synchrony measure instead

is a face-speech specific measure and makes use of Hidden Markov Models (HMMs) trained on

audiovisual data to define the likelihood of a video configuration given a certain sound. Audio

features are extracted by MFCC analysis, while different video features are tested : coefficients of

the Discrete Cosine Transform (DCT), pixel intensities and pixel intensity changes [18]. Tests are

performed on a large database of audiovisual sequences, the CUAVE dataset [88], and the Gaussian

MI method achieved superior results when using the DCT-based representation of the video.

The methods described until here share several characteristics and limitations :� All algorithms except [62] require training in order to build a priori models;� Correlation measures are computed between data array that are considered to be random vari-

ables (except for the HMMs-based method in [82]) under more or less restrictive assumptions

(linearity, independence, mutual Gaussianity);� Visual information is represented using basic features that are barely meaningful from the point

of view of the signal structures, like pixel-based features (intensities or intensity changes) or

DCT coefficients;� Audio representations are typically based on MFCC analysis inherited from the speech process-

ing field. Mono-dimensional audio features are built by concatenating or combining cepstral

coefficient, making somehow difficult the interpretation of the representation.

In the next sections we review audiovisual localization algorithms that address some of the matters

brought up by the above-described studies.

2.2.2 Information Theoretic Approaches to Multi-Modal Fusion

In the last years several algorithms based on information theoretic features optimization have been

introduced. Fisher and colleagues have developed in [43] a multi-modal fusion framework that

has been extended in their latest work [42]. The algorithm is based on a probabilistic generation

model that is used to define projection rules on maximally informative subspaces. Such subspaces

are defined as linear combinations of input signals that maximize MI between different modalities.

Here no hypothesis is made on the distributions of the random variables representing audio-video
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signals and MI is calculated using a Parzen estimator [87]. The audiovisual features used are still

simple, pixel intensities for the video and audio periodograms. This approach is used to solve a

conversational audiovisual correspondence problem, obtaining interesting results. However, the use

of Parzen windows to estimate Mutual Information requires multiple tune-up parameters and a

considerable amount of data to make the estimation reliable.

A similar approach based on Markov chains modelling of audio and video signals is proposed

by Butz and Thiran [18]. The audiovisual consistency is assessed by maximizing the efficiency

coefficient, i.e. the ratio between audiovisual MI and the audio-video joint entropy. The distributions

of audio-video features are again estimated using Parzen density estimators. The video is represented

by pixel intensity change and the audio feature is the linear combination of the power spectrum

coefficients that brings biggest entropy. The framework developed in [18] is used in [13] to extract

optimal audio features with respect to video, that is represented using the optical flow extracted

from target regions identified using a face tracker. These audiovisual features are then correlated by

maximizing the efficiency coefficient in order to locate the active speaker among several candidates.

Gurban and Thiran [52] have recently proposed a slightly different approach. While the above

presented works do not use any learning procedure, in [52] a training step is required to learn

the parameters of the Gaussian Mixture Model (GMM) that is used to estimate the joint pdf of

audio-video features. This should allow to speed up the correlation computation at test time and

to foresee a possible real-time implementation. The video feature that is employed is specific to

speech : it consists in the difference between the average optical flow on the top and bottom halves

of the central part of the mouth region. Audio sources are localized on the video by finding the

image regions where samples have highest likelihood to have been generated by the learned joint

pdf. Results on the CUAVE database demonstrate the effectiveness of the approach, even though

the training step needs to be tuned to the type of analyzed sequences, since the learned pdf depends

on the geometry of the scene (mouth size and orientation, audio energy). Moreover, at training

stage mouth regions have to be cropped to compute the video feature and a sufficient amount of

data needs to be considered in order to accurately estimate the parameters of the mixture model.

Some considerations can be done at this point concerning information theoretic frameworks and

the evolution of audiovisual fusion-localization methods :� The methods reviewed in this section remove the assumptions on the joint distribution of

audiovisual features estimating the pdf using Parzen windows or GMM;� Audio-video representations are still simple, even though video features are becoming more

accurate, considering optical flow estimations [13] and even speech specific representations [52];� With the exception of [52], the training stage is no more considered while the modelling of

signal cross-correlations becomes more and more important;� Information theoretic frameworks suffer from the major problem of the estimation of joint

pdf s. While on-line estimation using Parzen kernels [13, 18, 42] is parameter-sensitive and

requires an amount of data often unavailable in real conversational systems, the learning of

GMM [52] seems to depend strongly on the analyzed sequences, resulting somehow little robust

and flexible.

2.2.3 Other Research Directions

One of the first work in the field was by Cutler and Davis [27] who conceived a time-delay neural

network approach. Audio-video correlations are learned on positive and negative examples using the
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neural network, which is then used to find in time and space a speaking person on the input data.

Normalized cross correlation between consecutive images is employed as video feature, while cepstral

representation is used for the audio signal. Localization capabilities of the system are demonstrated

on a small test set including a single person speaking in front of the camera.

An interesting approach was proposed by Smaragdis and Casey [103] who suggested a method to

localize and extract audio-video sources applying methodologies borrowed from the BASS field. An

optimal modelling and fusion criteria of data are found in a joint manner. Principal Components

Analysis (PCA) and Independent Component Analysis (ICA) are performed on audio and video

features at the same time, in order to find the maximally independent audio-video subspaces, and

thus extract audiovisual independent components. The video is represented with pixel intensities and

the audio signal using the amplitude spectrum. This work is interesting since the proposed technique

allows not only to localize sources on the video, but to explicitly link and extract meaningful

audiovisual structures. However, this method is not able to deal with dynamic scenes.

2.3 Where Are We Now?

The retrieval of correlation between audio and video signals is a non-trivial challenge, since complex

relationships between complex signals of different nature have to be modelled. The first works in the

field faced the problem using very simple signal representations and correlating them imposing sim-

plifying assumptions on the relationships between audio-video modalities. Since then, researchers

have investigated several directions, adopting more accurate signal representations than pixel in-

tensities or audio energy and developing increasingly complex and effective measures to describe

audiovisual interdependencies. However, in our opinion there are at least two major shortcomings

in the above mentioned fusion schemes that in this thesis we want to analyze and possibly alleviate :

Audiovisual features - Reviewed methods dealing with audiovisual fusion problems basically at-

tempt to build statistical models to capture the relationships between audio and video features.

Surprisingly enough however, the features employed are quite simple and barely connected with

the physics of the problem : we refer in particular to pixel-related features typically used for

video representations. Efficient signal modelling and representation require the use of methods

able to capture particular characteristics of each signal kind. A question that arises at this

point is : why should we use a representation of video based on a basis of deltas (i.e. pixel

wise features), if video is made of moving regions surrounded by contours with high geometri-

cal content? Pixel-related quantities seem to us a relatively poor sources of information that

have huge dimensionality, that are quite sensitive to noise and that have low semantic con-

tent, which makes it impractical to extract and manipulate correlated audiovisual structures.

Moreover it is difficult to deal with dynamic scenes, since the variables that are observed (pixel

values or related quantities) are static. A very simple example can clarify this concept. If a

person is moving back and forth while speaking in front of a camera, pixel intensities on the

mouth region change depending on the lips movements and on the speaker movement. In this

case the evolution of pixel values conveys few or even misleading visual information about the

sound source.

Audiovisual fusion criteria - Audio and video features are considered as random variables whose

degree of correlation is estimated using statistical measures under more or less restrictive

assumptions. The estimation of statistical cross-modal correlations forces one to consider an

uncomfortable trade-off. Either the statistical relationships between different modalities are

supposed to be very simple, assuming for example linearity [54, 82], independence [103] or
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mutual Gaussianity [62, 102]. Either complex models involving the estimation of MI [42],

HMMs parameters [82] or GMM features [52] have to be conceived if no strong assumption is

made, incurring in problems of parameter sensitivity and lack of data. We argue again that in

order to better understand audiovisual mechanisms and to improve existing fusion frameworks,

an effort should be done to model the structure of the phenomenon looking more in depth into

the physics of the problem.

In contrast to previous research works, in this thesis the attention is focused on modelling the

observed phenomena, i.e. multi-modal stimuli and their correlations. In particular, we propose

models of multi-modal sequences that concisely describe the structure of the considered signals.

Such representations allow as well the design of intuitive and precise fusion criteria that do not

require the formulation of any complex statistical model describing the relationships between the

different modalities. The idea is basically that of defining meaningful representations for signals,

instead of defining a complex statistical fusion model that has, however, to find correspondences

between barely meaningful features. In the case of multimedia sequences for example, if accurate

descriptions of the scene are available we can actually think of detecting consistent audiovisual pairs

generated by the same phenomenon by simply observing the co-occurrence of interesting audio and

video “events”. In the next chapter we will develop this topic and we will propose a framework that

allows to build relationships between correlated audio and visual data.

2.4 Discussion

In this chapter we have defined the class of signals that we will study in this thesis, i.e. multi-modal

(or heterogeneous multi-channel) signals. The target applications of this research work will be in

the field of audiovisual signal processing, and in particular audiovisual single-microphone source

localization and separation. An exhaustive survey of the literature in these fields have been carried

out and it has highlighted that, despite an increasing interest in these topics, major issues still

have to be addressed. Existing audiovisual fusion techniques typically consider the different signal

modality representations as random variables and propose complex statistical models describing

relationships between these features, renouncing somehow to model the structural properties of the

considered phenomenon.

The next chapter will develop this issue and it will introduce a multi-modal signal model grounded

on signal representation techniques that provide an interpretation of the data in terms of salient

signal structures. Such multi-modal structures will constitute as well the core of the analysis tools

that will be developed throughout all the thesis.



Audiovisual Gestalts 3
In this chapter we introduce and discuss a new framework for detecting correlated audiovisual events

in multi-modal signals. In particular, we want to localize the source of a sound in a video sequence.

Such task is quite trivial for humans, while it is particularly challenging for automatic systems.

It is for this reason that we have decided to study a perceptually-driven approach to audiovisual

fusion inspired by the research of Desolneux, Moisan and Morel on Gestalt theory and Computer

Vision [32–34].

3.1 Gestalt Theory and Audiovisual Processing

First of all, let us briefly introduce what Gestalt theory is. Starting from the first decades of past cen-

tury, Gestaltists have tried to express all the basic laws that rule human visual perception [61, 117].

The basic set of such laws consists of grouping laws : starting from local data, objects are formed by

recursively building larger visual objects, i.e. gestalts, that share one or more common properties.

Such properties represent specific, simple qualities of visual objects. The list of qualities according

to which gestalts are built includes proximity, similarity, continuity of direction, amodal completion,

closure, constant width, tendency to convexity, symmetry, common motion, past experience [61].

Examples of some of these Gestalt laws “in action” taken from Kanizsa’s book [61] are shown in

Fig. 3.1. Clearly, such simple rules are not able, alone, to explain the human perception of the world.

Thus, more complex principles governing the collaboration and the contrast between gestalt laws

and that are active at cognitive level have also been introduced. Here, we will focus our attention

on the basic set of simple grouping laws, called by Desolneux and coworkers partial gestalts [34].

The interested reader is referred to [61] for an exhaustive presentation of the Gestalt theory of

perception.

Interestingly, Gestalt laws have been demonstrated to hold not only for visual perception, but

also for other type of sensorial experiences, like acoustic and tactile perception [61]. Moreover,

several works in psychophysics and neuroscience have also shown that Gestalt-like rules, and no-

tably temporal proximity, contribute to integrate cross-modal information in humans, both in the

case of audiovisual [11, 39, 58, 75, 101, 113, 116] and tactile-visual stimuli [15, 112]. In one of

13
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Figure 3.1 – Examples of Gestalt laws of visual perception (after [61]). In (a), the 25 points on the left could

be grouped into many different configurations. However, if two of the columns of points are slightly shifted, the

configuration of points acquires a unique, well defined structure. In (b) the same type of effect is obtained by

modifying the aspect of two of the columns. In (c), the hexagon on the left becomes a cube by slightly changing

the point of view. Interestingly, the figure on the left can be a cube as well, but its configuration as an hexagon

is already well defined, while the figure on the right becomes more coherent if it is perceives as a cube. In (d)

the continuity of direction contributes to perceive the set of points as three lines. Figure (e) shows an example

of the closure law. In the left picture objects are grouped according to their similarity and proximity (pairs of

triangles and rectangles). However, if the three white rectangles are superimposed to the drawing as on the right

picture, objects are forced to be grouped in such a way to form a partially covered hexagon. This effect is due

to the closure law. Finally, in (e) one typically sees a group of independent segments. However, if the page is

rotated clockwise by 90◦, the word FEEL appears. Since it seems unlikely that the same effect could arise if one

does not know the alphabet’s letters, in this case the past experience seems to play a determinant role.

the pioneering studies in the field, Jack and Thurlow [58] discovered that synchronization of visible

movements with peaks of speech intensity is the main condition for considering that audiovisual

stimuli are originated by the same generating event. In a 1976 paper, McGurk and MacDonald [75]

reported an amazing demonstration of the multi-modal nature of speech perception which represents

a milestone in the field of sensory integration. They discovered that if the audio syllable “ba” is

dubbed onto a visual “ga”, one perceives a “da”. The effect is induced by the human brain, that in-

tegrates audiovisual stimuli that are incongruous but simultaneous. Examples of the McGurk effect

can be downloaded through http://www.media.uio.no/personer/arntm/McGurk english.html

or http://www.faculty.ucr.edu/∼rosenblu/VSMcGurk.html. The effect is strong, and it works

even if audio and video sequences are from speakers of different genders [48], if the speaking lips

are shown upside-down [12] or if the face representation is extremely schematic and if subjects

are unaware that they are looking at a face [98]. Demonstrations of these two effects can be

linked respectively through http://www.faculty.ucr.edu/∼rosenblu/VSinvertedspeech.html

and http://www.faculty.ucr.edu/∼rosenblu/VSlipreadingdots.html. Another surprising ex-

ample of audio-video information integration has been presented in [101] and it represents the first

observed illusion induced by a non-visual stimulus, namely sound : when a single flash of light

is accompanied by multiple auditory beeps, the single flash is perceived as multiple flashes. A

demonstration of the effect can be seen at http://shamslab.psych.ucla.edu/demos/.

All this evidence suggests that the synchrony between modalities is an important, strong cue that

can be valuably exploited when simultaneously processing multi-modal signals. In fact, as discussed

in the previous section, several researchers have exploited audio-video coherence in particular to

http://www.media.uio.no/personer/arntm/McGurk_english.html
http://www.faculty.ucr.edu/~rosenblu/VSMcGurk.html
http://www.faculty.ucr.edu/~rosenblu/VSinvertedspeech.html
http://www.faculty.ucr.edu/~rosenblu/VSlipreadingdots.html
http://shamslab.psych.ucla.edu/demos/
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Figure 3.2 – Video component of an audiovisual sequence including a hand playing the piano and a moving

toy car. One sample frame is shown on the left and the corresponding dynamic pixels are on the right : gray-levels

represent the absolute value of the difference between the luminance components of two successive frames. Black

pixels indicate thus no motion. Observing only the visual motion it is clearly not possible to deduce where the

sound source is.

design audio source localization algorithms in audiovisual sequences [18, 27, 42, 52, 54, 62, 77–

79, 82, 102, 103]. It is worth underlying that such task is not trivial and it can be extremely

challenging if one decides to consider audio and video modalities separately. It is clear that the

audio stream provides no information concerning the spatial location of the source if only a one-

microphone signal is available. However, also video information alone can be barely helpful. In

Fig. 3.2 it is shown the video component of an audiovisual sequence including a hand playing the

piano and a moving toy car. One sample frame is shown on the left and the corresponding dynamic

pixels are on the right : gray-levels represent the absolute value of the difference between the

luminance components of two successive frames. It is clear that observing only the visual motion

it is impossible to decide whether the sound has been produced by the hand playing the piano

key (on the bottom left part of the scene) or by the toy car passing by (on the upper right part).

Instead, such ambiguity can be solved by using the information present in the audio channel, and

in particular by searching for synchronous audiovisual patterns.

Therefore, the idea here is to design an audiovisual source localization algorithm that exploits

cross-modal information just like humans do. The localization is accomplished by detecting syn-

chronous audiovisual events, i.e. audiovisual gestalts. This detector relies on a simple principle that

will be introduced in the next section. Then, in section 3.3 we will discuss more in detail how we

can build a model of audiovisual phenomena that will allow the definition of meaningful audiovisual

gestalts.

3.2 Gestalts in Computer Vision and Helmholtz Principle

A great effort to apply Gestalt theory to Computer Vision has been done in the last years by

several researchers [19, 32–34]. Desolneux and colleagues have shown that it exists a very simple

and general principle, that they have called Helmholtz principle, which allows to decide whether a

gestalt is reliable or not. This principle was introduced to try to describe how perception decides

to group objects according to a certain quality. It roughly states that an event is perceptually

meaningful if it has very low probability to be observed by chance. In [32] this principle is formalized

in the following manner. Assume that we are observing r objects O1, . . . , Or. Assume that q of

them, O1, . . . , Oq, share a common quality. Is the presence of this common feature a coincidence,

or is there a better explanation for it? To answer this question, we do this mental experiment :

we assume a contrario that the considered quality was uniformly and independently distributed
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on all the objects O1, . . . , Or. Clearly, the independence assumption is not realistic, but here we

are defining an a contrario model that grossly represents the absence of relevant events. Then

we (mentally) assume that the observed objects are distributed according to this random process.

Finally, we ask the question : is the observed set of points probable or not? The Helmholtz principle

states that if the expectation of the observed configuration O1, . . . , Oq is small, then we are observing

a meaningful event, that is, a gestalt.

The Helmholtz principle, conversely to classical statistical methods, does not require a precise

model of the observed phenomenon. In fact it coarsely models a statistical background that repre-

sents the absence of significant events. An event is considered to be relevant if it has, according to

this generic model, a very low probability. In this case, we suppose that such a particular event has

a better explanation than chance alone, it is a meaningful gestalt. These events have to be defined

so that they correspond qualitatively to some perceptually meaningful structures. We will see in

the next section how this can be achieved in the case of audiovisual signals.

3.3 Audiovisual Gestalts

As already stated, the audiovisual gestalt we want to detect is the co-occurrence of an acoustic and

a visual event. Such synchronization of events is the main manifestation of a physical phenomenon

(utterance of a sound by a speaker for example), whose effects are recorded over different channels

(audio and video in this case). As underlined at the end of the previous section, the audiovisual

configuration to detect has to be defined in such a manner that it depicts a structure with a certain

perceptual meaning. We observe that a visual signal is mainly made of moving regions surrounded

by contours with high geometrical content. Measures that consider video pixels independently

seem thus a relatively poor source of information that moreover has a huge dimensionality and

does not exploit structures in images. In contrast we aim at modelling audiovisual data such that

dimensionality gets reduced and salient signal structures are extracted.

Instead of considering raw pixel data, one interesting option is to represent visual information

using video approximation techniques that can express an image sequence as a set of video com-

ponents intended to capture meaningful geometric features (like oriented edges) and their temporal

evolution [35, 77–79]. Note that representing the video signal as a set of edge-like patterns that are

tracked trough time, we try to define meaningful video structures that obey Gestalt principles. In

particular, sets of individual pixels are grouped together and represented with a 3D moving edge

according to the rules of proximity, similarity and common motion, which are three of the basic

Gestalt grouping laws postulated by Kanizsa [61] (see section 3.1).

Here we employ the video representation algorithm developed by Divorra [35]. The use of

geometric video decomposition has at least two main advantages :� Unlike the case of simple pixel-based representations, when considering image structures that

evolve through time we deal with dynamic features that have a true geometrical meaning [35,

77–79];� Geometric video decompositions provide compact representations of information, allowing

a considerable dimensionality reduction of the input signals. This property is particularly

appealing in this context, since we have to process signals of very high dimensionality.

In the next section we introduce a signal representation technique based on sparse decompositions

over redundant dictionaries of functions. This type of approach will be the basis of the audio and

video representation methods that will be used throughout this thesis.
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3.4 Sparse Representations on Redundant Dictionaries

Our aim is to represent a digital signal f ∈ R
d, in terms of its most salient and meaningful structures.

In order to capture the large variety of structures present in natural signals, redundant sets of basis

functions have to be considered. Let D = {φn}n∈Ω be a dictionary of vectors called atoms, with

φn : R
d → R and ‖φn‖ = 1 and Ω indexes the (finite) set of all functions composing D. We propose

to approximate f by means of a linear expansion into a redundant family of functions :

f ≈
∑

n∈Γ

cnφn , (3.1)

where Γ is a set of functions s.t. Γ ⊂ Ω and cn is a coefficient weighting each component. In

this thesis a dictionary is understood as a generic set of atoms containing all available vectors for

representing signals based on the model described in (3.1). The dictionary is said to be redundant

if the number of functions that compose it is larger than the dimensionality d of the space where

f lives. The interest of considering redundant dictionaries resides in their capacity to supply signal

representations that are sparse, i.e. the cardinality of Γ is much smaller than the dimension of the

signal. Given a certain class of signals, one may define a dictionary of functions such that they

have a rich collection of shapes in order to adapt better to the characteristics of the signals to

represent. Such kind of dictionaries are typically redundant sets of atoms able to provide sparse

signal representations of the form of (3.1).

Unfortunately, the decomposition of a signal f on a general redundant dictionary D is not unique,

and several decomposition approaches have been proposed. One popular approach is the method of

frames [29], that however does not guarantee the sparsity of the solution. Interesting alternatives are

the FOCUSS algorithm [47] or the Basis Pursuit algorithm (BP) [22]. However, these two techniques

are basically unusable when dealing with high-dimensional signals like video sequences because of

their computational complexity. Here we use the Matching Pursuit algorithm (MP) [73], a simple

iterative method to represent a signal according to the model (3.1). MP is a greedy algorithm that

decomposes any signal into a linear expansion of waveforms that belong to a dictionary of functions.

These waveforms are iteratively chosen to best match signal structures. This characteristic makes

the MP approach viable also when considering high-dimensional data : dictionary atoms are picked

one by one, while in FOCUSS and BP the whole set of representing functions is chosen at one

time. Vectors are iteratively selected from the dictionary by optimizing the signal approximation

(in terms of energy) at each step. Even though the expansion is linear, MP is a highly non-linear

decomposition algorithm.

MP iteratively picks up the function belonging to D that best approximates the signal f . The

first step of the MP algorithm decomposes f as

f = R0f = 〈f, φ0〉φ0 + R1f , (3.2)

where R1f is the residual component after projecting f in the subspace described by φ0. Since all

elements in D have by definition a unit norm, it is easy to see from (3.2) that φ0 is orthogonal to

R1f , and this leads to

‖f‖2 = |〈f, φ0〉|2 + ‖R1f‖2 . (3.3)

To minimize ‖R1f‖ one has to select φ0 such that the coefficient |〈f, φ0〉| is maximum. At the next

step, the same procedure is applied to R1f , which yields :

R1f = 〈R1f, φ1〉φ1 + R2f . (3.4)

This operation is recursively applied, and after N iterations we decompose f as

f =

N−1∑

n=0

〈Rnf, φn〉φn + RNf . (3.5)
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Similarly, the energy ‖f‖2 is decomposed into :

‖f‖2 =

N−1∑

n=0

|〈Rnf, φn〉|2 + ‖RNf‖2 . (3.6)

The MP algorithm has been shown to converge, i.e. ‖RNf‖2 → 0 when N → ∞, and its approxi-

mation error decay rate has been shown to be bounded in finite dimension by an exponential [30].

Using the MP technique we can thus approximate f using N terms as

f ≈
N−1∑

n=0

cnφn , (3.7)

where cn = 〈Rnf, φn〉.
The MP algorithm results practically usable also when dealing with signals of high dimensionality

thanks to its iterative structure. Moreover the selected functions are ranked according to their

contribution to the approximation of the signal, which makes the algorithm scalable. This means

that one can choose the degree of accuracy of the representation by choosing the number N of

considered functions, allowing flexible and parsimonious data representation.

3.5 Audio-Video Representation and Fusion

In the following sections we will briefly describe the techniques used to represent the audio signal

and the video representation algorithm of Divorra, letting the interested reader refer to [35]. Based

on such representations, in section 3.5.3 we will define meaningful audiovisual events.

3.5.1 Representation of the Video Signal

We would like to represent a video signal with a set of video components that are able to express

the signal in terms of salient, meaningful structures. In this context such components are oriented

edges that evolve through time [35]. Considering the sparse signal model expressed by (3.1) and

indicating a discrete video signal as V(x1, x2, t), with (x1, x2) pixel coordinates and t the frame

index, we can write :

V(x1, x2, t) ≈
∑

n

cnφ(v)
n (x1, x2, t) , (3.8)

where cn is the coefficient for every atom φ
(v)
n (x1, x2, t) : R

3 → R. The limitation of this type

of formulation is that we have to define a redundant dictionary of 3D atoms D(v) = {φ(v)
n }n that

represent visual structures and their possible evolution through time. It is intuitive to understand

that such a dictionary would be amazingly huge even considering a limited set of possible structures

and transformations. Thus the computation of a video signal approximation in the form of (3.8)

results basically untractable.

However, natural image sequences can be seen as a succession of 2D projected snapshots of 3D

objects. Considering these objects to describe smooth trajectories through time, one usually assumes

that image sequences are well modelled by smooth transformations of a reference frame [115]. A

video sequence can thus be considered as a series of frames represented by a mixture of homogeneous

regions and regular contours, where the motion is represented by smooth local deformations of

these regions. Regular geometric structures can be represented using parametric over-complete

dictionaries of geometric atoms and local deformations are then propagated along the sequence by

updating the atoms’ parameter field in order to approximate the succession of frames. Applying this
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principle and the model (3.1), we assume that a discrete 2D image I(x1, x2) can be approximated

with a linear combination of atoms retrieved from a redundant dictionary D(i) = {φ(i)
n }n of 2D

atoms, and we can write :

I(x1, x2) ≈
∑

n

cnφ(i)
n (x1, x2) , (3.9)

where n is the summation index and cn is the coefficient associated to every atom φ
(i)
n (x1, x2) :

R
2 → R.

Each video frame is decomposed into a low-pass part, that takes into account the smooth com-

ponents of images, and a high-pass part, where most of the energy of edge discontinuities lays. The

low frequency component is obtained by low-pass filtering and down-sampling the images in the se-

quence, using the Laplacian-pyramid scheme [17]. We employ here the FIR low-pass filter proposed

in [89]. The high-pass frames are obtained by subtracting the low frequency parts from the original

frames. These high frequency residual frames which contain the geometric structures of images are

represented using MP as

I ≈
N−1∑

n=0

cnφ(i)
n , (3.10)

where cn = 〈RnI, φ
(i)
n 〉.

The dictionary D(i) is built by varying the parameters of a mother function, in such a way that

it generates an overcomplete set of functions spanning the input image space. The choice of the

generating function g(i)(x1, x2) is driven by the observation that it should be able to represent well

edges on the 2D plane. Thus, it should behave like a smooth scaling function in the direction of the

contour and it should approximate the edge transition along the orthogonal one [90, 109]. We use

here an edge-detector atom with odd symmetry employed in [90], that is a Gaussian along one axis

and the first derivative of a Gaussian along the perpendicular one (see Fig. 3.3). The generating

function g(i)(x1, x2) is thus expressed as :

g(i)(x1, x2) = 2x1 · e−(x2
1+x2

2) . (3.11)

Each atom φ
(i)
n = Ung(i) is built by applying a set of geometrical transformations Un to the mother

function g(i)(x1, x2). Basically, this set has to contain three transformations :� Translations ~t = (t1, t2) all over the image plane;� Anisotropic scaling ~s = (s1, s2) to adapt the atom to the considered image structure;� Rotations θ to locally orient the function along the edge.

Any atom φ(i) in the dictionary rotated by θ, translated by t1 and t2, and anisotropically scaled by

s1 and s2 can thus be written as :

φ(i)(x1, x2) =
C√
s1s2

· 2u · e−(u2+v2) , (3.12)

where C is a normalization constant an

u =
cos θ(x1 − t1) + sin θ(x2 − t2)

s1
, (3.13)

and

v =
− sin θ(x1 − t1) + cos θ(x2 − t2)

s2
. (3.14)
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Figure 3.3 – The generating function g(i)(x1, x2) expressed by (3.11).

In order to obtain a dictionary D(i) that has finite dimension all the atoms parameters are

discretized. The translations ~t are kept over a uniform grid that covers the pixels locations. The

two scaling factors are quantized in a dyadic way. The range of the scaling factor s2 is twice as

big as s1 since we want the atoms to be edge detector kernels. The rotation step θ is uniformly

quantized.

We consider an approach where 2D spatial primitives obtained in the expansion of a reference

frame of the form of (3.10) are tracked from frame to frame. Given a set of images belonging to a

sequence, the changes suffered from a frame It to It+1 are modelled as the application of an operator

Ft to the image It such that It+1 = Ft(It) and

It+1 ≈
N−1∑

n=0

Fnt

(
cnt

φ(i)
nt

)
, (3.15)

where Ft represents the set of transformations Fnt
of all individual atoms that approximate frame

t, and the subscript t indicates the time index. The transformations Fnt
act on the parameters

associated to each atom φ
(i)
nt , i.e. the coefficient cnt

and the position, scale and orientation parameters

of φ
(i)
n ant frame t. A MP-like approach similar to that used for the first frame is applied to

retrieve the new set of atoms φ
(i)
nt+1 (and the associated parametric transformation Fnt

). However,

at every greedy decomposition iteration some new criteria have to be considered in order to establish

the relationship with the expansion of the reference frame. Only a subset of functions of the

general dictionary is considered as candidate functions to represent each deformed atom. This

subset is defined according to the past geometrical features of every particular atom in the previous

frame, such that only a limited set of transformations (translation, scale and rotation) are possible.

This imposes smoothness on the set of deformed primitives, following the assumption of smooth

transformation. The formulation of the MP approach to video representation is complex and is

treated in detail in [35], to which the interested readers are referred.

To summarize, we want to point out here that the original sparse signal model expressed by (3.8)
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has been simplified to :

V(x1, x2, t) ≈
N−1∑

n=0

cn(t)φ
(v)
n (x1, x2, t) , (3.16)

where the coefficients cn(t) vary through time and where each video atom φ
(v)
n is obtained by changing

from frame to frame the parameters (t1n
, t2n

, s1n
, s2n

, θn) of a reference 2D atom φ
(i)
n (x1, x2) (see

also Figure 3.4) :

φ(v)
n (x1, x2, t) = φ

(i)
n(t)(x1, x2) . (3.17)

A cartoon example of the used approach can be seen in Fig. 3.4(a), where the approximation of a

simple synthetic object by means of a single atom is performed. The first and third row of pictures

show the original sequence and the second and fourth rows provide the approximation composed

of a single geometric term. Figure 3.4(b) shows the parametric representation of the sequence.

We see the temporal evolution of the coefficient cn(t), and of the position, scale and orientation

parameters. The MP decomposition of the video sequence provides a parametrization of the signal

which represents the image geometrical structures and their evolution through time. In this way

we can track the movements of relevant image features, getting an accurate description of the scene

content. Besides, it is important to underline that the stream of video atoms that we consider is

absolutely generic. It could be generated using different approximation techniques and it can be

used to encode video sequences, as it is shown in [37].

3.5.2 Representation of the Audio Signal

Audio signals have a rich variety of components that the human auditive system is able to perceive

(Fig. 3.5). Correlations of the wide diversity of sounds with the also large variety of geometric

configurations of the visual stimulus of a mouth are possible. Indeed, this is the main basis for lip

reading. A positional model of lips may be assigned to each sound and transitional models between

sounds can be established.

We consider here a much simpler and generic approach. As already stated, we look for synchrony

between audio-video events. An interesting audio event, from our point of view, is the presence of

a sound. Therefore, we need an audio feature that simply allows to assess the presence or not of

an acoustic event. Finer audio features are unnecessary in this setting, but can be considered to

perform more complex tasks.

Typical features used to represent audio signals are based on MFCC analysis [93], mainly used

in the speech recognition field, and employed in [13, 27, 82, 102]. Simple audio descriptors based

on the average acoustic energy are used in [52, 54, 62]. In [18] the audio feature is obtained from

the spectrogram of the audio track as the linear combination of the power spectrum coefficients

exhibiting the biggest entropy. Fisher and Darrell [42] propose a similar feature that maximizes

the mutual information with the video. In all cases, the final feature is a 1D function that is

down-sampled in order to obtain the same temporal resolution for audio and video features.

Here, an estimate of audio energy contained per frame is considered. To compute such an

estimate, we exploit the properties of sparse signal representations over redundant dictionaries using

MP, that point out the most relevant signal structures. The audio signal a(t) is decomposed over

a redundant dictionary D(a), composed of unit norm atoms. The family of atoms that compose

D(a) is generated by scaling by s, translating in time by u and modulating in frequency by ξ a 1D

generating function g(a)(t). An atom belonging to D(a) = {φ(a)
k }k can thus be expressed as

φ
(a)
k (t) =

1√
s
g(a)

( t− u

s

)
eiξt . (3.18)
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(a) Synthetic sequence approximated by 1 atom : first and third row show the original sequence made

by a simple moving object. Second and fourth row depict the different slices that form a 3D geometric

atom.

(b) Parameter evolution of the approximated object; from left to right and from up down, we

find : coefficient c, horizontal position t1, vertical position t2, short axis scale s1, long axis scale s2,

rotation θ.

Figure 3.4 – Approximation of a synthetic scene by means of a 2D time-evolving atom.

In our case, we consider a dictionary of Gabor atoms, that is, the generating function g(a)(t) is

a normalized Gaussian window. The choice of a Gabor dictionary is motivated by the optimal

time-frequency localization of the Gaussian core [51].

As in the case of images, we can express a K-terms approximation of the signal a(t) as

a(t) ≈
K−1∑

k=0

ckφ
(a)
k , (3.19)

where ck = 〈Rka, φ
(a)
k 〉.

An estimate of the time-frequency energy distribution of the real function a(t) can be derived

from its MP decomposition by summing the Wigner-Ville distributions Wφ(a)(t, ω) of the obtained

atoms [73] :

Ea(t, ω) ≈
K−1∑

k=0

|〈Rka, φ
(a)
k 〉|2 ·Wφ

(a)
k (t, ω) . (3.20)

If g(a)(t) is, as in this case, the Gaussian window, its Wigner-Ville distribution is

Wg(a)(t, ω) = 2e−2π(t2+(ω/2π)2) . (3.21)
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Figure 3.5 – Audio signal of a subject uttering digits in English sampled at a frequency of 8 kHz [Top], its

time-frequency energy distribution Ea(t, ω) [Middle], and the estimated audio feature fa(t) [Bottom]. The signal

is decomposed using 1000 Gabor atoms. The color map of the time-frequency plane image goes from white to

black, and the darkness of a pixel represents the value of the energy at each time-frequency location.

The time-frequency energy distribution Ea(t, ω) is a sum of 2D Gaussian functions, whose positions

and variances along time and frequency axes depend on the parameters sk, uk and ξk. One of the

analyzed signals and its time-frequency energy distribution are shown in Fig. 3.5. On the top picture

the audio signal of a person uttering digits in English sampled at 8 kHz is shown, while the plot of

its energy distribution is on the picture in the middle.

Construction of the Audio Feature

The audio representation that we obtain from the MP decomposition is not directly exploitable

as it is and it has to be further processed in order to obtain a function that is comparable with

the evolution of the video parameters. We require audio features composed of the same number

T of samples as the MP video features. Moreover, we would like to depict the audio signal with

only one time-evolving feature, in order to speed-up the computation and to simplify the problem

formulation.

Our audio feature fa(t) is obtained by estimating the energy present at each time instant, where

the time-frequency energy distribution of the audio signal is found by decomposing it with the MP

algorithm according to (3.20) :

fa(t) =

K−1∑

k=0

|〈Rka, φ
(a)
k 〉|2 ·

∫ +∞

−∞

Wφ
(a)
k (t, ω)dω . (3.22)
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Figure 3.6 – The signal of Fig. 3.5 is drawn in (a). The average, over a time window of two video frames, of

the squared modulus of the audio signal is shown in (b), the average over frequencies of the energy spectrogram

of the audio signal in (c), the mean over frequencies of the energy spectrogram after MFCC processing in (d)

and the per-frame audio energy estimated from the MP decomposition in (e).

Note that now the Wigner-Ville distributions are projected over the time axis. The so-obtained

estimate of the audio energy per time instant is down-sampled to the temporal frequency of the

video, in order to get a convenient number T of time samples. In fact, our feature is similar to those

described in [18, 42], with the difference that we attribute to each frequency component the same

importance, while in [18, 42] frequency bands are weighted optimizing some audio-video coherence

criteria.

The audio characteristic fa(t) that has been just described has been compared with three other

audio features. In Figure 3.6, the signal of Figure 3.5 and these four audio features associated to it

are depicted :� We draw in Fig. 3.6(b) a feature based on the average, over a time window spanning two video

frames (in this case 534 audio samples considering a soundtrack at 8 kHz and the associated

video at 29.97 frames/sec), of the squared modulus of the audio signal;� Figure 3.6(c) shows another audio feature computed from the average over frequencies of the

energy spectrogram of the signal. The spectrogram is computed as the magnitude of the

windowed discrete-time Fourier transform of the signal using a sliding window. The energy

distribution is given by the squared absolute value of such time-frequency function;� Figure 3.6(d) shows a third feature based on the mean over frequencies of the energy spec-

trogram of the audio signal after MFCC processing [93]. In this case, the spectrogram is

reconstructed after processing it using a Mel filter bank composed of 40 filters and taking the

log10 of the output. The energy distribution is the squared absolute value of the time-frequency

function;� We draw in Fig. 3.6(e) the audio feature fa(t) obtained by estimating the per-frame audio

energy using (3.22);
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The four features behave similarly, and we have chosen the fourth one since it exhibits a smoother

and more regular profile (see Fig. 3.6). This is due to the sparseness and the fine time-frequency

resolution of the dictionary decomposition, that allow to obtain a description that captures nicely

the evolution of the audio track, filtering out most of the signal noise. Moreover, informal tests on

a set of real-world sequences have confirmed our intuition, showing that slightly better audiovisual

fusion results are obtained when the audio feature (3.22) is used in our proposed framework.

3.5.3 Audiovisual Fusion

The audio feature fa(t) basically estimates the average energy present in the audio signal a(t). The

output of the MP video algorithm, instead, is a set of atom parameters describing the temporal

evolution of the video features. From the positions, we can compute the displacement of each video

atom and thus estimate the movement of important visual structures. For each video atom φ
(v)
n we

compute the absolute value of the displacement as

dn(t) =
√

t21n
(t) + t22n

(t) ,

where t1n
(t) and t2n

(t) represent the evolution through time respectively of the horizontal and

vertical positions of the atom. In order to be more easily compared to the audio feature and to

filter out small spurious movements, we convolve the video feature dn(t) with a Gaussian kernel,

obtaining a smooth function like the one depicted in Fig. 3.7(c).

We have now one audio feature and N video features describing the movement of relevant visual

features, where N is the number of atoms used to represent the video. Each of these variables has

the same number of samples T , since we down-sample fa(t) that has a higher temporal resolution.

Peaks in these signals suggest the presence of an event. In the video case, it can be the movement

with respect to a certain equilibrium position (e.g. lips opening and closing). For the audio, a

peak indicates the presence of a sound. The temporal proximity of such audio and video peaks

suggests the presence of a gestalt reflecting two expressions of the same phenomenon (production

of a sound). Thus, for a given feature vector x(t) we build an activation vector y(t) which is based

on the information about the peaks locations. First, we detect the peaks in the audio feature and

in each of the N video features, obtaining vectors that equal 1 where peaks occur and 0 otherwise.

Peaks are found by simply detecting positive signal slopes that are followed by negative slopes. Then,

such vectors are filtered with a rectangular window of size W that models delays and uncertainty.

An activation vector describes the presence of an event associated to the corresponding signal. It

has value 1 when the feature is “active”, and 0 otherwise.

We end up with one activation vector for the audio, y(a)(t), and N activation vectors y
(v)
n (t), one

for each video atom. By computing a logical AND between y(a)(t) and all the video activation vectors

constructed over a given observation time slot, we build N vectors, denoted as synchronization

vectors sn(t). The vectors sn equal 1 at time instants at which both audio and video atoms are

active and 0 otherwise. Thus, the number of 1 in the vector indicates the degree of synchronization

between the audio-video pair. Figure 3.7 summarizes the construction of one synchronization vector

s(t).

3.6 Detection of Audiovisual Meaningful Events

Once synchronization vectors are available, we need a method to select those vectors (and thus

those audiovisual structures) associated to meaningful audio-video pairs. We want to do that in an

automatic way, tuning as less parameters as possible. In the next section we will show how we can
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Figure 3.7 – Scheme of the proposed audiovisual fusion criterion. Starting from the audiovisual sequence

(a), we compute the audio feature fa(t) (b), and the displacement feature for a video atom representing the

speaker’s mouth (c). The two features exhibit a remarkable synchrony. From these signals we extract the audio

energy peaks and the displacement peaks, and the activation vectors y(a)(t) and y(v)(t) are built (d–e). The

synchronization vector s(t) is created computing the logical AND between the audio-video activation vectors (f).

build a multi-modal event detector based on the Helmholtz grouping law presented in section 3.2.

The parameters of the algorithm reduce to just one, from which the detection accuracy weakly

depends.

3.6.1 An Audiovisual Event Detector Based on the Helmholtz Principle

At this point of the reasoning for each video atom we have one synchronization vector sn(t). Suppose

that we observe a synchronization vector of length r (i.e. that is built over an observation window

of r samples), and let the number of 1 in such vector be equal to q. We can ask ourselves : is the

number q big enough, so that we can consider the corresponding video atom correlated with the

audio signal? Or the co-occurrence of audio and video events is due only to chance? We can answer

these questions using the Helmholtz principle.

We first have to define the background a contrario model which corresponds to the absence of

correlated audiovisual events. In this case the observations sn(t) are considered as independently

identically distributed (i.i.d.) random variables. Since the general form of their distribution is

unknown (anyway, it is not reasonable to assume that a single distribution could account for all

the sequences), the empirical distribution is considered [32]. Integrating this distribution yields the

function Ps(X), where X is a random variable distributed according to the empirical distribution

of the observed values sn(t) (with n = 1, . . . , N).

Let A be a video atom with corresponding synchronization vector sA of length r, and let q be

the number of points at which sA assumes value 1. Let us define the event E = “At least q points of

a synchronization vector sA of size r keep a value equal to 1”. Thus, according to the background

model, the probability of the event E, P (E),

P (E) = B(q, r, Ps(sA = 1)) , (3.23)

where Ps(sA = 1) is directly deduced from Ps(X) and B(q, r, p) is the tail of a binomial distribution :

B(q, r, p) =
r∑

i=q

(
r

i

)
pi(1− p)n−i . (3.24)
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According to these notions, we can now define an ε-meaningful video atom. Let us stress that in

this context, the meaningfulness of a video atom is referred to its correlation with the audio signal.

Definition 1. For a given atom A with corresponding synchronization vector sA of size r and

containing q matching points (i.e. q values equal to 1), we define the “number of false alarms”

(NFA) as :

NFA(A) = N · B(q, r, P (sA = 1)) , (3.25)

where N is the total number of candidate configurations to be tested. In this case N is the number

of video atoms used for the decomposition of the sequence.

An atom A is said to be ε-meaningful if NFA(A) ≤ ε.

It is easy to demonstrate that the expected number of ε-meaningful video atoms in a sequence,

according to the a contrario model, is less then ε [19, 32]. Moreover, it is possible to show that

the number q of matching points in a synchronization vector that are required to be significative

depends on the logarithm of ε and N [19, 32]. This means that the detection results are robust to

variations of these values.

Setting the Meaningfulness Threshold ε The value of ε controls the number of false detec-

tions. Setting ε equal to 1, as in [19], means that the expected number of false detections in a

sequence distributed according to the background model is less than 1. However, the hypothesis of

independence, especially for what concerns the video representation, is far from being realistic since

the MP video algorithm exploits the correlation between neighboring atoms [35]. Because of that,

some video atoms exhibit NFA smaller then ε = 1, even without being correlated with the audio.

One solution is that of considering a smaller value of ε, as it is done in [32] where ε = 1/10.

However, better results can be achieved by exploiting some additional knowledge about the

scene. Here, we are implicitly assuming that a single audiovisual source is observed at each time

instant. Thus, the solution we want to find should be well localized in the image plane. Following

this reasoning, we can test multiple values of ε (smaller than 1), keeping the solution which is more

localized in space. By doing that, we basically do not fix any detection threshold. Instead, we

browse a set of interesting solutions and we chose the most suitable one.

In practice, what we will do is to consider a set of εi uniformly spaced in a logarithmic scale

between εMIN and 1. For each value εi, we obtain a set of video atoms Gi for which NFA(A) ≤ εi,

with A ∈ Gi. For each group Gi, the variances along the horizontal (varx1
) and vertical positions

(varx2
) are computed and the maximum value VGi

= max{varx1
(Gi), varx2

(Gi)} is kept. Clearly, a

set of video atoms can be composed of only one function : in that case the variance VGi
is equal to

zero. If a group is empty, its variance is set to a very high value (ideally infinite). This is done to

avoid the algorithm to search for a very small threshold εi for which the corresponding group Gi is

empty and has thus zero variance. Our considered solution G∗ is the set of atoms that exhibits the

smallest variance VG∗ .

3.7 Experiments

We show here how the proposed framework is used to locate the source of an audio signal in real

video sequences.

Audio Source Localization The first test involves two clips, denoted as Piano 1 and Piano 2.

They both show a hand playing piano while some distracting visual and acoustic noise is present.
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Figure 3.8 – Test sequences Piano 1 (a) and Piano 2 (b). [Top] Audio tracks, [Middle] sample frames,

[Bottom] corresponding dynamic pixels : gray-levels represent the absolute value of the difference between the

luminance components of two successive frames. Black pixels indicate thus no motion.

Sample raw frames of the sequences are shown in Fig. 3.8. In Piano 1 a toy car is passing through

the scene, while in Piano 2 a ventilator is on and it is moving from left to right. These examples

have been chosen to demonstrate the robustness of the proposed algorithm to audio distractors,

thanks to the de-noising properties of the audio MP decomposition, and to video distractors both

of constant velocity (Piano 1) and oscillating (Piano 2). The clips were recorded at 25 frames/sec

(fps) at a resolution of 144× 180 pixels and only their luminance components were considered. The

soundtrack was collected at 44 kHz and sub-sampled to 8 kHz.

Image sequences are represented with 50 video atoms using the procedure described in sec-

tion 3.5.1, while the audio track is decomposed using 1000 Gabor atoms whose window lengths

range from 512 to 16384 time samples, using the implementation of MP for 1D signals of the Last-

Wave software package [50]. The number of basis functions used for the decomposition of the image

and audio sequences is heuristically chosen for these experiments, in order to get convenient repre-

sentations. However, a distortion criteria can be easily set, to automatically determine the required

number of atoms. Based on such decompositions, the audio and video features are extracted and

the activation vectors are built using a window of size W = 7. The set of meaningful atoms G∗ is

selected using εMIN = 10−5 and the thresholds εi = {10−5, 10−4.5, 10−4, 10−3.5, . . . , 1}.
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Figure 3.9 – Results of the proposed algorithm run on the clip Piano 1. The most correlated atoms, highlighted

in white, represent the player’s fingers. The moving toy car is not detected.

Figure 3.10 – Results for the sequence Piano 2. The correlated atoms, highlighted in white, are on the

player’s fingers and the piano keys. The oscillating ventilator is not detected.

In order to take into account the dynamics of the scene, a sliding observation window over which

the synchronization vectors are computed has to be employed. A window of 60 frames length is

used to detect the video atoms that are more correlated with the audio following the procedure

described in section 3.5 and section 3.6. The observation window is then shifted by 20 samples

and the procedure iterated. The values of window length and shift have been chosen considering

a trade-off between the response time delay of the system and the robustness of the association.

However, the algorithm is basically parameter-free since all the values that have to be set are fixed

for all the experiments. Moreover, the choice of none of the parameters results to be critical.

Figure 3.9 shows resulting sample frames of the algorithm run on the sequence Piano 1. In

white we highlight the footprints of the video atoms that are found to be more correlated with the

soundtrack. The player’s fingers are detected as sound sources. The moving toy car introduces

a considerable distracting motion (see Fig. 3.8(a)) and a non-negligible acoustic noise. However,

it is filtered out by the cross-modal localization algorithm. Figure 3.10 shows the same type of

results for clip Piano 2. It is interesting to remark that in this case the visual distractor (the

ventilator) does not have a constant velocity as in the previous case, but it is oscillating in the

background. This results in peaks in the video activation vectors associated to the ventilator’s

edges. However, these oscillating structures are not detected as correlated with the audio, since

they are not synchronous with the audio activation peaks. Both these clips can be downloaded from

http://lts2www.epfl.ch/∼monaci/ag.html.

http://lts2www.epfl.ch/~monaci/ag.html
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(a) (b) (c) (d)

Figure 3.11 – Results for Experiment 1 : the first row shows the original video frames, the second row shows

the white footprints of the video atoms correlated with the corresponding audio signal. In all cases, the speaker’s

mouth is correctly detected. In the third row the more correlated video atoms for an incongruous audio source

are plotted.

Speaker Localization A second set of experiments has been carried out to test the proposed

algorithm in a multi-modal speaker localization task. To this end we have used real-world video

streams representing one or two persons speaking and moving in front of a camera. The test clips

are taken from the individuals and groups sections of the CUAVE database [88]∗. The video data

was recorded at 29.97 fps and at a resolution of 480×720 pixels. The size of the clips has been then

reduced to 120×176 pixels to be more easily and quickly processed. The soundtrack was collected at

44 kHz and sub-sampled to 8 kHz. The setting of the experiments is the same described above and

all the parameters keep the same values. All the test video clips involved in the speaker localization

task can be linked through http://lts2www.epfl.ch/∼monaci/multimodal.html.

In a first series of experiments, called Experiment 1, we consider sequences involving only one

active speaker. We have used clips consisting of one person standing in front of a camera reading

digit strings, and videos involving two persons, only one of which is speaking. Each sequence lasts

about 6–8 seconds. We want to point out that in this experiment, since only one source is present,

no sliding analysis window is used (i.e. audio-video correlation is computed accumulating evidence

from the whole sequence). Snapshots of some of the analyzed clips are shown in the first row of

Fig. 3.11. We show here four non-trivial cases : speakers in sequence (a) and (b) move left and right

and back and forth while uttering, the left person in clip (c) clearly mouths the text which is being

pronounced by the right speaker and finally, the right subject in (d) moves significantly while the

left person is speaking. In the second row of Fig. 3.11, the image structures that are more correlated

with the corresponding soundtrack are highlighted in white. The audiovisual correspondence is

assessed following the methodology described above and using the entire length of the sequence.

The third row of Fig. 3.11 illustrates the video components that are more correlated with the audio

signal of a different video sequence. Image sequences involving only one person are represented using

30 video atoms, while sequences with two subjects are represented with 50 functions. All the audio

∗Only the luminance component of the video sequences has been considered.

http://lts2www.epfl.ch/~monaci/multimodal.html
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Figure 3.12 – Results for Experiment 2 : in the first two samples the left person is speaking, while in the

third the right one it is. The most correlated 3D atoms are highlighted in white. The mouth and the chin of the

correct speaker are detected.

tracks are decomposed with MP using 1000 Gabor functions.

The experimental results show that the proposed methodology allows to clearly locate and track

the speakers mouth. In all the tested sequences, the algorithm chooses those visual primitives that

constitute the mouth and/or chin structures of the speaker. Even when the active speaker moves,

as in Fig. 3.11(a) and (b), or in presence of distracting motion (Fig. 3.11(c), (d)), the source of the

sound signal is detected. On the contrary, when the video sequence is dubbed with an incongruous

audio track, visual primitives which do not represent the speaker’s mouth are typically detected

(Fig. 3.11, third row). We expected such a behavior, since the proposed methodology does not

simply extract moving structures, but it detects those geometric features that evolve synchronously

with the audio. Finally, it is interesting to remark how video atoms adapt their orientation and

shape according to the geometric characteristics of the structures they represent. Such information

can be exploited in a successive stage of processing, in order to estimate the size, orientation and

position of the speaker in the scene.

In a second series of experiments, Experiment 2, we have analyzed clips involving two active

speakers arranged as in Fig. 3.12. The videos show two persons taking turn in reading series of

digits and last about 20 seconds. The test clips are referred to with the names they have on the

CUAVE dataset, i.e. g01, g04,. . . . The image sequences are represented with 50 video atoms and

the audio signals are decomposed using 2000 or 3000 Gabor atoms, depending on the length of the

clip. Figure 3.12 shows results for sequence g22. In the first two sample frames the left person is

speaking, while in the third one the right person is speaking. The sequence is non-trivial, since the

left person mouths the digits which are being uttered by the right speaker. The algorithm is able

to correctly localize the mouth and the chin of the current speaker. It is interesting to remark how

video atoms correlated with the sound shift from one speaker’s mouth to the other, handling the

dynamics of the scene.

In order to quantify the accuracy of the proposed algorithm, we have manually labelled the

center of the speaker’s mouth in the test sequences. The active speaker’s mouth is considered

to be correctly detected if the position of the most correlated video atom falls within a circle of

diameter D centered in the labelled mouth center. If more than one atom is chosen, an atoms’

centroid is estimated whose position on the image plane is given by the average of the single atoms

coordinates. Since correlated atoms are detected every 20 frames, mouth labels are placed with

this same frequency throughout each sequence, and performances are thus evaluated at test points

distant 20 samples one from the other. In total, we have analyzed 273 test points. The values of

the diameter D that are considered are 25 and 50 pixels. Figure 3.13 shows the regions of correct

mouth detection on a frame of the test sequence g04 for the two values of D. The white markers

indicate the position of the video atoms that are found to be more correlated with the audio. The

values of D have been chosen so that we can compare the results with those presented in [82].
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(a) (b)

Figure 3.13 – Regions of correct mouth detection for D = 25 (a) and D = 50 (b). The white crosses indicate

the position of the most correlated video atom.

Nock and colleagues [82] propose a method to detect the mouth of the speaker founding the

image zone over which the mutual information between audio and video features is maximized. As

in our algorithm, in [82] mutual information values are estimated using a sliding time window of

60 frames that is shifted in time with steps of 30 frames. The goodness of the detection is assessed

using the criterion that we use here, with the only difference that in [82] the speaker’s mouth is

considered to be correctly located if it is placed within a square of L × L pixels centered on the

manually labelled mouth center. The considered values of L are 100 and 200 pixel. Thus, taking

into account a down-sampling factor of 4 that we have applied to the video sequences, the areas

of correct mouth detection are comparable. However, we must note that the test clips used in [82]

could not exactly coincide with those used in these experiments, since the original sequences have

been cropped in both cases.

Table 3.1 summarizes the results obtained for the two methods in term of percentage of test

points at which the speaker’s mouth is correctly detected. With the only exception of sequence g11,

the proposed scheme seems to outperform Nock’s method, considerably improving the detection

accuracy. Our proposed method compares particularly favorably with Nock’s one when the smaller

region of correct mouth detection is considered and for challenging sequences where some distracting

motion is present. To be fair, we recall that the considered test sets do not completely coincide, even

if we have analyzed a larger number of test points (273 in our case, 252 in the cited paper). Results

denote a superiority of the proposed algorithm, also considering that our correct mouth detection

area is 4/π times smaller than in [82] because of the circular shape of the window. Moreover,

a large fraction of errors is due to the delay introduced by the sliding observation window that

causes an incorrect detection when the speaker changes. Such errors are practically imperceptible

for a human observer, as can be checked observing the complete resulting sequences, that are

available at http://lts2www.epfl.ch/∼monaci/multimodal.html. We want to underline again

that in contrast to previous methods, we do not simply seek for the video region that maximizes

the correlation with the audio, but more generally we look for image zones whose synchrony with

the audio are above a saliency threshold. This threshold does not require to be tuned, since a set of

meaningful thresholds is fixed in advance and the one giving the most suitable solution is adopted.

The audio-video gestalts that are detected have a high semantic meaning. This allows to extract

and manipulate these structures in a simple and intuitive way. For example, it is possible to

reconstruct the scene using only those video atoms that are consistent with the audio track by

simply encoding the video sequence with 3D atoms that are close to the detected sound source.

Figure 3.14 shows sample raw frames of clip g20 and their reconstruction obtained by summing to

the low-pass images those video atoms that are closer than 80 pixels to the estimated sound source.

http://lts2www.epfl.ch/~monaci/multimodal.html
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Sequence
Nock[82]∗ Proposed

L = 100 L = 200 D = 25 D = 50

g01 - - 86 95

g04 - - 95 86

g11 44 69 46 54

g12 46 68 75 82

g13 19 25 82 82

g15 65 70 83 83

g19 41 41 87 87

g20 89 93 90 93

g21 75 79 78 81

g22 74 79 87 87

Table 3.1 – Audiovisual source localization results expressed in percentage of correct detections. Results in

the second column should be compared with those in the fourth one (in roman), while the third column should

be compared with the fifth (in italic). ∗These values should be considered as indicative (see text).

Figure 3.14 – Sample raw frames of clip g20 [Top] and their reconstruction using only video atoms

close to the estimated sound source [Bottom]. On the first sample the left person is speaking while

on the second one the right person is speaking. The resulting video sequence can be linked through

http: // lts2www. epfl. ch/∼monaci/ ag. html .

The reconstructed images can be seen as audiovisual key frames that focus on the sound source at

a given time instant. Moreover, in a compression application scenario, a sequence can be selectively

encoded using only video atoms associated with the soundtrack, saving bits for the coding while

keeping the salient information about the scene.

http://lts2www.epfl.ch/~monaci/ag.html
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3.8 Discussion

In this chapter we have presented a novel framework for the cross-modal fusion of audiovisual signals.

The proposed audiovisual events detection method features several interesting properties :� The algorithm exploits the inherent physical structures of the observed phenomenon. This al-

lows the design of intuitive and effective audiovisual fusion criteria and demonstrates that

temporal proximity between audiovisual events is a key ingredient for cross-modal integration

of information. The proposed method exhibits robustness to significant audio-video distrac-

tors. In addition, the considered audiovisual structures have a high semantic role and can be

easily extracted and manipulated;� The algorithm naturally deals with dynamic scenes;� There is no parameter to tune. All parameters are fixed and from informal tests the algorithm

performances turn out to be robust to significant variations of their values;� Visual information is described in a very concise fashion. For example, instead of processing

144 × 180 = 25960 time-evolving variables (pixel intensities), we consider only 50 variables

(atoms displacements);� The atoms streams employed here are completely general, could be generated by algorithms

other than MP and can be used to encode the audio and video sequences;� The description of the scene is extremely rich. The audio and video atomic decompositions

carry a large amount of information (e.g. size and orientation of video structures or time-

frequency characteristics of audio entities) that can be exploited at successive processing stages,

as we will see in the following of this thesis.

The core of our approach are the employed signal representation methods that decompose multi-

modal signals over redundant dictionaries of atoms, obtaining concise representations that describe

the structural properties of the data. This allows to define meaningful audio-video events (gestalts)

that can be detected using a simple rule, the Helmholtz principle.

In the next chapters we will analyze more in details these audio and video representation tech-

niques, studying their characteristics and trying to relieve their flaws and to exploit their strengths.

We will start with the video approximation method in next chapter and we will continue with the

audio decomposition in Chapter 5.



Tracking Atoms with

Particles 4
One of the key ingredients of the audiovisual fusion framework introduced in Chapter 3 is the video

representation technique, which allows to express a complex, high-dimensional video signal as a

sparse sum of salient geometric terms that are easy to manipulate. The video decomposition is

obtained using the video MP algorithm of Divorra [35]. Although effective for audiovisual source

localization [77–79], the 3D MP algorithm is formally and computationally complex. Here we want

to formalize the atom tracking problem in a more agile and well grounded fashion, in order to allow

an easier and more intuitive understanding of the results. This should allow as well to improve and

extend in a natural and elegant fashion the proposed algorithm, as we will discuss in the last section

of the chapter.

4.1 Tracking Visual Features

The ability of tracking relevant structures of moving images provides spatio-temporal information

that is intrinsically meaningful for the representation of the video signal. In the video MP algo-

rithm this is achieved representing a reference frame as a sparse sum of geometric atoms taken from

a redundant dictionary. These structures are then tracked through time, decomposing the subse-

quent frames with a modified MP algorithm that uses a priori information inherited from previous

frames [35, 36]. In our work we are interested in the ability of the algorithm to track moving edges,

as they represent the motion of relevant video structures, the key information we want to obtain.

However, the video MP method is not designed as a tracking algorithm, but a coding algorithm

which implicitly has some tracking skills. This poses several problems from the tracking point of

view :� The parameters of the video atoms are coarsely quantized to achieve better compression per-

formances, which introduces tracking errors;� Atoms are followed from one frame to the other using a search window of limited size, since,

as in most video coding schemes, it is less expensive to code a new object than to encode the

difference between two very different entities. This limits the robustness and flexibility of the

35
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tracker;� The algorithm is not formalized as a tracking method, which makes it difficult to understand

how the variation of the tracking performances depends on the variation of the parameters.

In addition to that, as already mentioned, the video MP method is computationally complex since

an MP decomposition of each frame has to be computed.

Therefore, in this chapter we formalize the atom tracking problem to enable a more intuitive

interpretation of the decomposition results and to reduce the computational complexity of the atom

tracking scheme. Object tracking is usually performed based on an appropriate description of the

appearance of a target, either at a global or local level. Examples of global descriptions are simple

templates [118], color histograms [23], or active appearance models [40]. Examples of local analysis

are the methods developed to independently track and match feature points. The seminal work

in this field is the KLT tracker [69] where stable corners are detected and then their appearance

is represented by an affine invariant template computed on a small region around the point. The

points detected at subsequent frames are matched based on the appearance. More advanced feature

point detectors have been proposed to account for rotation, scale changes of the underlying object

structures [68]. All the above mentioned methods are designed from a tracking-centric point of

view :� Stable structures are used to facilitate tracking;� The representation is designed to reduce ambiguity between feature points [76].

The interpretation of the information obtained after tracking in the context of the considered signal

is postponed to a subsequent analysis stage. But are stable structures also relevant from a signal

representation point of view? We argue that a signal-centric (as opposed to a tracking-centric)

representation can extend the application of a feature tracking system by fusing analysis and tracking

in a single general framework.

In this chapter we introduce such a framework and we define an algorithm to follow across

time important video structures like oriented edges. The tracker is automatically initialized by

representing the first frame of a sequence as a combination of edge-like functions. These functions

are retrieved and ranked from a redundant dictionary of atoms using MP. In contrast to classical

tracking algorithms, the structures to be tracked are implicitly defined by MP that picks the most

relevant image contours. Such visual features are then tracked using one of the most popular

tracking algorithm, Particle Filter (PF) [6, 83, 121]. In this way we put the video atom tracking

problem in the well grounded and understood framework of PF, which moreover ensures robustness,

flexibility and lower computational complexity than the video MP method. The proposed scheme is

integrated in the audiovisual fusion algorithm presented in the previous chapter and it is employed

for an audiovisual source localization task.

4.2 Tracking Geometric Video Structures

4.2.1 Video Representation

The video approximation framework we consider here is the same introduced in the previous chapter.

Thus we represent a video sequence as a sum of 2D geometric primitives obtained in the expansion

of a reference frame I1(x1, x2) that are tracked from frame to frame. However, in this chapter the

notation will be slightly changed in order to integrate the classical PF notation with those used in
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the video MP framework. Thus, a 2D atom will be denoted with φ
(i)
x[n](x1, x2), where the index x[n]

indicates the set of transformations associated to the n-th atom, i.e. x[n] = (t1n
, t2n

, s1n
, s2n

, θn).

We use this notation since in the classical PF formulation, x[n] is the state vector (i.e. the set of

values that describe the considered target) associated to the n-th target to track. This target in our

case is the n-th atom of the decomposition.

Therefore, the reference frame I1 is approximated with a linear combination of N functions φ
(i)
x[n]

retrieved from a redundant dictionary D(i) of edge-like atoms using MP as

I1 ≈
N−1∑

n=0

cnφ
(i)
x[n] , (4.1)

where n is the summation index, cn = 〈RnI1, φ
(i)
x[n]〉, R0I1 = I1 and RnI1 is the residual after n

iterations. The codebook D(i) is composed of oriented edge-detector functions defined in (3.12) and

it is the same used in Chapter 3. Following this procedure the reference frame I1 is decomposed

into N atoms and the first Q of them are tracked through time.

4.2.2 Tracking Video Atoms with Particle Filter

The tracking is performed using Particle Filter (PF), a parametric method that solves nonlinear

and non-Gaussian state estimation problems using a Bayesian approach [6, 83, 121]. Its robustness

and flexibility makes of PF one of the most used tracking algorithm.

The reference image is represented with N atoms and the first Q atoms are independently tracked,

i.e. each video structure is tracked without considering the interactions of such structures with the

neighboring ones. This is mainly motivated by the fact that we are interested in the main structures

present in the video (i.e., the first functions of the MP decomposition). If few atoms are considered,

then their interactions are likely to be weak. One can measure such interactions by computing the

scalar products between the atoms. If two atoms exhibit a large scalar product (the atoms have

unit norm, thus the maximum scalar product is 1), their interaction is strong, while if it is small

(i.e. close to 0), their interaction is weak. Figure 4.1 shows the sum of the scalar products between

the atoms representing the first frame of a sequence [Left], and the average scalar product between

atoms [Right], plotted as a function of the number of considered functions. The total scalar product

clearly increases with the number of atoms, since there are more interactions between the structures.

The average scalar product increases rapidly until when the atoms added to the decomposition

become very small since they represent small image details, giving low scalar products with the

other functions. In our experiments we will consider the first Q = 30 atoms selected by MP : as a

first approximation, it seems reasonable to consider the atoms independently since the interactions

between them are still limited. However, as highlighted in [37], neighboring functions can mutually

influence each other and one of the main future research directions will be the design of a method

that can account for the interactions between atoms.

Each atom φ
(i)
x[n](x1, x2) is fully characterized by the set of five parameters x[n], i.e. the position,

scale and rotation parameters that describe its shape. PF solves the tracking problem considering

each target object as a dynamic system that is described by the five-dimensional state vector x[n].

The evolution of the characteristics of a target is then described by the state equation

xt[n] = ft(xt−1[n],vt) , (4.2)

where ft is a possibly non-linear and time-varying function of the state, {vt}t=1,... is assumed to be

an independent and identically distributed (i.i.d.) stochastic process and the subscript t indicates

the frame index. The random process {vt}t=1,... is added to the model to simulate the effect of
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Figure 4.1 – Sum of scalar products between the atoms representing the first frame of a sequence [Left], and

average scalar product [Right], plotted as a function of the number of considered functions.

noise on the system. In the present case it is considered as a zero mean Gaussian random variable

with variance σv. The function ft defines the motion model, i.e. the a priori information about the

evolution of the system that one introduces into the model. For example a certain continuity on the

motion or on the velocity of the target can be imposed. In our case we consider a simple zero-order

model, and thus (4.2) can be rewritten as

xt[n] = xt−1[n] + vt . (4.3)

The state variable xt[n] describes the characteristics of target number n at time t, and thus it defines

the n-th atom at frame t. The goal of the tracking is to estimate the state xt[n] based on a series

of measurements related to the state vector

zt[n] = ht(xt[n],nt) , (4.4)

where ht can be a non-linear and time-varying function and {nt}t=1,... is an i.i.d. process that

models the measurement noise. The relationship between the measurement and the state vector can

be very complex and it is typically difficult to express. Fortunately, there is no need to explicitly

define this function; instead, as will be shown soon (equation (4.10)), it is only necessary to define

the likelihood of a measurement given a state vector. Such likelihood function can be more easily

and intuitively designed (see (4.11)). The idea here is to find an estimate of xt[n] based on all the

available measurements up to time t, z1:t[n] = {zj [n]}j=1,...,t. To simplify the notation, from now

on the atom index n will be omitted, since anyway the atoms are tracked independently.

Considering a Bayesian point of view, the tracking problem consists in recursively estimating a

certain confidence on the state xt at time t given the set of available measurements up to time t,

z1:t. Thus, the objective is to estimate the pdf p(xt|z1:t) at each time instant t. Assuming that the

initial pdf of the state p(x0|z0) := p(x0) is available, p(xt|z1:t) can be obtained recursively in two

steps, namely prediction and update. The prediction step uses the state equation (4.2) to obtain

the prior pdf as

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 , (4.5)

with p(xt−1|z1:t−1) known from the previous iteration and p(xt|xt−1) determined by (4.2). When

the measurement zt is available, it is possible to perform the update step using Bayes’ rule

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)∫
p(zt|xt)p(xt|z1:t−1)dxt

. (4.6)
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PF approximates the densities p(xt|z1:t) with a sum of NP Dirac functions (particles) centered in{
xi

t

}
i=1,...,NP

as

p(xt|z1:t) ≈
Ns∑

i=1

wi
tδ
(
xt − xi

t

)
, (4.7)

where wi
t are the weights associated to the particles and they are calculated as

wi
t ∝ wi

t−1

p(zt|xi
t)p(xi

t|xi
t−1)

q(xi
t|xi

t−1, zt)
. (4.8)

The function q(·) is the importance density function which is often chosen to be p(xt|xi
t−1), as it is

done here. This leads to

wi
t ∝ wi

t−1p(zt|xi
t) . (4.9)

A re-sampling algorithm is then applied to avoid the degeneracy problem, i.e. the fact that after

a few iterations all particles except one have negligible weight [6]. The basic idea of re-sampling

is to eliminate particles that have small weights and to concentrate on particles with large weights

(see also Fig. 4.3). In this case the weights are set to wi
t−1 = 1/NP ∀ i, and therefore

wi
t ∝ p(zt|xi

t) . (4.10)

The weights are thus proportional to the likelihood of the measurement zt given the particles. Here

the natural choice for the likelihood function is the projection of the candidate atom over the image,

since we want to track important video structures, i.e. video atoms exhibiting high projection on the

frame. This is also coherent with the representational framework formulated in the previous section.

The likelihood of a candidate particle is defined as the absolute value of the scalar product between

the residual frame and the atom represented by the particle. In order to favor candidates with high

likelihood, this quantity is filtered with a Gaussian kernel centered in the maximum likelihood value

and with variance σL, obtaining :

L(xi
t[n]) = exp



−
(LM

t [n]− |〈RnIt, φ
(i)

x
i
t[n]
〉|)2

2 · (σLLM
t [n])2



 , (4.11)

with

LM
t [n] = max

(
|〈RnIt, φ

(i)

x
i
t[n]
〉|
)

, i = 1, . . . , NP .

We want to underline that the atom φ
(i)

x
i
t[n]

is not projected over the frame It but over the residual at

step n of the decomposition, RnIt (see (4.1)). It is at this step that the interactions between atoms

come into play : even though each atom is tracked independently, the values of the weights used to

estimate its pdf depend on the projection |〈RnIt, φ
(i)

x
i
t[n]
〉|, i.e. on the n− 1 atoms that precede the

n-th one and contribute to the residual RnIt. We will use the function L to compute the weights

wi
t. Figure 4.2 shows the likelihood function of a candidate atom computed on a region extracted

from one of the analyzed clips. The re-sampling step derives the particles depending on the weights

of the previous step, then all the new particles receive a starting weight equal to 1/NP which will

be updated by the next frame likelihood function.

The best state at time t, x̂t, is the particle xi
t with biggest weight, weighted by a factor that

takes into account the similarity of the particle with the corresponding best state at time t− 1 :

x̂t = xM
t s.t. wM

t = max(S(xi
t, x̂t−1) · wi

t) . (4.12)

The function S is a Gaussian in the 5D parameter space. The value of S(x[l],x[m]) is maximum

when the particles x[l] and x[m] coincide and it decreases exponentially as the distance between x[l]

and x[m] in the parameters space increases.



40 Chapter 4. Tracking Atoms with Particles

Figure 4.2 – Likelihood function of a candidate atom computed on a region extracted from one of the analyzed

clips. The function is clearly multi-modal, exhibiting peaks that have similar amplitude and that are spatially

close.

Alternative strategies to compute the best state would be to take the particle with highest weight

or to consider the Monte Carlo approximation of equation (4.7) consisting in estimating the best

state as the weighted sum of the particles, as in [6]. However, it was observed that unstable, noisy

atom trajectories were generated considering simply the particles with largest weights, due to the

multi-modality of the posterior pdf s, as can be seen in Fig. 4.2. The Monte Carlo solution would

produce more stable atom trajectories. However, in this case there is no guarantee that the best

state corresponds to an atom that matches a real visual structure, since several local maxima can

be present in the likelihood function (Fig. 4.2). This causes errors due to the fact that when the

n-th atom is found, it is subtracted, multiplied by its coefficient, from the residual image Rn−1It to

generate the new residual RnIt which is used to calculate the successive atoms (see (4.1)). If the

n-th atom is not matching an image structure, its coefficient (i.e. its projection over the residual

image) will be very small and thus its contribution to the MP decomposition will not be taken into

account, inducing errors in the computation of the successive atoms.

The use of the weighting factor S(x[l],x[m]) results in a stabilization of the atoms tracks since

the algorithm tends to prefer states that are as similar as possible to the previous ones, except if

relevant modifications of the structures occur. At the same time, the representation of the scene is

kept coherent. An example of PF with re-sampling is shown in Fig. 4.3.

4.3 Experiments

In this section we present the results of the atoms tracking algorithm with PF. We will term this

method MP-PF and the video MP algorithm of Divorra 3D-MP. We test the MP-PF tracker on
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Figure 4.3 – Schematic representation of the Particle Filter algorithm. At frame t, NP particles (represented

by the dots) with the corresponding weights are available from frame t − 1 [Bottom]. In this sketch the radius

of the dot is proportional to the likelihood of the particle. The re-sampling step then eliminates particles with

a small weight and it introduces some new ones from those having a large weight. Based on the measurement

available at frame t, the likelihood and thus the weight of each particle is computed and the best state at time

t, x̂t, is estimated [Top].

sequences representing one or two persons speaking and moving in front of a camera. The clips used

for the tests come from the individuals and groups sections of the CUAVE database [88] (only the

luminance component of the clips has been considered). The video data was recorded at 29.97 fps

and at a resolution of 480 × 720 pixels. The size of the clips has been then reduced to 120 × 176

pixels. We use a 5-dimensional state model for PF composed of the target position, (t1, t2), the

target scale s1 and s2 and the orientation θ. In all experiments a zero-order motion model with

fixed σv is used. Since we are considering a 5D state vector, σv as well has five components that are
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3D-MP

MP-PF

3D-MP

MP-PF

Figure 4.4 – Video atoms tracking. The footprints of different atoms are depicted with different colors.

Results for the 3D-MP approach are on the first and third rows and those for the MP-PF method are on the

second and fourth rows. From the second to the third frame the subjects rapidly move towards their left : the

3D-MP tracker looses the track of some edges, while the MP-PF tracker does not.

σt1 = σt2 = 2, σs1
= σs2

= 0.03 and σθ = 3.5. Note that the position change is in pixels while the

scale is in percentage and the orientation in degrees. The Gaussian kernel filtering the likelihood

function has σL = 0.05. The PF tracker uses 150 samples (particles).

4.3.1 Video Atoms Tracking

In the first experiment, the proposed MP-PF approach is compared to the 3D-MP algorithm [35].

The two methods are tested on four sequences taken from the individuals partition of CUAVE

that represent one person speaking and moving in front of the camera. Sample frames of two test

sequences are shown in Fig. 4.4.

Both trackers are initialized with the same video atoms using MP. The edges are then tracked

using a video MP approach in 3D-MP, while the MP-PF method tracks the video structures using

PF, as detailed in section 4.2. In Fig. 4.4 the tracking results using the two algorithms are compared.

Footprints of different atoms are depicted with different colors. The first and third rows show the

results obtained with the 3D-MP approach and the second and fourth rows show the results for the

proposed MP-PF method. In the second part of the sequence (second and third frames) the subjects

rapidly move towards their left. The 3D-MP tracker loses the track of two edges in the first case and

of one in the second, while the MP-PF tracker does not. The same behavior has been observed in

the other test sequences. While the 3D-MP algorithm easily looses the track of fast moving edges,
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Figure 4.5 – Frames from clips g19 [Top] and g21 [Bottom]. The footprints of the most correlated atoms are

highlighted. The mouths of the correct speakers are detected.

the MP-PF approach is more robust, even if errors can be observed. In both sequences for example

it happens that the yellow atom associated with the upper lip is temporarily associated with the

lower lip or the chin. This problem seems to be caused by the interactions between nearby atoms

and we believe that it could be eased by jointly tracking groups of video structures.

4.3.2 Audiovisual Source Localization

In the second experiment, the proposed MP-PF tracker is integrated in the audiovisual fusion

algorithm presented in Chapter 3 to perform a cross-modal source localization task. The audio-

video features that are considered here are the same used in the previous chapter. The video signal

is represented using Q = 30 video atoms and each atom has a feature associated describing its

displacement. The video atoms exhibiting the highest degree of correlation with the audio are

detected using a simple relevance criterion and the sound source location over the image sequence

is estimated. A sliding window of 70 frames length is used to compute the synchronization vectors

and to detect the video atoms that are more correlated with the audio. The observation window is

then shifted by 20 samples and the procedure iterated.

We have tested the algorithm on the last four sequences of the group partition of the CUAVE

database (g19, g20, g21, g22). The video clips involve two persons taking turn in reading series of

digits in English and arranged as in Fig. 4.5. This figure shows the results of the described approach

detecting the mouth of the speaker in two sequences where two persons speak in turns in front of

the camera. In white are highlighted the footprints of the video atoms found to be correlated with

the soundtrack. The mouth of the correct speaker is detected.

The proposed method has been quantitatively evaluated using the same protocol presented in

Chapter 3 and the performances have been compared to algorithm introduced in the previous chapter

and to the one presented in [82]. We recall here that the method proposed by Nock and colleagues [82]

detects the mouth of the speaker founding the image zone over which the mutual information between

audio and video features is maximized. They use test clips that could not exactly coincide with

those used here, since the original sequences have been cropped in both cases. In contrast, the

results presented in the previous chapter are obtained using exactly the same test sequences. The

main differences between the algorithm proposed here and the one in Chapter 3 basically consist

in the video edge tracking approach (here we use MP-PF, while the algorithm presented in the
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Clip Nock[82] 3D-MP MP-PF

g19 41 87 94

g20 93 93 93

g21 79 81 78

g22 79 87 80

Table 4.1 – Audiovisual localization results expressed in percentage of correct detections.

previous chapter uses the 3D-MP approach) and in the different number of atoms considered. We

use 30 atoms and not 50 as before because, as underlined in the previous section, we track the atoms

independently : the higher the number of atoms, the stronger are their interactions, as exemplified

by Fig. 4.1. The 3D-MP approach takes into account interactions between atoms and thus this

aspect is not an issue.

Table 4.1 summarizes the results obtained for the three methods in term of percentage of test

points at which the speaker’s mouth is correctly detected. The results shown are for the largest

regions of correct mouth detection defined in the previous chapter, i.e. a 200×200 square for Nock’s

method and a circle of diameter 50 pixels for both the 3D-MP and the MP-PF algorithms. Note

that there could be no perfect coincidence between the test sequences used in [82] and those used

here, thus the results for Nock’s algorithm should be considered only as indicative. As already

shown in Chapter 3 and in [78, 79], the use of geometric video decompositions combined with an

audio-video event detector in general improves the results obtained by Nock and colleagues. The

proposed method obtains detection performances similar to those of the algorithm using 3D-MP,

slightly improving previous results for sequence g19 but obtaining inferior performances on clip g22.

As shown by the results in Fig. 4.4 the MP-PF method improves the tracking abilities of the 3D-

MP algorithm. This is indeed interesting considering that the 3D-MP tracker, even without jointly

tracking groups of structures, takes into account atoms’ interactions, which was demonstrated to

increase the accuracy of the 3D-MP approach [37]. We argue that an MP-PF algorithm that

considers atoms’ dependencies would correct tracking errors due to atoms’ interactions (Figure 4.4)

and would allow to improve the audiovisual localization results, that by now are essentially equivalent

to those obtained using 3D-MP (Table 4.1). Concerning the computational complexity, we have

tested the two methods on a video sequence whose 30 principal video atoms were tracked through

time. The MP-PF algorithm clearly outperforms the 3D-MP approach, resulting approximately 7

times faster.

4.4 Discussion

In this chapter we have presented a new framework and an algorithm to represent and track rele-

vant video structures. The proposed method improves the 3D-MP video representation algorithm

presented in [35], which is designed as a coding algorithm and poses problems from the tracking

point of view. These limitations are overcame by defining the video atom tracking problem in the

well grounded and understood framework of Particle Filter, which ensures robustness, flexibility and

lower computational complexity than the 3D-MP algorithm.

Experiments show that the proposed tracker is more robust and accurate than the 3D-MP

one, while being considerably less time consuming. The audiovisual source localization algorithm,

however, does not improve accordingly. This is mainly due to the fact that while the 3D-MP
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algorithm takes into account atoms’ interactions, the current MP-PF method does not. However

these results show that there is room for further improvements by designing a mechanism that

accounts for the interactions between video atoms. The tracking framework developed in this chapter

seems to be appropriate to continue the evolution of the system, considering for example a multi-

object tracking approach as in [65]. The MP algorithm in fact ranks dictionary functions that are

analytically defined. These two characteristics (the atoms ordering and their analytical formulation)

make the interactions between video structures easy to define, making the inference of higher level

signal configurations intuitive.

At this point we have to turn the attention to the audio representation technique as well. In the

next chapter we will focus on this issue and we will build a bridge between two signal processing

fields that were basically separated : audiovisual fusion and one-microphone blind source separation.
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Blind Audiovisual Source

Separation 5
In Chapters 3 and 4 we have explored the capabilities of redundant parametric decompositions

to represent audiovisual sequences. These techniques allow to interpret signals in terms of their

salient structures, preserving good representational properties thanks to the use of redundant, well

designed, dictionaries. Considering the signal of one single microphone and the video associated,

we have shown that we can accurately spatially localize the active sound source in an audiovisual

sequence. This is done correlating high-level video features (movements of relevant visual edges)

with a simple audio feature (the average acoustic energy).

On the other hand, the time-frequency representation of the audio signal contains a great amount

of information (see section 3.5) that is discarded considering a basic audio representation based on

the mean energy. In this chapter we will show that, considering a more detailed representation of

the audio modality, it is possible to jointly localize and extract video and audio sources. The key

idea here is to exploit the time-frequency information provided by the MP audio representation and

to perform a joint Audiovisual Source Separation correlating audio-video structures and clustering

them into sources.

5.1 From Audio to Audiovisual Source Separation

This chapter introduces a new concept, Audiovisual Source Separation, which is achieved by ex-

ploiting the information contained in the mono audio signal and in the video sequence to separate

and extract correlated sources in each one of these modalities.

Few methods exist that exploit audiovisual coherence to separate stereo audio mixtures [28, 94,

97, 104, 114]. All the existing algorithms consider the problem from an audio source separation

point of view, i.e. they use the audio-video synchrony as side information to improve and overcome

limitations of classical Blind Audio Source Separation (BASS) techniques. In the next section we

will briefly introduce the BASS problem and its terminology, that will be used as well in the following

of this chapter. After that we will review the main contributions in the two fields over which the

presented approach is grounded, Stereo Audiovisual Source Separation and Single-Channel Blind

Source Separation.

47
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5.1.1 Blind Audio Source Separation

The Blind Audio Source Separation problem consists in recovering the set of signals {sj(t)}j=1,...,NS
,

also called sources, from mixtures of them {yi(t)}i=1,...,P , typically signals recorded by a sensor array.

Considering for simplicity the case of time-invariant linear mixing systems, the signals {yi(t)}i=1,...,P

can be expressed as

yi(t) =

NS∑

j=1

+∞∑

τ=−∞

mij(τ)sj(t− τ) , (5.1)

where {mij(τ)}i=1,...,P ,j=1,...,NS
is a set of mixing filters. This NS × P system can be represented

in a maybe more familiar matrix notation as

y(t) = M(t) ∗ s(t) , (5.2)

where ∗ indicates the convolution, y(t) = [y1(t), . . . , yP (t)]T , s(t) = [s1(t), . . . , sNS
(t)]T and the

element in position (i, j) of the mixing filter matrix M(t) is mij(t) (the operator ·T is the transposi-

tion). In a completely blind setting the sources and the mixing filters are unknown. In this case the

BASS problem admits an infinite number of solutions [111], and thus assumptions must be made

about the sources or/and the mixing process to obtain a unique solution.

Concerning the mixing process, the BASS literature typically classifies mixtures depending on the

number of sources and sensors and on the characteristics of the mixing filters mij(τ) involved in the

process [110]. Thus a mixture can be termed as over-determined, determined or under-determined

if the number of sensors P is greater, equal or smaller than the number of sources NS respectively.

Concerning the mixing filters, a mixture is called instantaneous if the filters are simply scalar gains,

i.e. mij(τ) = mij and (5.1) becomes

yi(t) =

NS∑

j=1

mijsj(t).

A mixture is termed anechoic if the mixing filters are scalar and sources are delayed by a fixed shift,

i.e. (5.1) can be written as

yi(t) =

NS∑

j=1

mijsj(t− δij) ,

with δij the time delay associated to the path between the j-th source and the i-th sensor. Finally

in the most general case a mixing system is on the form of (5.1) and it is termed convolutive.

Even considering the simplest scenario, the case of over-determined instantaneous mixtures, the

BASS problem does not have a unique solution [111]. To overcome this limitation, strong assump-

tions on the characteristics of the sources have to be made. One typical assumption is the statistical

independence between the sources, that leads to a long series of separation methods based on Inde-

pendent Component Analysis (ICA) [9, 20, 56]. ICA-based methods have been shown to be effective

in separating over-determined and determined instantaneous and convolutive mixtures. However the

independence assumption is insufficient in the under-determined scenario, and additional informa-

tion has to be exploited to separate under-determined mixtures. One characteristic that is often

exploited is the sparsity of the audio signal in the spectral domain [5, 119, 122]. The sparsity as-

sumption basically states that only one source is present at any time-frequency point. Using this

premise and the spatial information available from a stereo signal, instantaneous under-determined

mixtures can be effectively separated.

Clearly several other interesting research directions and algorithms have been proposed in the

prolific field of source separation. However an exhaustive review of BASS theory and methods
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is out of the scope of this thesis (the interested reader can refer to numerous interesting survey

articles like [57, 110, 111]). The goal of this section instead is to introduce the BASS formalization

and nomenclature and to underline the complexity of the separation task in realistic conditions.

Researchers have tried to solve source separation problem by formulating assumptions of different

nature and exploiting additional available information. Recently, algorithms have been proposed

that face the BASS problem using not only the information contained in the audio signal, but also

the associated video information. We will review the most representative of these techniques in the

next section.

5.1.2 Audiovisual Source Separation

It is well known from every-day experience that visual information strongly contributes to the in-

terpretation of acoustic stimuli. This is particularly evident if we think to speech signals : speaker’s

lips movements are correlated with the produced sound and the listener can exploit this correspon-

dence to better understand speech, especially in adverse environments [106, 107]. The multi-modal

nature of speech is exploited since at least two decades to design speech enhancement [31, 45, 46]

and speech recognition algorithms [70, 92] in noisy environments. Lately, this paradigm has been

adopted also in the speech separation field to increase the performances of audio-only methods.

In [104] the authors propose to estimate the de-mixing process using a criterion based on audiovi-

sual coherence : one speech source of interest is extracted using the visual information simultaneously

recorded from the speakers face by video processing. The coherence between audio and video data

is modelled by a joint audiovisual probability estimated as a mixture of Gaussian kernels whose pa-

rameters are learned from a large training set. Video information consists of geometric parameters

describing the speaker’s lips height and width that are extracted using a chroma-key process on lips

under controlled head position and light conditions [64]. The system shows to be able to estimate

the un-mixing matrix in the case of instantaneous mixing systems. A very similar approach, but

for convolutive mixtures, has been developed in [97]. Another method inspired by [97, 104] is pre-

sented in [114]. In this case video features are deduced using active appearance model [40] and the

algorithm is tested on a limited set of 2× 2 (i.e. determined) instantaneous mixtures.

Dansereau [28] also proposes an audiovisual speech source separation system plugging the visual

information, representing again the speaker’s lip height and width, in a de-correlation system with

first-order filters. Visual cues are mapped to word structures with a continuous HMM that is trained

on a corpus of visual speech. The method was tested simulating a 2×2 speech separation problem by

mixing one audio source recorded with one microphone and one speaker captured with one camera

and one microphone. Rajaram and colleagues [94] suggest instead a Bayesian framework for 2 × 2

instantaneous mixtures of audio-video sources. In this case the video feature employed is quite

simple and it basically provides a binary weight that indicates the activation of a source, and the

mixing model parameters are estimated on-line.

The approach we consider in this chapter is very different from existing ones. First, we localize

the “centroid” of visual sources using audiovisual synchrony in a manner similar to what we have

done in Chapters 3 and 4 but employing a robust clustering algorithm. Once we have located the

sources centers on the image sequence, we reconstruct the video sources by simply assuming that

the structures close to a source belong to it. We obtain thus several groups of video structures,

each group corresponding to a detected source. It is important to underline that sources in the

video domain, e.g. people speaking in front of a camera, are typically well separated in space.

This information will help us in separating the audio mixture as well, exploiting the correlations

established between audio and video entities. Since only a one-microphone signal is considered, the

separation of an unknown number of unknown sources is in fact extremely challenging.
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We want to stress three important differences between our proposed approach and state-of-the-

art audiovisual separation methods :� In all the above mentioned methods the BASS problem is solved for stereo audio signals using

more or less classic separation techniques helped by visual information. In contrast, the audio

signal we consider here comes from only one microphone, which makes the source separation

task considerably more challenging, as we will comment in the next paragraph;� Existing methods simplify the task of associating audio and video information. Either the

audio-video association is given a priori, i.e. it is known which audio signal corresponds to

which video signal [94, 114], or one audiovisual source is mixed with an audio-only source [28,

97, 104]. In this second case the separation problem basically turns into the following :

separate two mixed speech signals, one of which has a corresponding video counterpart. Here

in contrast we simultaneously separate audio-video sources, automatically building correlations

between acoustic and visual entities. Instead, the hypothesis that we make is that each video

source detected in the scene has one and only one corresponding audio component in the audio

mixture;� Existing audiovisual separation methods, with the only exception of [94], require an off-line

training step to build the audiovisual source model. This is mainly due to the fact that the

algorithms proposed in [28, 97, 104, 114] try to map video information into the audio feature

space using techniques similar to lip-reading (requiring moreover accurate mouth parameters

that are difficult to acquire). In contrast, in the proposed method no training will be required

to associate simple audio-video features.

To summarize we essentially want to solve a blind Single-Channel BASS problem, but aided by

the video. Since no hypothesis is made on the relationships between audio and video structures,

video sources have to be localized and separated at the same time, exploiting the information

contained in the audio channel. The steps of our Blind Audiovisual Source Separation (BAVSS)

algorithm will be detailed in the following of this chapter, while in the next section we describe the

most representative approaches to Single-Channel BASS, pointing out their salient characteristics

and limitations.

5.1.3 Single-Channel Blind Source Separation : A Difficult Problem

As underlined in section 5.1.1, solutions to the BASS problem typically require microphone arrays or

stereo microphones [5, 20, 111, 119, 122]. However here we have at our disposal only the signal from

one microphone. On the other hand, we can exploit the correlation with the video signal associated

to separate the audio sources.

Single-Channel Source Separation is a relatively recent, hard and still open problem, faced for

the first time by Roweis in [99]. When only the input signal of one microphone is available, simple

generic assumptions do not suffice. For the Single-Channel Source Separation it is necessary to

model different characteristics of the speech signal, such as the spectral envelope, the fundamental

frequency or the temporal continuity. These known cues for speech separation [14, 16] have to be

taken into account in order to build models that face this problem.

The existing research works relative to Single-Channel Source Separation can be divided into

two main groups according to their blindness :

Generative - Approaches in this group build their models according to the speakers present in the

mixture, i.e. for each mixed speaker the algorithm is trained on sequences where only he or
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she is speaking. Thus, these works are situated in a non blind context. Early approaches in

this field belong to this group [59, 95, 99]. The problem is that if the model is too simple it

is not able to discriminate different sources, while, on the other hand, if the algorithm is too

complex an inference problem of huge dimensionality has to be addressed.

Discriminative - These approaches focus on the spectral separation task instead of building com-

plex models for each speaker. They try to exploit the sparsity of speech signals in the time-

frequency domain, and do not assume any prior knowledge about the speakers present in the

mixture. Examples of algorithms in this blind group are [7, 96].

Roweis [99] first challenged the Single-Channel Source Separation problem using a factorial

Hidden Markov Model (FHMM) trained on sequences where the speakers present in the mixture are

recorded alone. Through HMM, binary mask functions are computed for each frequency sub-band

and applied to the mixture in order to extract the original signal of each speaker.

Jang and Lee propose in [59] a technique that utilizes the time-domain ICA basis functions

previously learned from a training database consisting in sequences where the speakers in the mixture

speak alone. This method recovers original signals through gradient-ascendent adaptation steps to

find the maximum likelihood estimate of the sources.

In [95], the authors reduce the dimensions of the problem raised in [99] by dividing the spectral

representation of the source signals into multiple sub-bands, i.e. multiple parallel horizontal sections

of the spectrogram. Then, this approach computes a separate HMM to model each band, requiring

few states per model and, for comparable computation expense, can achieve more accurate signal

separation than full-band models. This model also presents an interesting basis for learning source

models directly from mixed signals, since there are more opportunities to find a time-frequency slot

with the energy of only one speaker. This characteristic is exploited by the same authors in [96].

This approach captures local deformations of the time-frequency energy distribution and describes

each time-frequency region with a linear transformation applied to its predecessor. The spectrum

is analyzed as the addition of harmonics and formant structures and no prior models about the

present speakers are necessary.

A different approach is proposed by Bach and Jordan [7]. This algorithm builds affinity matrices

combining classical cues from speech psychophysics [14, 16]. These matrices are employed to define a

spectral segmenter that, applied to the mixture, performs the speech separation on the one-channel

signal without prior knowledge about the speakers. The algorithm achieves interesting separation

results, but it is computationally extremely complex.

In the next section, we introduce a new algorithm to challenge the Single-Channel Source Sep-

aration problem in a completely blind setting. The proposed approach does not require an off-line

training procedure neither the inference of complex models of acoustic sources, but it exploits the

video information associated with the audio signal.

5.2 Blind Audiovisual Source Separation (BAVSS)

The proposed method can be divided in four different parts. In order to separate audiovisual sources,

first we localize the video sources in the image using the information present in the soundtrack, then

we reconstruct them separately. After that, the relationships established between features in both

modalities are used to define periods during which only one audiovisual source is active. Finally,

exploiting such information, the audio source separation on the time-frequency plane is performed.

There are two main assumptions that we make on the type of sequences that we can analyze

using the proposed algorithm. First, we assume that for each detected video source there is one and
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Figure 5.1 – Example of a sequence analyzed with the BAVSS algorithm. The sample frame [Left] shows the

two speakers; as highlighted on the spectrogram of the audio [Right], in the first part of the clip the girl on the

left speaks alone, then the boy on the right starts to speak as well, and finally the girl stops speaking and the

boy speaks alone.

only one associated source in the audio mixture. This means that if there is an audio “distractor”

in the sequence (e.g. a person speaking out of the camera’s field of view), it is considered as noise

and its contribution to the mixture is associated to the sources found in the video. This assumption

clearly simplifies the analysis, since we know in advance that a one-to-one relationship between

audio and video entities exists. Moreover, we consider the video sources approximately static, i.e.

their positions over the image plane do not change too much. This assumption is less stringent in

our opinion and it is formulated only not to have to worry about dynamic aspects of the scene.

However it can be removed for example by analyzing the sequences using shifting time windows, as

it is done in the previous chapters for the localization algorithms.

One typical sequence that we consider in this work, taken from the groups section of the CUAVE

database [88], is shown in Fig. 5.1. It involves two speakers arranged as in Fig. 5.1 [Left] that utter

digits in English. As highlighted in Fig. 5.1 [Right], in the first part of the clip the girl on the left

speaks alone, then the boy on the right starts to speak as well, and finally the girl stops speaking

and the boy speaks alone. All the considered test sequences have similar characteristics, with two

speakers well separated in space and without significant scaling differences. Thus, the different

parameters of the proposed algorithm, that basically depend on the analyzed scene, are empirically

set according to the considered scenario. This can be seen as a relaxation of the blindness of the

method. However, features related to the geometry of the scene, like the size of the candidate

speakers or the distance between them can be easily deduced analyzing the sequence with a face

detector/tracker, allowing thus the automatic setting of the algorithm’s parameters. For simplicity

we skip here this analysis step and we focus our attention on the modelling and separation of

audiovisual sources.

The interested reader will find the details of the proposed audiovisual source separation algorithm

in the following sections. Those instead who want to get the principal ideas over which the presented

separation method is based can refer to Fig. 5.2 and read the description of the main steps of the

algorithm here in the following :

1. Spatial Video Source Localization - In this first step, we use the information contained

in the audio signal to localize the video sources in the image using a method similar to that

presented in Chapter 3, but now correlating audio and video atoms. This step is schematized

in Fig. 5.2(a) : audio entities (the green dot on the right spectrogram) are correlated with video

atoms (green and yellow footprints of video atoms are highlighted on the left image). Some

correlations are correctly built (green footprints), but some errors can occur as well at this
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Figure 5.2 – Schema of the audiovisual source separation algorithm. Phase 1 : in (a) audio entities (green

dot on the spectrogram) are correlated with video atoms (green and yellow footprints are highlighted on the left

image) and exploiting this information, in (b) video sources are localized (blue and red crosses). Phase 2 : video

atoms are classified into the corresponding video sources (c), as highlighted by their footprints colors (blue for

the left speaker and red for the right one). Phase 3 : audio atoms (red dot on the right) are classified into the

corresponding audio sources using the audiovisual association information (d). Periods with only one audiovisual

active source are detected. Phase 4 : in temporal periods when a single source is active (blue and red markers) the

probability for each frequency to belong to one source is estimated (e). These probabilities are used to separate

the sources in mixed periods (green markers).
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stage (yellow footprint). Exploiting this correlation information, video sources are localized

using a robust clustering algorithm, as shown in Fig. 5.2(b) (blue and red crosses). This step

is very important since it provides a measure of synchrony between audiovisual features, the

correlation scores, that will be used in the following of the separation process.

2. Video Source Separation - The objective of the second part is to classify the video atoms

into the detected video sources. This assignation is carried out using a simple spatial proximity

criterium : video atoms are associated with the closest detected source, as highlighted by the

colors of their footprints in Fig. 5.2(c) (blue for the left speaker and red for the right one).

3. Temporal Audio Source Localization - At the end of step 2, we have the lists of video

atoms classified into the sources and their respective correlations with the audio features.

Audio atoms are classified into one of the sources using these relationships. In the toy example

shown in Fig. 5.2(d), the audio atom on the spectrogram is correlated with four video atoms,

one in the blue cluster and three in the red one and thus it is assigned to this second source.

Following this procedure, periods with only one audiovisual source active are clearly detected.

4. Audio Source Separation - The last and more ambitious objective (the One Microphone

BASS) is pursued using the information present in the temporal periods when a single source is

active. The idea is to determine, in these time slots (blue and red markers on the spectrogram

on Fig. 5.2(e)), a probability for each frequency to belong to one source. Then, based on this

information, we try to predict their behavior in those periods during which more than one

source contributes to the mixture (green markers).

5.2.1 Phase 1 : Spatial Localization of Video Sources

The correct localization of the video sources in the spatial domain is the first part of the BAVSS

process and it provides the relationship between audio-video atoms, a necessary step to separate

the audio sources as well. As already mentioned, we use here a more sophisticated and rich audio

representation with respect to the previous chapters. Instead of considering the average acoustic

energy, here we will process each atom of the audio MP decomposition separately, attributing

an audio feature to each one of them. Therefore a new method to detect meaningful events in

audiovisual signals is required, since the dimensionality of the problem increases, as well as the

available amount of information.

Audiovisual Association

As a first step, correlations between audio and video have to be established. First audiovisual

features are extracted and then a simple audiovisual correlation criterion is designed.

Audio Representation - The audio signal is decomposed using MP over a dictionary of Gabor

atoms D(a), as described in section 3.5.2. Thus, according to (3.19) an audio signal a(t) is

approximated using K atoms as

a(t) ≈
K−1∑

k=0

ck φ
(a)
k (t) ,

where k is the summation index and ck corresponds to the coefficient for every atom φ
(a)
k (t)

from dictionary D(a). In all the experiments performed in this chapter the audio signals are

approximated using K = 2000 Gabor atoms selected by MP.
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Video Representation - The video signal is represented using the same procedure presented in

the previous chapters. Sequences are decomposed into time-evolving visual edges. We have

presented two methods to do that, the 3D-MP algorithm of Divorra and the MP-PF tracker

introduced in Chapter 4. When employed in an audiovisual fusion task, the two methods

exhibit similar performances : here we use the 3D-MP algorithm. Thus, according to (3.16)

the video signal is decomposed into N video atoms φ
(v)
n as

V(x1, x2, t) ≈
N−1∑

n=0

cn(t)φ
(v)
n (x1, x2, t) ,

where n is the summation index and cn(t) are the coefficients corresponding to each video

atom. In all experiments, sequences are represented using N = 100 video atoms.

Audio-Video Atoms Association - The decomposition of the audio signal into atoms provides

a clear representation of its energy distribution in the time-frequency plane. Thus, the tem-

poral position of an audio atom indicates the presence of a sound in this time period. In a

similar manner, the displacement of video atoms reflects the movement of relevant image struc-

tures and a peak in the displacement suggests the presence of an event. A temporal analysis

is performed that takes into account the temporal co-occurrence of relevant events in both

modalities : the temporal location of acoustic energy and the position of video displacement

peaks.

For each of the K audio atoms we build a feature that indicates the temporal concentration of

acoustic energy. As already mentioned in section 3.5.2, the time-frequency energy distribution

of an atom φ
(a)
k can be derived from its Wigner-Ville distribution Wφ

(a)
k (t, ω) [73], that in the

case of Gabor atoms is a 2D Gaussian function whose position and variance depend on the

atoms parameters. The audio feature fk(t) that we consider in this case is the projection over

the temporal axis of the Wigner-Ville distribution of every audio atom,

fk(t) =

∫ +∞

−∞

Wφ
(a)
k (t, ω)dω.

For each video atom instead we build an activation vector yn(t) as described in section 3.5.3.

The peaks in each of the N video features are detected, obtaining vectors that equal 1 where

peaks occur and 0 otherwise. Then, such vectors are filtered with a rectangular window of

size W = 13 which models delays and uncertainty. Here the window length is bigger (W = 13

frames instead of W = 7 as in the previous chapters) because we want to assign all the audio

atoms to at least one video atom. If an important audio atom is not correlated to any video

atom, it would be lost and it could not be used for the successive reconstruction of the sources.

Thus we prefer to be conservative at this stage, since anyway eventual errors can be recovered

at successive processing steps. The shapes of the final audio and video features are sketched

in Fig. 5.3.

At this point the correlation scores χk,n between every audio atom φ
(a)
k and every video atom

φ
(v)
n can be computed as the scalar product between each audio and video feature :

χk,n = 〈fk(t), yn(t)〉, ∀ k, n . (5.3)

This value is high if the audio atom and the peak of displacement of the video atom have a

big temporal overlap. In other words, a high correlation score means high probability for the

video structures of having generated the sound.

At the end of this step we have built a list of correlations between acoustic and visual structures. The

strength of such correlations is indicated by the magnitude of the correlation score. This information

is extremely precious and it will be exploited to jointly separate audio and video sources.
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Figure 5.3 – Sketches of the audio and video features.

Clustering

Our objective is to detect and localize the sources of an audio signal on the video. We know the

temporal relationship between audio and video atoms in the sequence, but how can we localize the

signals? The video atoms that are more frequently related to the audio atoms are chosen in the

proposed model as possible sound sources, locating them in the image. One visual source can be

made up of several video atoms whose movements are coherent with the soundtrack evolution, like

the lips, the chin and even the eyes. We propose thus to cluster video structures that are correlated

with audio atoms and that are spatially close, to form a source. In order to easily define a measure

of proximity between video atoms, we associate to each atom φ
(v)
n one fixed location over the image

plane, (t1n
, t2n

). It is here that the hypothesis of having a quasi-static scene comes into play : the

position of video atoms can in fact change from frame to frame, but if movements are limited we

can reasonably assign one fixed position to each video atom throughout the sequence. This is what

we do here and we assign to each video structure its position over the image plane on the first frame

of the sequence.

In this section, we define an empirical confidence value κn of the n-th video atom as the sum of

the MP coefficients ck of all the audio atoms associated to it in the whole sequence :

κn =
∑

k

ck with k s.t. χk,n 6= 0 . (5.4)

Thus, this confidence value is a measure of the number of audio atoms related to it and their weight

in the MP decomposition of the audio track. Each video atom thus is characterized by its position

over the image plane and by its confidence value, i.e. ((t1n
, t2n

), κn).

Looking at Fig. 5.4, the idea of a clustering is very intuitive. The picture shows the position of

video atoms with confidence value different from zero for the test sequence shown in Fig. 5.1. The

height of the peaks indicate the confidence of each atom. Comparing this picture with Fig. 5.1 [Left]

it is clear that atoms with high confidence are grouped around the speakers mouths, one on the

left and the other on the right of the image. Atoms with higher confidence value form two different

and well separated groups pointing out the sources, while those lying far away from these regions

have considerably smaller confidence. It seems thus that the audio-video atoms association has been

successful, pointing out visual features that are close to the actual sound sources.

The clustering algorithm that we propose groups the video atoms without any assumption about
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Figure 5.4 – Video atoms location over the image plane. Their confidence value is represented in the third

dimension.

the number of sources present in the sequence. This characteristic makes the algorithm robust and

it guarantees the blindness of the framework. The clustering is divided into three main steps : the

first step consists in iteratively creating clusters by selecting the video atoms with highest confidence

value and aggregating sufficiently close points around them. This leads to the creation of Z clusters.

The second step of the algorithm estimates the centroid of each cluster. Finally, we use a simple

criterium to eliminate non significant clusters and keep NS ≤ Z clusters whose centroids provide

the estimated positions of the sound sources. Below we give more details about each step of the

algorithm.

Clusters Creation First the algorithm creates Z clusters Ci ⊂ P where P = {((t1n
, t2n

), κn)}n
is the set of all points to be classified, i.e. all video atoms with confidence value different from zero.

The clusters are created with the following iterative algorithm :

1. Initialization : Z = 0, PZ = P0 = P ;

2. Find the point ((t̃1n
, t̃2n

), κ̃n) ∈ PZ with highest confidence value. It has the most important

audio atoms associated, and consequently this video atom is the most probable to be the center

of a source;

3. Create a new cluster CZ aggregating all the video atoms that are closer than a spatial maximum

distance to (t̃1n
, t̃2n

) (cluster size defined in pixels);

4. Remove all the video atoms assigned to this cluster from the set of points to be classified, i.e.

PZ+1 = PZ \ CZ ;

5. Stop the algorithm if all the points with confidence over the mean are already classified,

otherwise increment Z ← Z + 1 and go back to step 2. Only video atoms with significant

confidence value can be the center of a new cluster.
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Concerning the clusters creation, the most important parameter to fix is the cluster size. This

characteristic determines the number of clusters created by the algorithm, and, consequently, the

number of sources detected in the first stage of the clustering. However, as we will see in the next

paragraphs, the setting of this parameter does not affect significantly the final result. Thus, in the

third step of the algorithm, a radius around the main video atom between 30 and 60 pixels (width

of the image : 176 pixels) is appropriate for the case we are analyzing. The database we are using

in fact contains sequences with two speakers significantly separated as in Fig. 5.1.

The decision bound in step 5 is used to force the algorithm to form clusters around atoms with

high confidence, that are thus more likely to be part of a source. As we can see in Fig. 5.4, most of

the considered video atoms have a small confidence value (they are sometimes related to only one

audio atom) and only few atoms exhibit high confidence. Therefore the threshold applied in step 5

is quite “conservative”, and empirically we have seen that it is basically impossible to ignore video

atoms belonging to real sources.

Estimation of the Centroids This step computes the center of mass of the video atoms belonging

to the clusters. In order to perform it, the confidence value of every atom is taken as the mass, and

it weights its contribution to the calculation of the centroid position over the image. The previous

step of the algorithm has created Z clusters, {Ci}Zi=1. We calculate the centroid of each cluster Ci,

(t̂1i
, t̂2i

), as :

(t̂1i
, t̂2i

) =

(∑
j∈Ci

κj · t1j∑
j∈Ci

κj
,

∑
j∈Ci

κj · t2j∑
j∈Ci

κj

)
, (5.5)

where (t1j , t2j) are the coordinates of the video atoms and κj their confidence values. These centroids

are the coordinates in the image where the algorithm locates the audio sources. In this kind of

sequences with several speakers, the centroids should be close to their mouths. Examples of the

created clusters and their calculated centroids are shown in Fig. 5.5, where the test clip of Fig. 5.1

is used. We can see that some of the clusters are, as expected, close to the speakers mouth, while

others do not represent a source (magenta cluster, the less important and the last one created, with

cluster size 40 pixels). In the next step the proposed clustering algorithm takes into account these

unreliable clusters and eliminates them.

Elimination of Unreliable Clusters We define the cluster confidence value KCi
as the addition

of the confidence values κj of the atoms belonging to the cluster indexed by Ci :

KCi
=
∑

j∈Ci

κj .

Based on this measure, unreliable clusters, i.e. clusters with small confidence value KCi
, are removed

and their elements are assigned to the closer reliable cluster. In this way we obtain the final set

of clusters {C ′
i}NS

i=1, with NS ≤ Z, whose centroids indicate the spatial location of the NS detected

sources.

A group of atoms is considered to be an unreliable cluster if its confidence value is 0.2 times

the maximum value of KCi
found. There are two main factors that influence the choice of this

parameter. On the one hand, this threshold has to be high enough to eliminate the clusters that

do not represent a speaker. Sometimes, a small cluster size involves the appearance of more than

one cluster per source (e.g. the magenta cluster in Fig. 5.5(a)). On the other hand, if this value is

too high the algorithm can remove clusters indicating real sources. This would be the case if one of

the sources is active for a much longer time than the others. As a result, the video atoms belonging

to these speakers would have many more correlated audio atoms and their cluster confidence value
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(a) Clusters creation with radius 40 pixels (b) Clusters creation with radius 60 pixels

Figure 5.5 – Clusters created using different cluster sizes in step 4 of the algorithm. The atom represented

with a white circle (◦) is the one with higher confidence value that builds the cluster in step 2 of the algorithm.

Crosses (+) represent the coordinates of the video atoms aggregated to the cluster in step 3. Finally, the

centroids of each cluster are indicated by a star (⋆). Each cluster is represented with a different color, from the

first to last created (descendent importance of the cluster) : yellow, cyan and the last one, magenta, which is

present only on picture (a). Actually, the magenta cluster will be classified as unreliable and eliminated at the

next step of the processing.

will be considerably bigger. Empirically, we observed that the threshold value we have applied

fulfills the explained requisites. In the case shown in Fig. 5.5(a) for example, the magenta cluster

is erroneously detected because of the small cluster size used. However its confidence value is small

since it is made up of video atoms with very low confidence (see Fig. 5.4), and it is thus removed.

Using the proposed approach, a good speaker localization is achieved creating audiovisual syn-

chronous structures and spatially grouping them into sources using a robust clustering algorithm.

The number of clusters does not have to be specified in advance since a confidence measure is intro-

duced to automatically eliminate unreliable clusters. The algorithm is robust and the localization

results do not critically depend on the choice of the cluster size parameter nor on the confidence

threshold.

5.2.2 Phase 2 : Separation and Reconstruction of Video Sources

Once the sources locations are estimated, the next step to carry out is to extract all the visual

structures, separate them and associate them to the detected video sources. The characteristic to

use at this point is the spatial distance between elements, since video sources are typically well

separated on the image plane. The fundamental goal of this step regarding the audio separation

objective is to classify the video atoms into the detected sources. Thus, we define a maximum

distance in pixels from the centroid. All the points that are closer than such distance from a

centroid (t̂1i
, t̂2i

) are assigned to the corresponding source. With this procedure, we end up with

a set of NS clusters, {Si}NS

i=1. Each group of video atoms Si describes the video modality of an

audiovisual source. To set the maximum distance parameter, we have to take into account several

conditions :� We do not want to assign one video atom to more than one source. In this case, we would

not be separating, and there would be errors in this classification and in the posterior audio

separation;� At the same time, the radius has to be big enough to contain the maximum number of atoms
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Figure 5.6 – Example of the video sources reconstruction. On the left picture the left person is speaking while

on the right picture the right person is speaking.

belonging to each source. It is important not to lose all the video atoms related to an audio

atom (in that case it would not be possible to posteriorly assign it to a source and reconstruct

completely the sequence without severe energy losses);� It is important not to assign to one source structures belonging to the other sources.

Empirically, we have noticed that a radius around the centroids of 60 pixels (width of the

image : 176 pixels) is appropriate. As shown in Fig. 5.1 in fact the database we consider is made

up of sequences with two speakers significantly separated.

At the end of this phase, video sources are detected and reconstructed : the video separation is

satisfactorily performed. Figure 5.6 shows an example of the reconstruction of the current speaker

detected by the algorithm. For each frame, only video atoms close to the sources estimated by the

presented technique are considered. Thus, to carry out the reconstruction, the algorithm adds their

energy and the effect is a highlight of the speaker’s face. In both frames, the correct speaker is

detected.

5.2.3 Phase 3 : Temporal Localization of Audio Sources

At this point of the processing, we know the location of the video source on the image plane, the

video atoms belonging to each one of the sources and the temporal relation between audio and video

atoms represented by the correlation scores χk,n calculated with (5.3). Since we assume a one-to-

one correspondence between audio and video sources, we also know the number NS of audio-video

sources present in the sequence. What we want to do now is to assign each audio atom to a source

and in particular to detect time periods during which the different sources are active alone.

For every audio atom we take into account all the video atoms related to it, their correlation

scores and their classification into a source. According to this, the audio atom is assigned to the

source with higher number of video atoms belonging to it, but also rewarding the temporal synchrony

between these video atoms and the analyzed audio structure. Therefore, for each audio entity φ
(a)
k

the assignation to a source can be done in the following way :

1. Take all the video atoms φ
(v)
n correlated with the audio atom φ

(a)
k , i.e. for which χk,n 6= 0;

2. Each of these video atoms is associated to an audiovisual source Si ; for each source Si compute

a value HSi
that is the sum of the correlation scores between the audio atom φ

(a)
k and the

video atoms φ
(v)
j s.t. j ∈ Si :

HSi
=
∑

j∈Si

χk,j ;
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3. Classify the audio atom into the source Si if the value HSi
is “big enough” : here we require

HSi
to be twice as big as any other value HSh

for the other sources. Thus we attribute φ
(a)
k

to Si if

HSi
> 2 ·HSh

with h = 1, . . . , NS , h 6= i .

If this condition is not fulfilled, this audio atom can belong to several sources and further

processing is required.

The decision bound in step 3 is introduced because, at this point of the processing, not all audio

atoms can be clearly classified into one of the sources. Some of them are in an intermediate position

and we cannot base the decision only on a small difference of the sources scores HSi
. These atoms

may belong to more than one source, or we could be making a mistake choosing one source instead

of another one. This is typically the case when several speakers are simultaneously active. For these

atoms additional processing is required, as it will be shown in the next section.

As an example, let us consider the situation shown in Table 5.1. Here one audio atom has six

video atoms associated (i.e. with correlation scores different from 0). Four of them belong to source

S1, and two to source S2, with the correlation scores shown in in the table. Then, the sum of the

scores are 13.88776 and 1.71717 for sources S1 and S2 respectively. The score for the first source

is much bigger (approximately eight times bigger than the other) and thus this audio atom will be

assigned to source S1.

Source S1 Source S2

6.9348 1.1146

5.8186 0.60257

0.809

0.32536

13.88776 1.71717

Table 5.1 – Example of the list of correlation values between one audio atom and the correlated video atoms.

Four of them belong to source 1 and two to source 2.

Using this labelling of audio atoms, time periods during which only one source is active are

clearly determined. This is done using a very simple criterion : if in a continuous time slot longer

than T seconds all audio atoms are assigned to source Si, then during this period only source Si is

active. In the examples that we provide in this chapter, the value of T is set to 1 second.

The classification of the audio atoms representing the test soundtrack shown in Fig. 5.1 is depicted

in Fig. 5.7. The points in the pictures represent the position over the time-frequency plane of the

audio atoms centers. The atoms locations in the original mixture are shown in picture (a), while

the atoms classification is in (b). The sequence involves two speakers : at the beginning only the

girl talks, then both persons speak together and finally the boy only talks. This partitioning of the

signal is reflected by the proposed audio source classification method : atoms assigned to the girl

and the boy are highlighted in blue and red respectively, while ambiguous atoms are indicated with

green markers.

When several sources are present, temporal information alone is not sufficient to discriminate

different audio sources in the mixture. To overcome this limitation, in these ambiguous time slots a

time-frequency analysis is performed, which is presented in details in the next section.



62 Chapter 5. Blind Audiovisual Source Separation

(a) Time-frequency representation (b) Audio segmentation

Figure 5.7 – Example of the classification of audio atoms into the corresponding sources. The points represent

the time-frequency position of audio atoms. The atoms of the original mixture are in (a), while the atoms

classification is in (b). The speech evolution on the sequence is reflected by the proposed classification method :

at the beginning only the girl talks (blue markers), then the two persons speak (green markers) and finally only

the boy speaks (red markers).

5.2.4 Phase 4 : Blind Audio Source Separation Aided by Video

In order to perform the Audio Source Separation task, we have to separate the audio atoms of the

sequence both in time and in frequency. What we expect is that the frequency information will

aid us to obtain better separation results when the sources are temporally overlapping, since this

additional dimension can offer a new possibility of discrimination.

An audio atom φ
(a)
k is characterized by its position on the time-frequency plane, (uk, ξk), and by

a set of correlation scores {χk,n}n that quantify its degree of correlation with the video atoms. Thus

the audio atoms of the MP decomposition constitute the set of K points A = {(uk, ξk), {χk,n}n}K−1
k=0 .

Our aim is to associate each one of these points to one of the NS audiovisual sources.

We want to underline that the MP algorithm considers a discretized version the time-frequency

plane. In that way the atoms of the decomposition can be centered only in a discrete set of points

placed on a uniform time-frequency grid. The idea here is basically to estimate for each point

of such grid the probabilities to belong to each one of the detected sources, and thus classify the

audio atoms according to this information. The starting point is to use the temporal periods during

which sources are active alone to compute a probability for each frequency point ω̂ to belong to

one source. The proposed method is based on the hypothesis that different sources have different

frequency content, since otherwise the frequency assignation would be similar and this analysis vain.

In order to assign all the audio atoms to one of the sources, we have to consider in which of the

following cases we are :

Time period with only one active source - We use the temporal analysis result to classify this

atom. We already know which source is active at this moment and so it is not necessary to

use the frequency information.

Time period with several active sources - There is a mixture in this period, and also frequen-

cy analysis is required. Each audio atom in this period is classified into a source according to

the probabilities of its coordinates in the time-frequency plane. An audio atom centered in
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Figure 5.8 – Estimated frequency probabilities for the female [Left] and male [Right] speakers involved in

the test sequence. The two probabilities are estimated on parts of the test sequence during which the subjects

speak alone (indicated by blue and red dots in the spectrogram of Fig. 5.7(b) that is reproduced on the upper

left corners of the figures).

coordinates (t̂, ω̂) will be associated to source Si if

PSi
(t̂, ω̂) = max{PSj

(t̂, ω̂)} , with j = 1, . . . , NS . (5.6)

These maps of probabilities are built computing the product between time and frequency prob-

abilities as :

PSi
(t̂, ω̂) = PT

Si
(t̂) · PΩ

Si
(ω̂) (5.7)

where PT
Si

(t̂) is the probability of an audio atom with time index t̂ to belong to source Si, and PΩ
Si

(ω̂)

is the probability for an audio atom with frequency index ω̂ to belong to source Si. The frequency

probabilities PΩ
Si

(ω̂) are computed considering temporal slots during which the sources are active

alone (e.g. the blue and red portions of the spectrogram in Fig. 5.7(b)), so that a reliable association

between audio atoms and sources can be established. In these signal slots we keep for every value

of ω̂ the set of atoms Aω̂,k,n = {(uk, ξk = ω̂), {χk,n}n}k that have frequency index ξk = ω̂. The

probability PΩ
Si

(ω̂) of the frequency value ω̂ to be associated to source Si is estimated as the number

of atoms with frequency index ω̂ that we know to belong to source Si (e.g. in the red or blue region

in Fig. 5.7(b)) divided by the total number of atoms with frequency index ω̂ in the considered signal

slots (e.g. the red and blue regions in Fig. 5.7(b)). Thus we can write :

PΩ
Si

(ω̂) =
card (Aω̂,k∈Si,n)

card (Aω̂,k,n)
, (5.8)

where card(·) is the cardinality (number of elements) of a set of points. The probability of each

frequency value is normalized to one, i.e.
∑NS

i=1 PΩ
Si

(ω̂) = 1.

Figure 5.8 shows the estimated probabilities for every frequency point for the two speakers of

the sequence shown in Fig 5.1. Fig. 5.8 [Left] represents the frequencies probabilities for the girl and

Fig. 5.8 [Right] shows the frequencies probabilities for the boy. As expected, lower frequencies are

more likely to belong to the boy while higher ones are associated with the girl. This characteristic
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Figure 5.9 – Estimated temporal probabilities for the female [Left] and male [Right] speakers involved in the

test sequence. The two probabilities are estimated on the part of the test sequence during which both persons

speak together (indicated by green dots in the spectrogram of Fig. 5.7(b) that is reproduced on the upper left

corners of the figures).

remarks the pitch frequency for both speakers. It is also possible to see the formant periodicity for

both speakers, with their frequency components situated in pitch multiples. All these observations

reinforce the belief that the temporal separation is well performed, correctly discriminating periods

with only one active source. This allows to characterize clearly every source in the frequency domain.

Of course, sequences with speakers with closer pitches would mean more overlapping in the frequency

classification and, consequently, the impossibility to perform a good separation in this domain using

such a simple static approach.

The temporal probability PT
Si

(t̂) instead, is estimated in period during which both sources are

supposed to be active (e.g. the green part of the spectrogram in Fig. 5.7(b)). Since no sure

association between audio atoms and sources can be established in these mixed periods, temporal

probabilities are estimated exploiting the correlation information between audio and video atoms

(that have already been assigned to sources) given by the correlation scores {χk,n}n. For each time

instant t̂ we select the set of points At̂,k,n = {(uk = t̂, ξk), {χk,n}n}k and we compute the temporal

probabilities PT
Si

(t̂) as :

PT
Si

(t̂) =

∑
k∈At̂,k,n∈Si

χk,n
∑

k∈At̂,k,n
χk,n

. (5.9)

This probability basically acts like a mask : when it is 0 means that no chance is given to source

Si to be active, since no correlated event between the video source Si and the audio signal is

detected at this time instant. Again the probability of each temporal value is normalized to one,

i.e.
∑NS

i=1 PT
Si

(t̂) = 1. Figure 5.9 shows the estimated probabilities for every time point for the

two speakers of the considered test sequence. The two probabilities are computed on the section of

the clip during which both persons speak together (indicated by green dots in the spectrogram of

Fig. 5.7(b)). Fig. 5.8 [Left] represents the temporal probabilities for the girl while Fig. 5.8 [Right]

shows the temporal probabilities for the boy.

For each time-frequency point (t̂, ω̂) the probability PSi
(t̂, ω̂) in (5.7) is computed as a product

between PT
Si

(t̂) and PΩ
Si

(ω̂). One aspect has to be taken into account : not all the frequency values

necessarily have a probability associated. In this case, the closest frequency with a probability value

associated is used in (5.7). Figure 5.10 shows the final time-frequency probabilities computed for

the two speakers in the test sequence. The color map of the pictures goes from blue to red through

green and yellow and the pixel intensities reflect the probability of the time-frequency point. For

example a blue point has probability zero to belong to the considered source. The probabilities hold

for the part of the test sequence during which both persons speak together (indicated with green

dots in the spectrogram of Fig. 5.7(b)). The probability for the female speaker is depicted on the

left picture and the one for the male speaker is on the right.
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Figure 5.10 – Estimated time-frequency probabilities for the female [Left] and male [Right] speakers present

in the considered test sequence. The color map of the pictures goes from blue to red through green and yellow

and the pixel intensities reflect the probability of the time-frequency point. The probabilities concern the part of

the test sequence during which both persons speak together. Please note that the original probability maps have

been low-passed and down-sampled by a factor of 100 in the frequency dimension in order to be visualized.

Figure 5.11 shows in (a) the spectrogram of an audio signal obtained with 2000 Gabor atoms

selected by MP. The signal is the soundtrack of the test sequence shown in Fig. 5.1. In the sequence

the girl starts to speak alone, then both persons speak at the same time and finally the girl stops

talking and the boy speaks alone. On picture (b) the spectrogram corresponding to one separated

source (the female speaker) is shown, while in (c) the spectrogram of the second detected source

(the boy), is shown. The color map of the time-frequency plane images goes from black to red,

through blue, green and yellow, and the pixel intensity represents the value of the energy at each

time-frequency location, computed as in section 3.5.2.

Some considerations can be done observing these pictures. First of all, it seems that characteristic

energy distributions of each speaker are correctly extracted. For example, in Fig. 5.11(b) we can

see the separated signal for the girl. The first part of the soundtrack (2 initial seconds in the

spectrogram) only contains her speech, so that it is possible to observe clearly the characteristic

evolution of the frequency components of her voice. The same evolution is repeated in the period were

the two persons are speaking at the same time. Another aspect to remark is that low frequencies,

characteristic of male voices, are correctly assigned to the second source, the male speaker, and

there is no presence of them in the spectrogram of the female speaker.

Reconstruction of the Separated Signals

The audio signal coming from a source is reconstructed by simply adding the audio atoms classified

in this source, weighted by their energy coefficients. Therefore the i-th audio source, αSi
(t), can be

reconstructed as :

αSi
(t) ≈

∑

k∈Si

ck φ
(a)
k (t) , (5.10)
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(a) Original sequence

(b) Separated source 1 (girl) (c) Separated source 2 (boy)

Figure 5.11 – Source Separation of a real-world mixture representing a boy and a girl uttering digits simul-

taneously. The color map of the time-frequency plane images goes from white to black, and the pixel intensity

represents the value of the energy at each time-frequency location.

where ck is the coefficient found by MP and corresponding to the Gabor atom φ
(a)
k (t) and Si

indexes the set of atoms attributed to the i-th source. The reconstructed sources αSi
(t) are time-

evolving waveforms that can be heard using a media-player. The reconstructed sources shown in

Fig. 5.11, for example, result well audible and the digits uttered by the two speakers can be clearly

distinguished. However, an objective, quantitative measure of the quality of the source separation

and reconstruction is required, in order to asses the performances of the proposed algorithm.

5.3 Experiments

In this section the proposed BAVSS algorithm is evaluated on synthesized audiovisual mixtures. The

interest of analyzing synthesized sequences resides in the fact that a ground truth can be assessed

and thus an objective measure of the discrepancy between this ground truth and the reconstructed

sources can be defined. The features used to evaluate the algorithm are the percentage of correctly

classified atoms for each audio source and the percentage of acoustic energy of the source that these

correctly classified atoms represent.

Synthesized sequences are generated using clips taken from the groups partition of the CUAVE

database [88] with one girl and one boy uttering sequences of digits alternatively. The video data is

at 29.97 fps with a resolution of 480×720 pixels, and the audio at 44 kHz. The video data have been



5.3. Experiments 67

resized to a resolution of 120 × 176 pixels, while the audio signal has been sub-sampled to 8 kHz,

with still a good audible quality. The video sequence is decomposed into 100 video atoms and the

mixture soundtrack is decomposed into 2000 Gabor atoms. The audio and the video atoms of one

speaker are then temporally shifted in order to obtain time slots with both speakers active. The

steps carried out to synthesize the sequences employed in the experimental tests are the following :

1. Choose a clip of the groups section of the CUAVE database where two speakers (a boy and a

girl) utter numbers in turns;

2. Shift the audio atoms of one speaker so that their voices are overlapped part of the time. The

MP decomposition of the audio gives us the temporal position of the audio atoms belonging to

each one of the speakers. Thus, we only need to take all the atoms of one speaker, which are

temporally separated from those of the other one since they are speaking alternatively, and

change their temporal index appropriately. The same quantity is added or subtracted from all

the atoms;

3. The same procedure is applied to the video atoms. Once the video sequences decomposed into

2D time-evolving atoms, the feature to analyze is the evolution of the video atoms displacement

through time. In the CUAVE database each speaker is located at one side of the image plane,

so that video atoms belonging to one speaker have the abscissa value between pixels 1 and 88,

and the other one between 89 and 176 (the resolution of the video being 120 × 176). Thus,

the procedure consists in temporally shifting the video atoms corresponding to one speaker

by the same value of the audio atoms belonging to the same speaker. Please note that the

shift in the audio domain is in samples and we have to convert it in frames to apply the same

temporal shift to the video atoms.

This procedure translates the whole part of the audiovisual sequence belonging to one speaker in

order to have a synthetic mixture where both speakers are uttering different numbers at the same

time. In the resultant synthetic clips, four cases are represented : both persons speak at the same

time, only the boy or the girl speaks or silence.

First, the percentage of correct atoms is assessed. Figure 5.12 shows the sources extracted by

the proposed algorithm [Top] and the real ones represented with 2000 Gabor atoms [Bottom], for a

syntectic sequence generated by applying a shift of 150 frames to the sequence part with the male

speaker in clip g20 of the CUAVE database. Using the proposed technique on this sequence 92%

of atoms for the girl and 90% for the boy are correctly classified. This is a good result, taking

into account that it is at the atoms level that our algorithm is performed. Thus, on average our

algorithm assigns 91% of the audio atoms to the correct source.

Another measure is employed in order to evaluate this method : the percentage of the original

energy that these correctly classified atoms represent. This value gives us the information relative

to the difference of the original and estimated soundtracks for each speaker after the reconstruction

step. This measure is performed in order to discard the very improbable fact that the 9% of audio

atoms that are misclassified contribute to the separated soundtracks with the main part of the

energy, i.e. these audio atoms are the first in the MP decomposition of the original mixture. For

each source, this percentage is computed as the sum of the coefficients of all the atoms correctly

assigned by the algorithm to the source divided by the sum of the coefficients of all the atoms

belonging to this source. Therefore, this percentage can be seen as the part of the estimated signal

belonging to the original source. The remaining energy is due to the assignation of audio atoms to

the incorrect speaker and constitutes the noise of the separated signal estimated by the algorithm.

Figure 5.13 shows the original waveforms reconstructed with 2000 Gabor atoms on the right and

those estimated by the proposed time-frequency analysis on the left.
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(a) Time-frequency analysis, speaker 1 (girl)
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(b) Time-frequency analysis, speaker 2 (boy)
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(c) Real audio atoms, speaker 1 (girl)
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(d) Real audio atoms, speaker 2 (boy)

Figure 5.12 – Comparison between audio atoms resulting of time-frequency analysis in a synthetic mixture

[Top] and the original ones [Bottom]. The points are the centers of the audio atoms over the time-frequency

plane. The sequence is generated by applying a shift of 150 frames to the male speaker in clip g20 of CUAVE

database.

Sequence
% correct atoms % correct energy

girl boy girl boy

g12 shift 100 frames 86 54 73 42

g20 shift 150 frames 92 90 92 86

g21 shift 130 frames 83 81 81 75

g21 shift 169 frames 82 78 84 73

Table 5.2 – Results obtained with synthetic sequences generated for different clips of CUAVE database.

Waveforms are very similar in the original and estimated sequences, and the percentages of

the original energy that the correct atoms assigned to each source represent the 92% and 86%

for the male and female speaker respectively. These percentages are high and similar to those

obtained for the number of correct atoms assigned to each speaker (92% and 90%). It seems thus

that correctly assigned audio atoms represent most of the energy of the speakers separated signals.

Results obtained analyzing different sequences are summarized in Table 5.2.

The values obtained for the percentage of correct atoms and the percentage of energy that these
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(c) Ground truth, speaker 1 (girl)
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(d) Ground truth, speaker 2 (boy)

Figure 5.13 – Comparison between estimated [Top] and real [Bottom] soundtracks for a synthetic sequence

generated by applying a shift of 150 frames to the male speaker in clip g20 of the CUAVE database. Please note

that the ground truth soundtracks are not the original ones but their reconstructions using 2000 atoms selected

by MP.

atoms represent are similar. We can thus argue that the algorithm distributes the errors over audio

atoms of all sizes, and the percentage of correct atoms is already a good measure of the algorithm

performance. Results are satisfactory, around 80–90% except for sequence g12 of CUAVE database,

with a worse performance for the boy. Table 5.2 also shows that the results obtained are linked

with the sequence to analyze and they are independent of the shift introduced. The performance

for sequence g21 is around 80% with shifts of 130 or 169 frames, with a small difference in favor of

the first case.

It is important to underline that lower performances in sequence g12 are mostly due to errors

done in the sequence part during which both speakers are active and they are caused by the low

discriminative power of the simple model based on the probability maps of the speakers. Actually, for

all tested sequences the time periods during which the sources are active alone are correctly localized

except for some minor error in sequence g12. The signals in these time slots are essentially perfectly

reconstructed, with a Signal to Noise Ratio (SNR) between the ground-truth MP reconstructions

and the separated sources of about 50 dB. In contrast, performances are much lower in mixed

periods. Although the separated speech signals are still audible and the uttered digits can be clearly

distinguished most of the time, we have measured SNR values ranging from 3 dB (for the first

part of the signals shown in Fig. 5.13(b),(d)), down to -1dB. This shows that while the proposed
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framework is able to localize the sources on the video and to detect time slots during which a speaker

alone is present, improvements are needed in the time-frequency separation of audio mixtures. This

can be done using more complex one-microphone source separation techniques that can be either

discriminative [7, 96] or generative [59, 95, 99] (see section 5.1.3). An HMM-based generative model

like the one proposed in [95] would probably match well our considered scenario, since we could still

keep a completely blind setting and we could think of learning a model of the sources in time slots

during which they are active alone. However this type of techniques typically require large training

audio portions that can be unavailable in the presented scenario. Another interesting option could

be then the use of a blind method to track the evolution of harmonics and resonances, like the one

proposed in [96], but aided here by the information available in time periods presenting audiovisual

sources active alone.

As a final remark, we have noticed that the quality of the reconstructed signals is considerably

better for synthetic sequences than for real ones. This effect is caused by the change in the speakers

fundamental frequency, and, consequently, spectral harmonics, when they speak simultaneously in

real sequences. Humans tend to change their speech characteristics in order to differ more from the

other speakers and to be, thus, more easily heard. This change in the sources frequency behavior

causes a worse performance of the algorithm, since the speakers models are learned in temporal

periods during which they are alone.

5.4 Discussion

In this chapter we have introduced a new algorithm to perform a Blind Audiovisual Source Separa-

tion task. We consider sequences made of one soundtrack and the video signal associated, without

the stereo audio signal usually employed for the BASS task. The method builds correlation between

acoustic and visual structures that are represented using atoms taken from redundant dictionaries.

Video atoms that exhibit strong correlations with the audio track and that are spatially close are

grouped together using a robust clustering algorithm that can confidently count and localize on

the image plane audiovisual sources. Then, using such information and exploiting the coherence

between audio and video signals, audio sources are localized as well and separated. The presented

algorithm needs time periods with sources active alone to predict their behavior in the mixture.

This condition is however not very restrictive, since it is rare that in real-world mixtures all the

sources are active all the time.

Several tests are performed in real-world and synthetic sequences, and encouraging results are

obtained for both of them. The speaker spatial localization is successfully performed in challenging

sequences where two persons speak simultaneously. Concerning the audio source separation part, the

audible quality of the separated audio signals is also reasonably good, with reconstructed waveforms

close to the original ones. However, we believe that the proposed method can be improved using

more sophisticated techniques for the separation of audio sources in time slots that present source

mixtures. To this end, HMM-based models [95] or audio feature tracking techniques [96] could be

plugged in the proposed framework. Moreover, a more systematic evaluation of the audio separation

results should be performed, employing for example the performance evaluation protocol proposed

in [110].



Learning Multi-Modal

Dictionaries 6
We have shown throughout this thesis that it is possible to design intuitive and effective techniques

to analyze multi-modal signal if proper representations of the considered signals are available. The

presented algorithms exploit signal processing techniques capable of extracting meaningful structures

from audio and video data, making it possible to define and handle in an efficient and relatively

simple way correlated cross-modal structures. However, audio-video features are still extracted

separately using general dictionaries of audio and video atoms, and then correlations between them

are searched. We argue that a better strategy would be to jointly extract meaningful multi-modal

structures, introducing cross-modal correlations at the model level.

This chapter introduces a model for multi-modal signals that represents multi-component data

as a sparse sum of recurrent multi-modal structures. Such structures can be retrieved from a

codebook of functions. Since however the definition of a multi-modal dictionary results extremely

complex, we propose as well an algorithm that allows to learn dictionaries of such multi-modal

functions. Signal patterns are learned using a recursive algorithm that enforces synchrony between

the different modalities and de-correlation between the dictionary elements.

6.1 Modelling and Understanding

In this section we introduce a new model to represent multi-modal signals. Instead of separately

decomposing each signal modality over a dictionary as it was done in previous chapters, here we

propose to represent a multi-modal signal as a sparse sum of multi-modal atoms. This chapter

features three main contributions :� In Section 6.1.1 we define a general signal model to represent multi-modal data using sparse

representations over dictionaries of multi-modal functions and in Section 6.1.2 we refine such

model adding two properties that are useful in order to represent real-world multi-modal data,

notably synchrony between the different components of multi-modal atoms and shift invariance

of the basis functions;� In Section 6.2 we propose an efficient algorithm to learn dictionaries of multi-modal, synchro-
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nous, shift-invariant functions;� In the experiments section we apply the proposed signal model and the learning method to

audiovisual data. Results show that the proposed algorithm allows to learn meaningful audio-

video signal patterns and that detecting such structures in challenging real-world audiovisual

sequences it is possible to effectively detect and localize audio-video sources.

6.1.1 Sparse Approximations of Multi-Modal Signals

Multi-modal data are made up of M different modalities and they can be represented as M -tuples

s = (s(1), . . . , s(M)) which are not necessarily homogenous in dimensionality : for example, audio-

visual data consist of an audio signal s(1) = s(a)(t) and a video sequence s(2) = s(v)(~x, t) with ~x ∈ R
2

the pixel position. Other multi-modal data such as multi-spectral images or biomedical sequences

could be made of images, time-series and video sequences at various resolutions.

To date, methods dealing with multi-modal fusion problems basically attempt to build general

and complex statistical models to capture the relationships between the different signal modalities

s(m). However, as already underlined in this thesis, the employed features are typically simple and

barely connected with the physics of the problem. Efficient signal modelling and representation

require the use of methods able to capture particular characteristics of each signal. Therefore, the

idea is basically that of defining a proper model for signals, instead of defining a complex statistical

fusion model that has to find correspondences between barely meaningful features.

Applications of this paradigm to audiovisual signals have been presented in previous chapters.

A sound is assumed to be generated through the synchronous motion of important visual elements

like edges. Audio and video signals are thus represented in terms of their most salient structures

using redundant dictionaries of functions, making it possible to define acoustic and visual events.

An audio event is the presence of an audio signal with high energy and a visual event is the motion

of an important image edge. The synchrony between these events reflects the presence of a common

source, which is effectively localized. The key idea of this approach is to use high-level features to

represent signals, which are introduced by making use of codebooks of functions. The audio signal

a(t) = s(a)(t) is approximated as a sparse sum of atoms from a Gabor dictionary {φ(a)
k }k,

s(a) ≈
∑

k∈Ja

c
(a)
k φ

(a)
k ,

while the video sequence s(v)(~x, t) is expressed as a sparse combination of edge-like functions that

are tracked through time, {φ(v)
k }k, as

s(v) ≈
∑

k∈Jv

c
(v)
k φ

(v)
k .

Such audio and video representations are still quite general, and can be employed to represent any

audiovisual sequence.

One of the main advantage of dictionary-based techniques is the freedom in designing the dic-

tionary, which can be efficiently tailored to closely match signal structures. For multi-modal data,

distinct dictionaries D(m) = {φ(m)
k }k for each modality do not necessarily reflect well the interplay

between events in the different signals, since the sets of salient features Jm involved in the models of

each modality are not necessarily related to one another. An interesting alternative consists in cap-

turing truly multi-modal events by the means of an intrinsically multi-modal dictionary D = {φk}k
made of multi-modal atoms φk = (φ

(1)
k , . . . , φ

(M)
k ), yielding a multi-modal sparse signal model

s ≈
∑

k∈J

(
c
(1)
k φ

(1)
k , . . . , c

(M)
k φ

(M)
k

)
. (6.1)
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Here, a common set J of salient multi-modal features forces at the model level some correlation

between the different modalities.

Given the multi-modal dictionary D = {φk}k and the multi-modal signal s, the inference of the

model parameters J and {c(m)
k }k,m is not completely trivial : on the one hand, since the dictionary

is often redundant, the are infinitely many possible representations of any signal; on the other hand,

choosing the best approximation with a given number of atoms is known to be an NP-hard problem.

Fortunately, several suboptimal algorithms such as multi-channel Matching Pursuit [49, 108], can

provide generally good sparse approximations.

6.1.2 Synchrony and Shift Invariance in Multi-Modal Signals

Very often, the various modalities in a multi-modal signal will share synchrony of some sort. By

synchrony, we usually refer to time-synchrony, i.e. events occurring in the same time slot. When

multi-modal signals share a common time-dimension, synchrony is a very important feature, usually

tightly linked to the physics of the problem. As explained above, synchrony is of particular impor-

tance in audio-visual sequences. Sound in the audio time series is usually linked to the occurrence

of events in the video at the same moment. If for example the sequence contains a character talking,

sound is synchronized with lips movements. More generally though, multi-modal signals could share

higher-dimensions, and the notion of synchrony could refer to spatial co-localization, for example in

multi-spectral images where localized features appear in several frequency bands at the same spatial

position.

For the sake of simplicity, we will focus our discussion on time-synchrony and we now formalize

this concept further. Let

φ =
(
φ(1)(~x1, t), . . . , φ

(M)(~xM , t)
)

, ~xm ∈ R
dm

be a multi-modal function whose modalities φ(m), m = 1, . . . ,M share a common temporal dimen-

sion t ∈ R. A modality is temporally localized in the interval ∆ ⊂ R if φ(m)(~xm, t) = 0, ∀t /∈ ∆.

We will say that the modalities are synchronous whenever all φ(m) are localized in the same time

interval ∆.

Most natural signals exhibit characteristics that are time-invariant, meaning that they can occur

at any instant in time. Think once again of an audio track : any particular frequency pattern can

be repeated at arbitrary time instants. In order to account for this natural shift-invariance, we need

to be able to shift patterns on modalities. Let φ be a multi-modal function localized in an interval

centered on t = 0. The operator Tp shifts φ to time p ∈ R in a straightforward way :

Tpφ =
(
φ(1)(~x1, t− p), . . . , φ(M)(~xM , t− p)

)
. (6.2)

This temporal translation is homogeneous across channels and thus preserves synchrony. With

these definitions, it becomes easy to express a signal as a superposition of synchronous multi-modal

patterns φk, k ∈ J occurring at various time instants t1, . . . , tk :

s ≈
∑

k∈J

ckTtk
φk ,

where the sum and weighting coefficients are understood as in (6.1). We often build a large subset

of a dictionary by applying such synchronous translations to a single multi-modal function. In that

case, we will often refer to this function as a generating function and we will indicate it with gk.

In complex situations, it is sometimes difficult to manually design effective dictionaries because

there is no good a priori knowledge about the generating functions g. In these cases, one typically
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would want to learn a good dictionary from training data. Successful algorithms to learn dictionaries

of basis functions have been proposed in the last years and applied to diverse classes of signal,

including audio data [2, 60, 67], natural images [10, 25, 60, 63, 66, 85] and video sequences [84]. In

the next section, we propose a learning strategy adapted to synchronous multi-modal signals.

6.2 Learning Multi-Modal Dictionaries

Our goal is to design an algorithm capable of learning sets of multi-modal synchronous functions

adapted to particular classes of multi-modal signals. However, the design of an algorithm for learning

dictionaries of multi-modal atoms is non-trivial and an extended literature survey showed that it

has never been attempted so far. Two major challenges have to be considered :� Learning algorithms are inherently time and memory consuming. When considering sets of

multi-modal signals that involve huge arrays of data, the computational complexity of the

algorithm becomes a challenging issue;� Natural multi-modal signals often exhibit complex underlying structures that are difficult to

explicitly define. Moreover, modalities have heterogeneous dimensions, which makes them

complicated to handle. Audiovisual signals perfectly illustrate this challenge : the audio track

is a 1D signal typically sampled at high frequency rate (O(104) samples/sec), while the video

clip is a 3D signal sampled with considerably lower temporal resolution (O(101) frames/sec).

We will design a novel learning algorithm that captures the underlying structures of multi-modal sig-

nals overcoming both of these difficulties. We propose to learn synchronous multi-modal generating

functions as introduced in the previous section using a generalization of the MoTIF algorithm [60].

Each such function defines a set of atoms corresponding to all its translations. This is notably moti-

vated by the fact that natural signals typically exhibit statistical properties invariant to translation,

and the use of generating functions allows to build huge dictionaries while using only few para-

meters. In order to make the computation feasible, the proposed algorithm learns the generating

functions by alternatively localizing and learning interesting signal structures on the different signal

components. As detailed in the following, this allows moreover to enforce synchrony between modal

structures in an easy and intuitive fashion. Generating functions are learned successively and the

procedure can be stopped when a sufficient number of atoms have been found. A constraint that

imposes low correlation between the learned waveforms is also considered, such that no function is

picked several times.

The goal of the learning algorithm is to build a set G = {gk}Kk=1 of multi-modal generating

functions gk such that a very redundant dictionary D adapted to a class of signals can be created

by applying all possible translations to the generating functions of G. The function gk can consist

of an arbitrary number M of modalities. For simplicity, we will treat here the bimodal case M = 2;

however, the extension to M > 2 is straightforward. To make it more concrete, we will write a

bimodal function as gk = (g
(a)
k , g

(v)
k ) where one can think of g

(a)
k as an audio modality and g

(v)
k as a

video modality of audiovisual data. More generally, the components do not have to be homogeneous

in dimensionality; however, they have to share a common temporal dimension.

For the rest of the chapter, we denote discrete signals of infinite size by lower case letters. Real-

world finite signals are made infinite by padding their borders with zeros. Finite size vectors and

matrices are denoted with bold characters. We need to define the time-discrete version Tp, p ∈ R

of the synchronous translation operator (6.2). Since different modalities are in general sampled

at different rates over time, the operator Tp must shift the signals on the two modalities by a
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different integer number of samples, in order to preserve their temporal proximity. We define it

as Tp = (T (a)
p , T (v)

p ) := (Tq(a) , Tq(v)), where Tq(a) translates an infinite (audio) signal by q(a) ∈ Z

samples and Tq(v) translates an infinite (video) signal by q(v) samples. In the experiments that we

will conduct at the end of the chapter, typical values of the sampling rates are ν(a) = 1/8000 for

audio signals sampled at 8 kHz and ν(v) = 1/29.97 for videos at 29.97 frames per second. Therefore

the discrete-time version of the synchronous translation operator Tp with translation p ∈ R is defined

with discrete translations q(a) := nint(p/ν(a)) ∈ Z and q(v) := nint(p/ν(v)) ∈ Z where nint(·) is the

nearest integer function. Without loss of generality we may assume that ν(v) ≥ ν(a) and define a

re-sampling factor RF = ν(v)/ν(a).

For a given generating function gk, the set {Tpgk}p∈R contains all possible atoms generated by

applying the translation operator to gk. The dictionary generated by G is then D = {{Tpgk}p, k =

1, . . . ,K}. Learning is performed using a training set of N bimodal signals {(f (a)
n , f

(v)
n )}Nn=1, where

f
(a)
n and f

(v)
n are the components of the signal on the two modalities. The signals are assumed to be

of infinite size but they are non zero only on their support of size (S
(a)
f , S

(v)
f ). Similarly, the size of

the support of the generating functions to learn is (S
(a)
g , S

(v)
g ) such that S

(a)
g < S

(a)
f and S

(v)
g < S

(v)
f .

The proposed algorithm iteratively learns translation invariant filters. For the first one, the aim is to

find g1 = (g
(a)
1 , g

(v)
1 ) such that the dictionary {(T (a)

p g
(a)
1 , T (v)

p g
(v)
1 )}p is the most correlated in mean

with the signals in the training set. Hence, it is equivalent to the following optimization problem :

UP : g1 = arg max
‖g(a)‖2=‖g(v)‖2=1

N∑

n=1

max
pn

∑

m

| 〈f (m)
n , T (m)

pn
g(m)〉 |2 , (6.3)

which has to be solved simultaneously for the two modalities (m = a, v), i.e. we want to find a pair

of synchronous filters (g(a), g(v)) that minimize (6.3). There are two main differences with respect to

classical learning methods, which make the present problem extremely challenging. First of all, we

do not only want the learned function g1 to represent well in average the training set (as expressed

by the first maximization over g), but we want g1 to be the best representing function up to an

arbitrary time-translation on each training signal (as indicated by the second maximization over pn)

in order to achieve shift-invariance. In addition, we require these characteristics to hold for both

modalities simultaneously, which implies an additional constraint on the synchrony of the couple of

functions (g
(a)
1 , g

(v)
1 ). Note that solving problem UP requires to compute simultaneous correlations

across channels. In the audio-visual case, the dimension of the video channel makes this numerically

prohibitive. To avoid this problem, we first solve UP restricted to the audio channel :

UP′ : g
(m)
1 = arg max

‖g(m)‖2=1

N∑

n=1

max
pn

| 〈f (m)
n , T (m)

pn
g(m)〉 |2 , (6.4)

where m = a. We can then solve (6.4) for m = v but limit the search for best translations around

the time-shifts already obtained on the audio channel, thus avoiding the burden of long correlations

between video streams.

For learning the successive generating functions, the problem can be slightly modified to include

a constraint penalizing a generating function if a similar one has already been found. Assuming that

k− 1 generating functions have been learnt, the optimization problem to find gk can be written as :

CP : g
(m)
k = arg max

‖g(m)‖2=1

∑N
n=1 maxpn

| 〈f (m)
n , T (m)

pn g(m)〉 |2
∑k−1

l=1

∑
q∈Z
| 〈g(m)

l , Tqg(m)〉 |2
, (6.5)

which again has to be solved simultaneously for the two modalities (m = a, v). In this case the

optimization problem is similar to the unconstrained one in (6.4), with the only difference that a de-

correlation constraint between the actual function g
(m)
k and the previously learned ones is added. The
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constraint is introduced as a term at the denominator that accounts for the correlation between the

previously learned generating functions (the first summation over l) and the actual target function

shifted at all possible positions (the second sum over q). By maximizing the fraction in (6.5) with

respect to g, the algorithm has to find a balance between the goodness of the representation of

the training set, which has to be maximized being expressed by the numerator, and the correlation

between gk and gl (l = 1, . . . , k−1), which has at the same time to be minimized, being represented

by the denominator.

Finding the best solution to the unconstrained problem (UP′) or the constrained problem (CP)

is indeed hard. However, the problem can be split into several simpler steps following a localize

and learn paradigm [60]. Such a strategy is particularly suitable for this scenario, since we want to

learn synchronous patterns that are localized in time and that represent well the signals. Thus, we

propose to perform the learning by iteratively solving the following four steps :

1. Localize : for a given generating function g
(a)
k [j − 1] at iteration j, find the best translations

p
(a)
n [j] := ν(a) · q(a)

n [j] with

q(a)
n [j] := arg max

q∈Z

| 〈f (a)
n , Tqg

(a)
k [j − 1]〉 | ;

2. Learn : update g
(v)
k [j] by solving UP′ (6.4) or CP (6.5) only for modality (v), with the

translations fixed to the values pn = p
(a)
n [j] found at step 1, i.e. q

(v)
n := nint(RF× q

(a)
n [j]);

3. Localize : find the best translations p
(v)
n [j] := ν(v) · q(v)

n [j] using the function g
(v)
k [j];

q(v)
n [j] := arg max

q∈Z

| 〈f (v)
n , Tqg

(v)
k [j]〉 | ;

4. Learn : update g
(a)
k [j] by solving UP′ (6.4) or CP (6.5) only for modality (a), with the

translations fixed to the values pn = p
(v)
n [j] found at step 3 i.e. using q

(a)
n = nint(q

(v)
n [j]/RF).

A schematic representation of the four steps of the multi-modal learning algorithm is sketched

in Fig. 6.1. The first and third steps consist in finding the location of the maximum correlation

between one modality of each training signal f
(m)
n and the corresponding generating function g(m).

The temporal synchrony between generating functions on the two modalities is enforced at the

learning steps (2 and 4), where the optimal translations pn found for one modality are also kept for

the other one.

We now consider in detail the second and fourth steps. We define g
(m)
k ∈ R

S(m)
g the restriction of

the infinite size signal g
(m)
k to its support. We will use the easily checked fact that for any translation

p, any signal f (m) and any filter g(m) we have the equality 〈f (m), T (m)
p g(m)〉 = 〈T (m)

−p f (m), g(m)〉, in

other words the adjoint of the discrete translation operator T (m)
p is T (m)

−p . Let F(m)[j] be the matrix

(with S
(m)
f rows and N columns), whose columns are made of the signals f

(m)
n shifted by −pn[j].

More precisely, the n-th column of F(m)[j] is f
(m)
n,−pn[j], the restriction of T (m)

−pn[j]f
(m)
n to the support

of g
(m)
k , of size S

(m)
g . We also denote

A(m)[j] = F(m)[j] · F(m)[j]
T

,

where ·T indicates the transposition.

With these notations, the second step (respectively fourth step) of the unconstrained problem

can be written as :

g
(m)
k [j] = arg max

‖g(m)‖2=1

g(m)T
A(m)[j]g(m) . (6.6)
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Figure 6.1 – Schematic representation of the multi-modal learning algorithm. Step 1 : using the available

generating function for modality (a), find the best translations in (a). Step 2 : using the found translations on

(a), update the generating function in (v). Step 3 : using this generating function, find the best translations for

modality (v). Step 4 : using the translations found in modality (v), update the generating function in (a).

with m = v (respectively m = a). The best generating function g
(m)
k [j] is the eigenvector corre-

sponding to the largest eigenvalue of A(m)[j]. Let us underline that in this case it is possible to

easily solve the learning problem because of the particular form of the function to optimize. In fact,

it is only because the objective function in (6.4) can be expressed as the quadratic form (6.6), given

the translations pn, that it is possible to turn the learning problem into an eigenvector problem.
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For the constrained problem, we want to force g
(m)
k [j] to be as de-correlated as possible from all

the atoms in Dk−1. This corresponds to minimizing

k−1∑

l=1

∑

q∈Z

| 〈T−qg
(m)
l , g(m)〉 |2 (6.7)

or, denoting

B
(m)
k =

k−1∑

l=1

∑

q∈Z

g
(m)
l,−q g

(m)
l,−q

T
, (6.8)

to minimizing g(i)T
B

(m)
k g(m). With these notations, the constrained problem can be written as :

g
(m)
k [j] = arg max

‖g(m)‖2=1

g(m)T
A(m)[j]g(m)

g(m)T
B

(m)
k g(m)

. (6.9)

The best generating function g
(m)
k [j] is the eigenvector associated to the biggest eigenvalue of the

generalized eigenvalue problem defined in (6.9). Defining B
(m)
1 = Id, we can use CP for learning the

first generating function g1. Note again that the complex learning problem in (6.5) can be solved as

the generalized eigenvector problem (6.9) because of the particular quadratic form imposed to the

objective function to optimize, when the translations pn are fixed.

The proposed multi-modal learning algorithm is summarized in Algorithm 1.

Algorithm 1 Principle of the multi-modal learning algorithm

1: k = 0, training set {(f (a)
n , f

(v)
n )};

2: for k = 1 to K do

3: j ← 0;

4: random initialization of {(g(a)
k [j], g

(v)
k [j])};

5: compute constraint matrices B
(a)
k and B

(v)
k as in (6.8);

6: while no convergence reached do

7: j ← j + 1;

8: localize in modality (a):

for each f
(a)
n , find the translation p

(a)
n [j]← ν(a) ·arg maxq | 〈f

(a)
n , Tqg

(a)[j−1]〉 |, maximally

correlating f
(a)
n and g(a)[j − 1];

9: learn modality (v):

set A(v)[j]←∑N
n=1 f

(v)

n,−p
(a)
n [j]

f
(v)

n,−p
(a)
n [j]

T
;

10: find g
(v)
k [j], the eigenvector associated to the biggest eigenvalue of the generalized eigenvalue

problem A(v)[j]g = λB
(v)
k g, using (6.9);

11: localize in modality (v):

for each f
(v)
n , find the translation p

(v)
n [j] ← ν(v) · arg maxq | 〈f

(v)
n , Tqg

(v)[j]〉 |, maximally

correlating f
(v)
n and g(v)[j];

12: learn modality (a):

set A(a)[j]←∑N
n=1 f

(a)

n,−p
(v)
n [j]

f
(a)

n,−p
(v)
n [j]

T
;

13: find g
(a)
k [j], the eigenvector associated to the biggest eigenvalue of the generalized eigenvalue

problem A(a)[j]g = λB
(a)
k g, using (6.9);

14: end while

15: end for
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It is easy to demonstrate that the unconstrained single-modality algorithm converges in a finite

number of iterations to a generating function locally maximizing the unconstrained problem [60].

It has been observed on numerous experiments that the constrained algorithm [60] and the multi-

modal constrained algorithm typically converge in few steps to a stable solution independently of

the initialization.

6.3 Experiments

6.3.1 Audiovisual Dictionaries

The first experiment demonstrates the capability of the proposed learning algorithm to recover

meaningful synchronous patterns from audiovisual signals. In this case the two modalities are au-

dio and video, which share a common temporal axis, and the learned dictionaries are composed of

generating functions gk = (g
(a)
k , g

(v)
k ), with g

(a)
k and g

(v)
k respectively audio and video component of

gk. Two joint audiovisual dictionaries are learned on two training sets. The first audiovisual dic-

tionary, that we call Dictionary 1 (D1), is learned on a set consisting of four audiovisual sequences

representing the mouth of the same speaker uttering the digits from zero to nine in English. Dictio-

nary 2 (D2) is learned on a training set of four clips representing the mouth of four different persons

pronouncing the digits from zero to nine in English. Dictionary 1 should represent a collection of

basis functions adapted to a particular speaker, while Dictionary 2 aims at being a more “general”

set of audio-video atoms.

For all sequences, the audio was recorded at 44 kHz and sub-sampled to 8 kHz, while the gray-

scale video was recorded at 29.97 fps and at a resolution of 70 × 110 pixels. The total length

of the training sequences is 1060 video frames, i.e. approximately 35 seconds, for D1, and 1140

video frames, i.e. approximately 38 seconds, for D2. Note that the sampling frequencies along the

time axis for the two modalities are different, thus when passing from one modality to the other

a re-sampling factor RF equal to the ratio between the two frequencies has to be applied. In this

case the value of the re-sampling factor is RF = 8000/29.97 ≈ 267. Video sequences are filtered

following the procedure suggested in [84], in order to speed up the training. The video component

is thus “whitened” using a filter that equalizes the variance of the input sequences in all directions.

Since the spatio-temporal amplitude spectrum of video signals roughly falls as 1/f along spatial and

temporal axes [38, 85], whitening can be obtained applying a spherically symmetric filter W (f) = f

that produces an approximately flat amplitude spectrum at all spatio-temporal frequencies. The

whitened sequences are then low-pass filtered to remove the high-frequency artifacts typical of

digital video signals. We use a spherically symmetric low-pass filter L(f) = e−(f/f0)
4

with cut-off

frequency f0 at 80% of the Nyquist frequency in space and time. We thus end up with a filter

H(f) = W (f) · L(f) = f · e−(f/f0)
4

.

The learning is performed on audio-video patches (f
(a)
n , f

(v)
n ) extracted from the original signals.

The size of the audio patches f
(a)
n is 6407 audio samples, while the size of the video patches f

(v)
n

is 31 × 31 pixels in space and 23 frames in time. We learn 20 generating functions gk consisting

of an audio component g
(a)
k of 3204 samples and a video component g

(v)
k of size 16 × 16 pixels in

space and 12 frames in time. The 20 elements of D2 are shown in Fig. 6.2. The dictionary D1 has

similar characteristics. The video component g
(v)
k of each function is shown on the left, with time

proceeding left to right, while the audio part g
(a)
k is on the right, with time on the horizontal axis.

Concerning the video components, they are spatially localized and oriented edge detector func-

tions that shift smoothly from frame to frame, describing typical movements of different parts of

the mouth during the utterances. The audio parts of the generating functions contain almost all
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Figure 6.2 – Audio-video generating functions of Dictionary 2. Twenty learned functions are shown, each

consisting on an audio and a video component. Video components are on the left, with time proceeding left to

right. Audio components are on the right, with time on the horizontal axis.
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the numbers present in the training sequences. In particular, when listening to the waveforms, one

can distinguish the words zero (functions #11, #13, #16), one (#7, #9), two (#5, #6), four (#3),

five (#1), six (#4), seven (#8, #18), eight (#10). Functions #12, #14, #15, #17, #19, #20

express the first two phonemes of the word five (i.e. /f/,/ay/), and they are also very similar to the

word nine (i.e. /n/,/ay/). Typically, different instances of the same number have either different

audio characteristics, like length or frequency content (e.g. compare audio functions #7 and #9), or

different associated video components (e.g. functions #12, #14, #15, #17, #19, #20). As already

observed in [60, 80], both components of generating function #2 are mainly high frequency due to

the de-correlation constraint with the first atom.

The learning algorithm captures well high-level signal structures representing the synchronous

presence of meaningful acoustic and visual patterns. All the learned multi-modal functions consist in

couples of temporally close signals : a waveform expressing one digit when played, and a moving edge

(horizontal, diagonal or curved) that follows the contour of the mouth during the utterances. The

result is indeed interesting per se, considering that no prior on the shape of audio-video generating

functions has been imposed.

6.3.2 Audiovisual Speaker Localization

In this experiment we want to test if the learned dictionaries are able to recover meaningful au-

diovisual patterns in real multimedia sequences. The dictionaries D1 and D2 are used to detect

synchronous audio-video patterns revealing the presence of a meaningful event (the utterance of

a sound) that we want to localize. We consider three test clips, Movie 1, Movie 2 and Movie 3,

consisting in two persons placed in front of the camera arranged as in Fig. 6.3. One of the subjects

is uttering digits in English, while the other one is mouthing exactly the same words. Test sequences

consist in an audio track at 8 kHz and a video part at 29.97 fps and at a resolution of 480 × 720

pixels∗. In all three sequences, the speaker is the same subject whose mouth was used to train

D1; however, the training sequences are different from the test sequences. In contrast, none of the

four speaking mouths used to train D2 belongs to the speaker in the test data set. We want to

underline that the test sequences are particularly challenging to analyze, since both persons are

mouthing the same words at the same time. The task of associating the sound with the “real”

speaker is thus definitely non-trivial. The test clips used in this chapter can be downloaded through

http://lts2www.epfl.ch/∼monaci/avlearn.html.

With the experimental results that we will show in the following we want to demonstrate that :� For both dictionaries D1 and D2, the positions of maximal projection between the dictionary

atoms φk and the test sequences are localized on the actual location of the audiovisual source;� The detection of the actual speaker using both D1 and D2 is robust to severe visual noise (the

person mouthing the same words of the real speaker) as well as to acoustic noise. The mouth

of the correct speaker is effectively localized also when strong acoustic noise (SNR=1dB) is

summed to the audio track in the form of additive white gaussian noise or out-of-view talking

people;� The detection of the speaker’s mouth is more robust and accurate using dictionary D1, which

is adapted to the speaker, than using the general dictionary D2.

The audio tracks of the test clips are correlated with all time-shifted version of each audio

component g
(a)
k of the 20 learned generating functions gk, which is efficiently done by filtering.

∗Only the luminance component is considered, while the chromatic channels are discarded.

http://lts2www.epfl.ch/~monaci/avlearn.html
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Figure 6.3 – Test sequences. Sample frames of Movie 1 (a), Movie 2 (b) and Movie 3 (c) are shown on the

left. The original audio track a (d), together with its noisy versions with additive gaussian noise a+AWGN (e)

and added distracting speech and music a+speech (f) are plotted on the right. Test clips can be downloaded

through http: // lts2www. epfl. ch/∼monaci/ avlearn. html .

For each audio function we find the the time position of maximum correlation, p̂
(a)
k , and thus the

audio atom φ
(a)
k with highest correlation. We consider a window of 31 frames around the time

position in the video corresponding to p̂
(a)
k , which is computed as p̃

(v)
k = nint(p̂

(a)
k /RF). This

restricted video patch consists of frames in the interval [p̃
(v)
k − 15; p̃

(v)
k + 15] and we compute its

correlation with all spatial and temporal shifts of the video component g
(v)
k of gk. The spatio-

temporal position
(
~̂xk, p̂

(v)
k

)
of maximum correlation between the restricted video patch and the

learned video generating function yields the video atom φ
(v)
k with highest correlation. The positions

of maximal projection of the learned atoms over the image plane ~̂xk, k = 1, . . . , 20, are grouped into

clusters using a hierarchical clustering algorithm∗. The centroid of the cluster containing the largest

number of points is kept as the estimated location of the sound source. We expect the estimated

sound source position to be close to the speaker’s mouth.

In Fig. 6.4 sample frames of the test sequences are shown. The white marker over each image

∗The MATLAB function clusterdata.m was used. Clusters are formed when the distance between groups of

points is larger than 50 pixels. According to several tests, the choice of the clustering threshold is non-critical.

http://lts2www.epfl.ch/~monaci/avlearn.html


6.3. Experiments 83

Figure 6.4 – Sample frames of Movie 1 [Left], Movie 2 [Center] and Movie 3 [Right]. The left person is the

real speaker, the right subject mouths the same words pronounced by the speaker but his audio track has been

removed. The white cross highlights the estimated position of the sound source, which is correctly placed over

the speaker’s mouth.

indicates the estimated position of the sound source over the image plane, which coincides with the

mouth of the actual speaker. The position of the mouth center of the correct speaker has been

manually annotated for each test sequence. The sound source location is considered to be correctly

detected if it falls in a circle of radius 100 pixels centered in the labelled mouth. The source position

is correctly detected for all the tested sequences and using both dictionaries D1 and D2. Results are

accurate when the original sound track a is used (signal in Fig. 6.3(d)), as well as when considerable

acoustic noise (SNR=1dB) is present (signals a+AWGN and a+speech in Fig. 6.3(e-f)).

In order to assess the goodness of the estimation of the sound source position, a simple measure

can be designed. We define the reliability of the source position estimation, r, as the ratio between

the number of elements belonging to the biggest cluster, which is the one used to estimate the sound

source location, and the total number of elements considered, N (i.e. the total number of functions

used for the analysis of the sequence, in this case 20). The value of r ranges from 1/N , when each

point constitutes a one-element cluster, to 1, when all points belong to the same group. Clearly, if

most of the maxima of the projections between the video basis functions and the sequence lie close

to one another, and are thus clustered together, it is highly probable that such cluster indicates

the real position of the sound source and the value of r is high in this case. On the other hand, if

maxima locations are placed all over the image plane forming small clusters, even the biggest cluster

will include a small fraction of the whole data. In this situation it seems reasonable to deduce that

the estimated source position is less reliable, which is reflected by the value of r being smaller in

this case.

As we have already observed, for all the test sequences the sound source position is correctly

localized. Moreover, it is interesting to remark that in all cases, the detection of the speaker’s

mouth is more reliable using dictionary D1, which is adapted to the speaker, than using the general

dictionary D2. An example of the described situation is depicted in Fig. 6.5. The images show

sample frames of Movie 3. The positions of maximal projection between video functions belonging

to dictionaries D1 (Left) and D2 (Right) and the test sequence are plotted on the image plane.

Points belonging to the same cluster are indicated with the same marker. The centroid of the

biggest cluster is indicated by the white cross, which is correctly placed over the speaker’s mouth.

In both cases Cluster 1 is the group containing the largest number of points and it is thus the one

used to estimate the sound source position. When using dictionary D1 (Left), the biggest cluster

has 17 elements and thus the reliability of the source position is r = 17/20 = 0.85, while when using

D2 (Right), the biggest cluster groups only 13 points and the reliability equals r = 13/20 = 0.65.

This behavior is indeed interesting, since it suggests that the learning algorithm actually succeeds

in its task. The algorithm appears to be able to learn general meaningful synchronous patterns in

the data. Moreover, the fact that more reliable localization results are achieved using the dictionary
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Figure 6.5 – Sample frames of Movie 3. The positions of maximal projection between video functions and

test sequence are plotted on the image plane. Points belonging to the same cluster are indicated with the same

marker. The white cross indicates the centroid of the biggest cluster, that in both cases is Cluster 1; it contains

17 elements when D1 is used [Left] and 13 when D2 is used [Right].

adapted to the speaker (D1) suggests that the proposed method allows to capture important signal

structures typical of the considered training set.

At this point it is interesting to compare the localization performances achieved using the learned

dictionaries with those obtained by the audiovisual gestalts detection method presented in Chapter 3.

The interest of such a comparison is twofold. First, the cross-modal localization algorithm intro-

duced in Chapter 3 relies on signal representation techniques that model separately audio and video

modalities using sparse decompositions over general dictionaries of Gabor and edge-like functions

respectively. This comparison is the occasion to check if a modelling of cross-modal correlations done

at a level that is closer to the signals themselves (the model proposed here) than to the features (the

model presented in Chapter 3) is advantageous or not. Second, the audiovisual gestalts localization

algorithm exhibits state-of-the-art performances on the CUAVE audiovisual speech corpus [88], as

discussed in [78, 79] and Chapter 3. The comparison thus is significant per se.

The test movie clips have thus been resized to a resolution of 120×176 pixels to be more quickly

processed, and they have been decomposed using 50 video atoms with the 3D-MP algorithm. The

audio tracks have been represented using 1000 Gabor atoms with MP. Audio-video features are

extracted and meaningful gestalts are detected as described in Chapter 3. It is worth underlining

that since a single speaker is assumed to be present in the sequence, audiovisual gestalts are built

considering the entire movie (i.e. no sliding analysis window is used, see section 3.7). Mouth

positions have been manually labelled in these resized clips as well and the region of correct source

detection is defined as a circle of diameter 25 pixels centered in the “real” mouth.

Table 6.1 summarizes the experimental results for all tested sequences and both localization

methods (denoted as learning and gestalts). The first column indicates the video clip used, the

second one the audio track used and the third one the dictionary employed for the analysis. The

fourth column shows the source localization result using the learned dictionaries and the fifth column

indicates the reliability r of the localization. In all cases the audio source position is correctly found

on the image plane, as indicated by the green ticks. Finally, the sixth column reports the localization

results for the audiovisual gestalt detection method presented in Chapter 3. In this case the speaker’s

mouth is erroneously detected on four out of nine clips (red crosses).

These results highlight that detecting the learned multi-modal atoms, it is possible to effective-

ly localize audiovisual sources in challenging real-world sequences. The algorithm proposed here

outperforms the localization method presented in Chapter 3, which is more general (no specific

assumption on the type of sequences is made and no training is required) but less robust to audio

and video distractors. The audiovisual gestalt model relies on the assumption that in general audio-

video synchronous events occur randomly, except if a meaningful audiovisual source is observed.
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Video Audio Dict. Localization – learning r Localization – gestalts

Movie 1

a
D1 X 0.65

XD2 X 0.50

a+AWGN
D1 X 0.65 ×D2 X 0.50

a+speech
D1 X 0.65

XD2 X 0.50

Movie 2

a
D1 X 0.90

XD2 X 0.60

a+AWGN
D1 X 0.90

XD2 X 0.65

a+speech
D1 X 0.85

XD2 X 0.60

Movie 3

a
D1 X 0.85 ×D2 X 0.65

a+AWGN
D1 X 0.80 ×D2 X 0.65

a+speech
D1 X 0.85 ×D2 X 0.70

Table 6.1 – Summary of the source localization results for all the tested sequences. Green ticks indicate that

the source is correctly localized while the red crosses denote a localization error. In all cases, using the learned

dictionaries the audio source position is correctly determined on the image plane (fourth column). Employing

the speaker-adapted dictionary D1 the localization results to be more reliable than using D2, as indicated by the

values of r in the fifth column. The gestalt detection method in contrast fails in localizing the speaker’s mouth

on four out of nine clips (last column).

The test sequences employed in this chapter do not satisfy this hypothesis : in this case in fact

visual distractors exhibit some strong correlation with the audio signal since the characters on the

right in the test clips utter the same words pronounced by the real speaker. However, it is worth

underlining that for all the sequences the video atom exhibiting the highest degree of correlation

with the audio signal (according to the synchrony criterion formulated in Chapter 3) is localized

around the correct speaker’s mouth. Errors are caused by several other video structures exhibiting

similar high correlations with the audio and positioned on the “fake” speaker’s mouth. The localiza-

tion method proposed here overcomes these difficulties exploiting the temporal proximity between

adapted audio and video patterns.

6.4 Discussion

In this chapter we have introduced a model for multi-modal signals that enforces sparsity and

synchrony between modalities by making use of multi-component heterogeneous basis functions.

We have proposed as well a new method to learn dictionaries of translation invariant multi-modal

functions adapted to a class of multi-component signals. Generating functions are iteratively found

using a localize and learn paradigm which enforces temporal synchrony between modalities. Thanks

to the particular formulation of the objective function, the learning problem can be turned into a

generalized eigenvector problem, which makes the algorithm fast and free of parameters to tune. A

constraint in the objective function forces the learned waveforms to have low correlation, such that

no function is picked several times. The main drawback of this method is that the few generating
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functions following the first one are mainly due to the de-correlation constraint, more than to the

correspondence with the signal. Despite that, the algorithm seems to capture well the underlying

structures in the data. The learned functions have been used to analyze complex multi-modal

sequences, obtaining encouraging results in localizing the sound sources in the test sequences.
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7.1 Discussed Topics and Achievements

As it was stated in the introductory chapter, and as the title of the dissertation says, the main

objective of this research work is to try to understand and model the complex relationships existing

between multi-modal signals. In this sense we propose to adopt sparse signal representations based

on redundant dictionaries of functions that allow to express the data in terms of few, relevant

signal structures that can be easily and intuitively analyzed. Although some of the developed

methodologies are completely general, in this thesis we target applications in the field of audiovisual

signal fusion. Audiovisual data are in fact used as a paradigm of multi-modal signals and they

represent the main application area for this research.

In order to put this thesis in the proper context, in Chapter 2 we propose a classification of multi-

modal signals based on their characteristics. We have thus the opportunity to highlight that this

work deals with complex heterogeneous multi-channel signals that exhibit correlations along time,

just like audio-video sequences do. In the same chapter we present as well a literature survey in the

main fields considered in this dissertation, that are audiovisual source localization and separation.

This review highlights one main drawback of existing studies that motivates the proposed approach :

the lack of structural modelling of multi-modal signals and of the correlations between modalities.

One of the major contributions of this thesis is the definition of a simple and intuitive model

of audiovisual signals that explains the relationships between audio and video modalities as a co-

occurrence of synchronous signal patterns, termed in Chapter 3 audiovisual gestalts. The definition

of these patterns is possible because audio and video signals are concisely represented with salient

structures that describe physically-related quantities like moving edges and audio atoms. The detec-

tion of multi-modal gestalts allows to localize and extract correlated audio-video structures, showing

the effectiveness of the proposed approach. The core of the audiovisual localization method is the

video representation technique. In Chapter 4 we analyze this issue more in details and we propose

a new framework for the tracking of visual structures based on Particle Filtering, which ensures

robustness and flexibility.

Structural properties of audiovisual signals are exploited as well in Chapter 5 to design a blind

87
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audiovisual source separation algorithm. Up to our knowledge this is the first attempt to link two

very different research fields, audiovisual signal fusion and single-channel blind source separation.

We show in this chapter that the tools developed in the context of multi-modal source localization

can be extremely useful also to challenge the source separation problem. Exploiting the coherence

between acoustic and visual structures, audio-video sources are detected, localized and extracted.

The localization of the sources on the image sequence results accurate and robust in challenging

scenarios, as well as their temporal localization on the audio domain. Problems arise in the sep-

aration of audio sources in mixtures. The single-channel source separation problem is challenging

and the simple static approach used can achieve only limited performances. However, the proposed

framework seems to be appropriate to further develop the system, as we will discuss in the next

section.

Finally, in Chapter 6 we have reconsidered the multi-modal signal model introduced in Chap-

ter 3 in the light of the experience accumulated throughout the thesis. Instead of projecting each

modality on a distinct dictionary, we propose to model a multi-modal signal as a sparse sum of re-

current synchronous multi-modal structures, using thus intrinsically multi-modal dictionaries. Since

the manual design of such dictionaries results extremely complex, we propose an algorithm capa-

ble of learning multi-modal synchronous functions from training patches. Applied to audiovisual

sequences, the algorithm demonstrates its capability of capturing real multi-modal patterns present

in the data. Moreover, the detection of such patterns in challenging audiovisual sequences allows to

localize the actual sound source on the video.

To conclude, we believe that it is extremely important to consider models of multi-modal signals

that take into account the structural properties of the data. The experimental results presented

in this dissertation point out that such an approach can be very advantageous and that it offers

promising, interesting potentialities. Besides that, the information more or less “hidden” into the

data is represented in a concise, meaningful and intuitive fashion, making it more accessible and

easy to handle and analyze.

7.2 Future Research Directions

There are many different research directions future work can take. One issue that offers interesting

possibilities for further developments is the design of dictionaries of multi-modal functions. The

learning algorithm builds collections of shift-invariant generating functions : one straightforward

extension, based on the properties of the inner product, is to add invariance to other transformations

that admit a well defined adjoint, for example invariance to rotations, that can be particularly useful

for image or video representation. Moreover, the presented algorithm learns generating functions

iteratively, which makes the method few computationally and time consuming. However, as already

underlined, a constraint has to be added to force de-correlation between the learned waveforms. This

constraint introduces distortions that are evident especially in the second, third functions built. It

would be interesting to remove the de-correlation penalization by learning a whole dictionary at

once, for example using the K-SVD algorithm [3]. A useful test for the proposed algorithm would

be its application to other types of multi-modal signals. We have in mind for example EEG-fMRI

data : a couple of 1D-4D signals with strong correlations between patterns in the two modalities.

As already underlined in the text, the tracker of video structures based on Particle Filtering can

be further developed in order to account for interactions between video structures. A convenient

approach can be the one presented in [65], that could naturally extend the atom tracking method

to a multi-atom tracking algorithm.

Finally, one topic that seems very appealing is Blind Audiovisual Source Separation. The
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methodology presented in this thesis is very effective in localizing audio-video sources in space

and time. In contrast, the de-mixing capabilities of the simple audio separation model used appear

to be limited. However, the proposed algorithm can confidently provide several extremely valuable

information : the association between audio and video sources and the detection of time periods

during which audio sources are active alone. On these bases a natural extension to the presented

method is the adoption of more sophisticated separation algorithms that can learn speakers char-

acteristics in time slots during which they speak alone through HMM modelling [95, 99]. Another

interesting option could be to track the evolution of acoustic features starting in time periods pre-

senting a single speaker and then to continue the tracking in the mixtures, for example using the

techniques developed in [96].
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