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Abstract—\We address the problem of joint path selection and Most of the research work dedicated to multi-path streaming
rate allocation in multipath streaming in order to optimize a  focuses on the process itself (media and scheduling aspects),
media specific quality of service. An optimization problem is p, \+ ganerally not towards finding which paths should ideally be

proposed, which aims at minimizing a video distortion met- d for the st . licati . ilabl ¢ K
ric based on sequence-dependent parameters, and transmissionUS€C T0r the streéaming application, given an avarable networ

channel characteristics, for a given network infrastructure. Even topology between a streaming server and a client. Most of
if in general, optimal path selection and rate allocation is an NP these works rely on classic routing algorithms that find the best

complete problem, an in-depth analysis of the media distortion path (or set of paths) given some established network metrics.
evolution allows to define a low complexity algorithm for an \y/hile this may be optimal in terms of network utilization, it

optimal streaming strategy. In particular, we show that a greedy . . . . . .
allocation of rate along paths with increasing error probability is certainly suboptimal from the point of view of the media

leads to an optimal solution. We argue that a network path shall Streaming application. In 30-80% of the cases, the best paths
not be chosen for transmission, unless all other available paths found by classic routing algorithms are suboptimal form a
with lower error probability have been chosen. Moreover, the media perspective [7].

chosen paths should be used at their maximum available end- i work proposes to address the problem of streaming
to-end bandwidth. Simulation results show that the optimal rate . - . . -
allocation carefully trades off total encoding/transmission rate, path allocatlpn in a mU|t_Ipath ﬂetwork, Wh|ph takes into
with the end-to-end transmission error probability and the num- account media aware metrics during the decision process. The
ber of chosen paths. In many cases, the optimal rate allocation early work in [8] derives a few empirical rules on what paths
provides more than 20% improvement in received video quality, should be considered by the streaming application, based on
compared to heuristic-based algorithms. This motivates its use i ayerimental data. These rules consider network metrics (e.g.,
multipath networks, where it optimizes media specific quality of . . :

service, and simultaneously saves network resources, with very avallgble bandWIdth, loss ratg af‘o! hop d's_ta}n_ce)’ and cher
low computational complexity. media aware metrics (e.g., link jointness/disjointness, video
distortion). Our work provides a more general framework
for the analysis of joint path selection and rate allocation
in multipath streaming, driven by media-specific metrics. We

With the development of novel network infrastructure andonsider a multipath network model that supports multiple
increasing available bandwidth, multimedia applications ovetedia flows, and a streaming server that can adapt the media
the internet become attractive for both businesses and esuwdirce rate to the transmission conditions (by scalable coding,
users. Fast deployment of broadband last-mile connectiobstranscoding, for example). A generic video distortion metric
increase in wireless coverage of remote living areas, and ibeproposed, which encompasses both the source distortion
long awaited debut of 3G wireless services offer as maiisnostly driven be the encoding rate), and the channel dis-
potential and inter-operable communication solutions. tortion, dependent on the loss probability.

However, the viability of a streaming application mostly de- Finding the optimal rate allocation in multipath networks
pends on its ability to meet stringent requirements, especialdyin general an NP complete problem in generic scenarios.
in terms of low transmission error and on medium and lorigowever, we show that a careful analysis of the video distor-
term stability of the transport infrastructure. As the internaton evolution allows to derive a linear complexity algorithm
is still far from providing any widely deployed guarantee ofor the joint optimal path selection, and flow rate allocation
service solution, efficient media streaming strategies have tolr&ler common network assumptions. In other words, our
devised to get the best out of the network infrastructure. Lateiyiain objective is to jointly find (i) the optimal encoding
multipath streaming emerged as a valid solution to overcoroe streaming rate of a video stream so that the quality at
some of the lossy internet path limitations [1], [2]. It allowgeceiver is maximized, and (ii) which network paths should be
for an increase in streaming bandwidth, by balancing the loaded for relaying the video stream to the client. Interestingly
over multiple network paths between the media server and #rough, our conclusions demonstrate that the answer to these
client. It also provides means to limit packet loss effects, whéwo questions is represented by a careful tradeoff among
combined with error resilient streaming strategies and scalableilable network bandwidth (translated into video encoding
encoding capabilities of the latest encoding standards [3]-[6&te), transmission loss process, and number of utilized paths.

I. INTRODUCTION



individual pathP; as the minimum of the bandwidths among
all links on the path (i.e., the “bottleneck bandwidth”). Hence,
we have

bi = LTéI}:,,(p“) : 1)

Under the commonly accepted assumption that the loss
process is independent on two consecutive segments, the end-
to-end loss probability on pati®; becomes a multiplicative
function of the individual loss probabilities of all segments
And, in contrary to the commonly admitted opinion, flooding®MPOsing the path. It can be written as:
the network in using all the possible paths rarely provides an

Fig. 1. Multipath Network Scenario.

efficient strategy. pi=1- ] @-6.). (2)
The main contributions of this paper can be briefly summa- Lu€P;
rized as follows: Finally, the media application sends data at rgten path

« We propose a general framework for media streamirfg, with a costc;. The cost represents the price to be paid by
analysis in multipath networks, which encompasses néfe streaming application, for using path. As, in general,
work and media aware metrics; the underlying transport medium should be transparent for the

« We perform the first theoretical analysis on the optimalitgpplication, we define the cost function as dependent only on
of number, and choice of network paths, in terms of medihe total flow rater; sent by the application on path;. A
streaming QoS; linear cost relation is simply be expressed as follows :

« We provide a linear time media aware routing algorithm ) i ,
that outputs the optimal set of network paths to be used ¢ = { k-r; if Pyis used, withr; < b, 3)
in the streaming process, along with the corresponding 0 if P; is not used ’

rate distribution. wherek is a constant (i.e., the cost factor is identical for
The paper is organized as follows: Section Il presengsy pathP; in P). In this network model, efficient streaming
the streaming framework and formulates our optimizatiostrategies have to carefully allocate the rate between the
problem. The theoretical analysis of the streaming procedifferent network paths. The goal of the next sections is to
is developed in Section Ill. Section IV presents the routinget the best out of the multipath network, both in terms of
algorithm and Section V presents our main results. We presenst, and from a media-driven quality of service perspective.
the related work in Section VI, and conclude the paper in

Section VII. B. Media-Driven Quality of Service

The end-to-end distortion, as perceived by the media client,
can generally be computed as the sum of the source distortion,
and the channel distortion. In other words, the quality depends
A. Multipath Network Model on both the distortion due to a lossy encoding of the media

We consider first, that the media streaming application usiéormation, and the distortion due to losses experienced in
a multipath network, which can be represented as follows. TH& neétwork. The source distortioRs is mostly driven by
available network between a media seneand a clientC is  the encoding or streaming rai, and the media sequence
modelled as a grapty(V, E), whereV = {N;} is the set of content, whose characteristics m_fluence the performance of
nodes in the network, anfl is the set of links or segmentsth® encoder (e.g., for the same bit rate, the more complex the
(see Figure 1). Each link,, = (N;,N;) € E connecting S€duence, the lower the quality). The source Q|stort|on decays
nodesN; and N; has two associated positive metrics: with increasing encoding rate; the decay is quite steep for low

. the available bandwidtlp, > 0 expressed in some bit rate val_ues,_but it pecomes very slow at high bit rate. _The

appropriate unit (e.g., kbps), and channel distortionD;, is depende.nt on.the loss probab|!|ty

. the average loss pro’babiliiﬂ/' c [’0 1], assumed to be m, and the sequence chara.ctlenstlcs. It is roughly proportional

independent of the streaminug ratej ' to the number of video entities (e.g., frames) that cannot be

. decoded. The end-to-end distortion can thus be written as:
Let P = {Py,..., P,} denote the set of available loop-free

paths between the servéfr and the clientC in G, with n

the total number of non-identical end-to-end paths. A path
P, = (S,N;,N;,...,C) is defined as an ordered list of nodes whereT represents the set of parameters that describe the
and their connecting links, such that, no node appears monedia sequence. In low to medium bit rate video streaming,
than once, and that each link, between two consecutivea commonly accepted model for the source rate distortion is
nodes in the path belongs to the set of segméntset further a decaying exponential function on the encoding rate, while
b; and p; denote respectively the end-to-end bandwidth aride channel distortion is proportional to the number of lost

loss probability of pathP;. We define the bandwidth of anpackets (i.e., the packet loss probability, when the number of

II. DISTORTIONOPTIMIZED MULTIPATH MEDIA
STREAMING

D:DS+DL:f(R77T7F)? (4)



packet per frame is independent of the bit rate) [9]. Hence, N, . O A
.« . . . . . L Ls ) y 1 ! \
we can explicitly formulate the distortion metric as: Saan Sa a_lr\ ’4 \\ LNy L e jFovz
e — € N s
— =3 . L Lo\ |~ L Ly ow
D=a-R*+08 -7 (5) Lo g2 fiees

Client

where o, 8 € Rt and ¢ € [—1,0] are parameters that
depend on the video sequence. This distortion model isrig. 2. Equivalent transformation between a network graph and a tree of
simple and general approximation that follows closely theths between the server and the client.
behavior of more sophisticated distortion measures, such as
those proposed in [10], [11]. Since it is suitable for most

common streaming strategies where the number of packets {9 construction of such tree, and we rather concentrate in
frame is independent of the encoding rate, we use the moHip Paper on the rate allocation problem, among the branches
of Eg. (5) in the remainder of that paper. of the tree. In this case, the rate allocation becomes a flow

The total streaming rat&, and the end-to-end loss prob-2ssignment problem.
ability = directly depend on the path selection, and the flow Considering that there is (at most) one flow for each network

rate allocation. In the multipath scenario described before, thath £:» e can transform the original network graphinto
media application uses rate allocatih= [r1,...r.], where & 110w tree by duplicating any network edge and vertex that
the flow rater;, with 0 < r; < b;, represents the streaming'S shared by more than one network path, as represented in

rate on pathP, € P. The total media streaming rate is F_i_gurt_a 2. Since the_z transformgtion from pths to flows is
expressed as: b|Ject|v_e, each flow is characterized by a max_lr_nal end-to-end
streaming rate, and an end-to-end loss probability, as computed
n n in Section II-A. The flowF; on pathP; is using a streaming
R=>"r<> b . (6) rater; < b;, with a loss probability;, and a cost; = k - r;.
i=1 i=1 Due to the assumption of rate independent loss process, any
The overall loss probabilityr experienced by the mediatwo flows in the tree are independent in terms of loss probabil-

application can be computed as the average of the lags However, flows may be dependent in terms of aggregated

probabilities of then paths: bandwidth, since they may share joint bottleneck links. The
no flow tree representation allows us to explicit the constraints
= M (7) imposed on a valid rate allocation. These constraints are

2T imposed by bandwidth limitation on the network links, and

Recall however, that the above definition of streaming patfew conservation in the network nodes. The necessary and
does not guarantee any two paths 7ihto be completely sufficient conditions for the flow tree model to be a valid
disjoint. Therefore is a valid rate allocation on the networkrepresentation of the original network graph can finally be
graph @, if and only if G can simultaneously accommodate@rouped into single flow, and multiple flow constraints, and
the flow rates on all paths iR. A necessary condition for the expressed as:
equality in the right side of Eq. (6) to be verified therefore 1) Single Flow Constraints:

requires that all bottleneck links of the streaming paths « path bandwidth limitationsz; < b;, VP; € P;

are disjoint. Sufficient conditions for valid rate allocation are . flow conservation at intermediate nodes: for every

analyzed in the next section. nodeN; € P;, rin = rout = r;, whererin androut
Note finally that, even if we do not consider explicitly are the incoming and respectively outgoing rates of

the effect of channel coding, like FEC protection, our work F; passing through noda;.

can be extended to such scenarios by properly adjusting thez) Multiple Flow Constraints:
Equation (6) in separating the source and channel bit rates. In link bandwidth limi S
the same time, the Equation (7) can include an approximation + link bandwidth limitations:

of FEC recovery performance and appropriately adjust the Z T < pu VLu € E;
: H : P;:L, €P;
value ofp;, as a function of the channel rate. Design of optimal . flow econservation at intermediate nodes: for every
FEC protection in multipath networks is however outside the nodeN: ¢ V:
scope of the present paper. Z in’ out
T, :ZT’i = Ti,VPiZNjGPi.
P; P; P;

C. From Network Graph to Flow Tree

In order to study the rate allocation problem in multipatf- Multipath Rate Allocation: Problem Formulation
networks, we first propose to represent the network gidph Now that the network model and rate constraints have
as a flow tree. The media server becomes the root of the trbeen presented, we can formulate the optimized multipath rate
and each flowF; represents the share of the overall mediallocation problem as follows. Given the network graphthe
stream, which is sent on a network path The media stream optimization problem consists in jointly finding the optimal
is the composition of individual media flows, and the cliendétreaming rate for the video sequence, along with the optimal
is represented as a set of leaf nodes, with one leaf per fl@ubset of network paths to be used for transmission, such that
Note that several methods in graph theory have been propotiesl end-to-end distortion is minimized.



Equivalently, using the flow tree representation of the nehe flow F;. In the same time, we observe that the distortion
work graph proposed in Section II-C, the optimization problemetric is always decreasing with the increasergfhence it
translates into finding the optimal rate allocation for eadks optimal to fully utilize the bandwidth of the path with the
of the flows in the tree, such that the video distortion ismallest loss probability.
minimized. It can be formulated as follows: More interestingly, Figure 4 shows that the behavior of

Multimedia Rate Allocation Problem (MMR) : Given the the distortion as a function of the rate, depends on the
network graphz, the number of different paths or flows the value of the rater;. For high values ofr;, the distortion
video sequence characteristids € («a, 3,¢)), and the total can even increase with growing raig. Beyond a given

streaming budget), find the optimal rate allocatio®®* = value of the streaming rate on the most reliable network path,
[r1,...r]* that minimizes the distortion metriD: adding an extra flow can degrade the end-to-end quality of
the media application. In this case, the negative influence of
o arg minD(r1, ...r) the error process on the second 'n.etwork path.is greater than

i ren thi Tprgve_mefr:t bkrought by Iau_aldmc;]nal s_trearr:lln% rate.hSuch

_ . a behavior is the key to explain why using all the paths to

- argémw(a RS+ 5 ) (8) their full bandwidth does not necessarily result in an efficient

streaming strategy.
D1 T

n Z/’L p'r
where R = Z” and 7 = ==L ' ynder the
=1

following constraints: B. Maximum or Null Flows

1) Budget Constraintsy_" , ¢; < Q; We now generalize the previous observations, and derive
2) Single Flow Constraints; theorems that guide the design of an optimal rate allocation
3) Multiple Flow Constraints. strategy. This section shows that, in the optimal rate allocation,

The solution of the optimization problem by integration oft flow is either used .at its full bandwidth, or not used at all.
the constraints into a Lagrangian formulation is not straightfofurthermore, the optimal rate allocation always chooses the
ward, mainly because of the non-convexity of the optimizatid@West loss probability paths, i.e., a path shall not be selected,
function, and of the numerous multiple flow constraints. Howknless all other paths with a lower loss probability have been
ever, in the next section, we present a detailed analysis, tRitked before. We start from an ideal streaming scenario with
eventually allows us to define a simple algorithm, able to firgnlimited budget and disjoint network paths, and eventually
the optimal rate allocation with linear time complexity. add budget and flow constraints, which are however shown

A careful study of the distortion metric leads to the defin20t to affect the initial findings.
ition of three main theorems, presented in the next sectionAssume that the: disjoint network paths are represented
They show that it is always best to use first the netwoiRto a tree of flows as explained in Section II-C. Without loss
paths with the lowest loss probability. In the same time, th&f generality, we further assume that flowswith 1 < i < n,
show that there is a tradeoff between encoding source raf€ arranged in increasing order of the loss probability, i.e.,
(equivalent to the transmission rate in our scenario), and the < P2 < ... < p,. We note that, from the distortion metric
loss process that affects the transmission. point of view, any two flows7; and 7;, traversing paths’;

Note that the presented MMR optimization problem relaté¥)d P; with the same loss probabilify, = p;, can be observed
to the network path selection and flow rate allocation for tts @ single flow affected by the same loss probabjljtyand
media application. It does not consider media packetizatib@ving an aggregated rate+r;. Under these generic settings,
and network scheduling issues. A detailed analysis of thed@ first claim that the optimal rate allocation either uses a
problems under delay constraints can be found in [12].  network path to its full bandwidth, or does not use it at all.

Theorem 1 (On-Off Flows)Given a flow tree with inde-
I1l. OPTIMAL FLOW RATE ALLOCATION pendent flowsF; having ratesr; € [0,b;] and a distortion
metric as defined in Eq. (5), the optimal solution of the MMR
problem when all the paths are disjoint, lies at the margins of

Let us first take a simple example to illustrate the behavighe value intervals for alt;, i.e., the optimal value of; is
of the end-to-end video distortion in a multipath scenario. Wathero or b;, Vi : 1 < i < n.

consider a basic network scenario consisting of two disjoint  proof: Deriving the distortionD given in Eg. (5), with
network paths,P; and P,, with bandwidthb; = by = respect to the rate;, we obtain:

1000kbps, and loss probabilitiep; = 2% and p; = 4%,

respectively. Consider two independent streafisand F,

A. lllustrative Example

traversing the two network paths with streaming rates< by, 9D(r1,..1n) — af(ZMH 18- Pid T — 2Pt

andr, < by. The evolution of the distortion function given in or; ’ (>ori)?

Eq. (5) is presented in Figure 3, for a test video sequence. e-1 Zj ;- (pi — pj)
As expected, we observe that the decrease in distortion = 0‘5(2 ri)s B (Z—T’L)2

is larger if we increase the rate of flow;, than if we
equivalently increase the rate of flafs. This behavior is due  Observe that the condition for an extremuﬁw =
to the lower loss probability that affects the path followed bg for any r;, implies: '
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Fig. 3. Overall distortion measure for two network paths in Fig. 4. Overall distortion behavior as a function of, for
function of available ratesp = 1.76 - 10°, £ = —0.658, various fixed values of .

B = 1750, p1 = 0.02, p2 = 0.04.

always uses first the network paths with the smallest loss
a-E-(ri+ N 8. 0=0 probabilities.
) ) Theorem 2 (Parameter Decouplinglsiven a flow tree
where A and .1 are constants, not depending op Since ith independent flowsF; having ratesr; € [0,b;] and a

0 <¢{+1<1, the equation has a single finite solution: gjstortion metric as defined in Eq. (5), the structure of the
optimal rate allocation i®* = [1,1,...,1,0,0,...0].
Pr = e B Y Proof: We prove the result by induction. Recall that the
‘ \/ —a-& network paths/flows are arranged in increasing order of their

loss probabilitiesp;. We have already seen thét = [¢; =

ln. .the same time, t.he der|vat|ve_|n any pomt_< Ty IS 1, ¢9,...,¢n] is part of the optimal solution. Next we show
positive, while to the right of the optimal value, it is negativey ./ forn >3, & = b1 = 1,00 = 0,5 = 1,4, .., b0
) - 1 - - ) - ) - ) PR n

Hﬁ.n(;]eri 'S a fr?l?t Ofl Iocall maX|tmtl:]m for th_ED fufni:rt]lon, Icannot be part of the optimal solution.
which means that only values at the margins ot the valu€r, e sake of clarity, let us remowg;’s with ¢ > 3

interval forr; can minimize the objept|ve functioh oD " from the notation, since they stay constant in our proof. By
It can be further observed that, in the caserof 5 < ohtradiction, assume that is part of the optimal solution.

0, for any posn!ve vaIue. o, (since¢ < 0, .5 > 0 an It means thatD(by,0,b3) < D(b1,0,0). Since the paths

pr—pj <0,Vj:2<j < mn) Hence the valuey = b1 a6 ordered with increasing values of the loss probabilities

always minimizes the objective function, hence will be part nd considered to be disjoint, we can always transfer part

the optimal solut.ion. o of the rate fromF3 to F,, and improve the distortion. Let
Corollary 1: Given a flow tree with independent flows; ro = min(bs, by), andry = [bs — ba]*. We have:

having rates; € [0,b;] and a distortion metric as defined in
Eqg. (5), the optimal solution of the MMR problem when all
paths are disjoint, allocates = b,, where the pattP, is the
path with the lowest loss probability. The first inequality comes from the definition of the distor-
Theorem 1 greatly reduces the search space for an optimgh metric, the second one from the assumption fihig part
solution for the MMR optimization problem. Hence we camf the optimal solution. We can further distinguish two cases:
rewrite the optimal streaming solution as a vecbaof boolean e by < bs. Then,ry = by, andrs > 0 and, according to
valuesg; for each flowF;, where¢; = 1 means that patt; Theorem 1, there exists a SO|lHidﬂ(b1,b27b3 C1) <
is used with full rater; = b;, and ¢; = 0 denotes that the D(by,ba,73) < D(by,0,bs), with ¢ € {0,1}. ® cannot
path P; is not used by the streaming application. The previous o part of the optimal solution sincg; = 1, which
corollar.y further says thad = [¢p1 = 1, ¢2, ..., &, is part of contradicts our assumption.
the optimal solution. _ e by > bs. Then, 7y = by andr; = 0, and we have
For bounded intervals for all rateg, 2"~ computations are D(by,bs,0) < D(by,0,b3) < D(by,0,0). From Theo-
sufficient for finding the optimal solution vector. For practical
scenarios, with a limited number of available network paths

D(b17r27r3) < D(b170ab3) < D<b17070)

rem 1, there exists an even better solution whegre- b,,

’ X ) leading to ®* = [110], which again contradicts our
between a server and a client, this number of computations assumption.
is in general quite low. We can however further constrain the
g g Next, we prove that® = [1..1,0...0,1...1, dpm, ..., o]

rch nsidering that th imal r I ion . .
search space by considering that the optimal rate a OCatgannot be part of the optimal solution. In other words, we

ISincery is the only finite solution, this statement is valid evenjf is prove that the optimal rate allocatiabr _Can only be a S.e”es
not contained if0, b;]. of consecutive 1's, followed by a series of consecutive 0's.



Let ¢; = 0 and ¢;, = 0, with j,k < m, be the statand _ & o & o
end of the series of consecutive 0'sdn Following the same w = & -
reasoning as before, transferring rate from flows with b k
Ek+1<i<m-—1, to ]—' can only improve the overall
distortion. If b < E k+1 bi, it directly leads to a solution Fig. 5. Inclusion of budget or encoding rate constraints as a virtual network
with ¢; = 1 that is better thanb. Otherwise, it leads to a link in the original network graph.
solution wherer; = > k+1 b, and¢; = 0 for j < i < m,
which can further be improved by choosing either= b,
or r; = 0 (from Theorem 1). Both cases exclude = 0 and paths. This shows that, for any valid, but non-greedy, rate
¢; = 1for j < i < m to be simultaneously part of the opt|ma|allocat|onR = {ri}p.en,, there exists a better solution that
solution. The proof can further be extended to the compléils up in priority the lowest loss probability paths. ]
series of consecutive 0's if. ] Note that the previous theorem can easily be extended to
The previous theorems show that we can find the optim@y number of bottleneck links i6'(V;, ), and to paths that
solution for our optimization problem by iteratively searchingelong to different setd3, in the same time. Theorem 3
all available network path€’, taken in ascending order ofallows to extend Theorem 2 to generic network graphs, with
their loss probabilityp;. Once we find a network path thatpotentially non-disjoint paths. It results in the general rule
can improve the overall distortion result, before using ithat paths should be taken in the increasing order of their
we have to make sure that all other network paths wilRss probability, and that all the flows should be used to their
better loss parameters are already used to their maximgmaximum capacity, that can be limited by joint bottleneck

available bandwidth. Hence, the search space is reducedinés, before considering an additional flow. Interestingly, any
n computations. network scenario can thus be transformed into a disjoint flow

tree, by a greedy allocation of joint bottleneck bandwidths
o to flows affected by lower loss probabilities first. After this
C. Non-Disjoint Network Paths transformation, applying Theorem 1 and Theorem 2 will yield
We now show that, relaxing the assumption on disjoirthe optimal rate allocation for the given streaming scenario.
network paths in the original network graph does not changeFinally, we can relax the assumption of independent flows
the general form of the optimal solution. We assume that in Theorem 1, by proper adaptation of the maximal bandwidth
the original network grapld-, there is at least one bottleneclof all non-disjoint paths.
link L., shared by at least two distinct network paths. Let Corollary 2: Given a generic flow tree with flowg; or-
B, = {P.}, Vk : L, € Py, be the set of paths sharing thedered in increasing order of their loss probability, and a
bottleneck linkL,,. In this particular case, while using any ofdistortion metric as defined in Eq. (5), the optimal solution
the pathsP;, alone will yield an available bandwid®#, < p,, of the MMR problem lies at the margins of the value in-
using all of them in the same time will yield an aggregatettrvals for all r;, i.e., the optimal value of; Vi : 1 <
bandwidth) ", by > p,. Note thatL, may, or may not be a i < n, is either0 or b, = min(b;, w;), where w;, =
bottleneck link for any of the paths;, treated independently. min {p, — Z P}
The pathsP; in B, are called “joint paths”. The following “*<" kLueP, andpe<p:
theorem regulates the sharing of bandwigthamong paths  Finally, multipath streaming applications may also have
Py to respect a budget constrait = ), kr;, or a maximal
Theorem 3 (Bottleneck Bandwidth Sharindet L, be a encoding rateR. in the case of pre-encoded media sequence.
bottleneck link for the set of path8, = {P:} in G, the These constraints can be modelled as an additional virtual
bottleneck link bandwidttp,, shall be shared among paths bottleneck link, out of the server. Figure 5 shows such a
in a greedy way, starting with the path affected by the lowestnsformation, where linkL, and nodeN, are added to
loss probability. the topology in order to incorporate the previous overall
Proof: As previously, let the path®, € B, be arranged constraints. LinkZLy should not influence the loss process of
in increasing order of their loss probabilitis. Let further the intermediate network, henég = 0. The bandwidtty, is
R = {ri}p.,en, denote a valid rate allocation among thestablished ap, = mm(%, R.), where@ and R, are simply
non-disjoint paths. Recall that a valid rate allocation has &gt toco in the case they are not limitative factors. Applying
satisfy the single flow constraints (i.ey < b, Vk), and the Theorem 1, Theorem 2 and Theorem 3 on the new network
multiple flow constramtsz rr < p.. Let P; be the path grath = (E,V, Ly, Ny), yields an optimal rate allocation
k that fully takes into account the budget and encoding rate
with the lowest loss probability i,,. If r; < b; in R,, and constraints.
> kxziTi > 0, one can always find a better rate allocation by
transferring rate from other flows sharing the same bottleneck V. RATE ALLOCATION ALGORITHM
link, to the flow F;. Since the total rate stays constant, the
rate transfer does not affect the source distortion, and does flo
violate the multiple flow constraints. It however reduces the The analysis proposed in Section Ill shows that a simple
channel distortion, resulting in improved overall performancalgorithm can find the optimal rate allocation by parsing
By induction, the proof can be extended to all the non-disjoiall available network paths in ascending order of their loss

LN, LW,

iLinear Complexity Search Algorithm



probability. Denote®; = [¢1, ..., ¢,] @ solution vector with of the distortion metric,D(®;) > D(®;_1,r Z) hence
D(®;) > D(®;_1), Vj > i.

Any of the above criteria represents a sufficient condition for

becomes the cumulative rate of the firstflows, whose search termination from the theoretical point of view, and can

individual rates have been chosen according to Corollary € applied at any stage of the optimal solution computation.
The overall loss probability of the first flows, w(®;), is

1
M. The Search Algorithm
j=1Tj This section presents a simple algorithm that computes
iteratively computesD(R(®;),n(®;)), for 1 < i < n, and the optimal rate allocation for the optimization problem. The
the optimal rate allocation is the poligy* that minimizes the previous theorems and conditions for termination represent the

¢; = 1,Vj < i and ¢; = 0 otherwise. R(® Zr]

then given byr(®;) C. Rate Allocation Algorithm

distortion metric: keys for a fast search through the flow tree.
_ Assume that the sever knows, or can predict the parameters
®* = arg minD(R(®;), 7(P;)) (9) of the intermediate network links, and the sequence-dependent
P;,1<i<n

distortion parameters. The encoding rate can be adapted at
The algorithm will be able to find the global optimal ratehe server by adaptive or scalable encoding, or transcoding.
allocation only after parsing all available network paths. Fromitially, the network graph is transformed into a tree of flows
the previous theorems, the optimal rate allocation solufton 7, sorted along increasing values of the loss probabiljties
takes the form of a consecutive series of 1's, followed hyith greedy assignment of joint bottleneck link bandwidths.
a consecutive series of 0's. However, exhaustive testing 16f case where two network paths have the same end-to-end
all the n such solutions is still necessary, thus leading to |ass probability, they are considered as a single path with
linear complexity search algorithm. We propose below a fesggregated bandwidth. The search for an optimal solution of
conditions for early termination, which may avoid to test athe shape given by Theorem 2 is performed iteratively. At each
possible solutions, while still ensuring a global optimal solustep, the early termination conditions are verified. Once any of
tion. These conditions represent an extra complexity reductigiem is satisfied, or when the algorithm finishes the search of

of the optimum search. all flows, the algorithm stops and outputs the optimal multipath
rate allocation strategylgorithm 1  proposes a sketch of
B. Conditions for Early Termination the rate allocation algorithm.

The search algorithm has to iteratively compuié®,),
for increasing values of. A full search throughn possible Algorithm 1 Optimal Streaming Rate Allocation

Input:
solutions may however be avoided, if any one of the foIIowng ServerS, Client C, Available Network TopologyG(V; E), Budget(,
termination conditions is verified: Maximum Encoding Rate.;

1) Distortion Limitation: If D(®;,_1) < 3 - p;, then the Output:

. . : S 4: Optimal Rate Allocation Policyb*;
optimal rate allocation containg; = 0, Vj > i. ety oeaton olies

It can be shown from the distortion function givene: Initial Rate Allocation® = [¢1, ¢z, ...¢n] = [1,0,...,0], according to
in Eq. (5) that lim D(®;) = 3 - p;, when other rates Theorem 1; , R

Compute the set of available patis € P, with their individualb; and
bj, Vj # i stay unchanged Hence, for a value of p;

D(®;_,) < - p;, adding another flow on patR; will ~ 8: Procedure RateAllocation _ _
icallv i h Il di . . Address constraint§ and R. as in Section 1lI-C;
asymptotically increase the overall distortion metric tQg. pecouple joint paths according to Theorem 3;

B-p;. Therefore, for any positive value 6f, with j > 4, Arrange the network paths is ascending order of their loss probabilities
andp; > p;, adding extra rate on path; will only %‘ra”d iOPOStr“gathe Flow Tree;

. . . . . . 1= n

increase the (;ilStOl‘tI(?ﬂ _me.asure n t.hIS case. . ComputeD(<I> ), where®; represents a rate allocation with the first
2) Path Bandwidth Limitation: Solving the equation i flows used at their maximum bandwidth, and the other flows are

D(®;_,) = D(®;) for the variabler; may provide, omitted;
(®i-1) (2:) ! yp 14: if any of the termination conditions 'Distortion Limitation’ or 'Path

except the trivial solutionr; = 0, another positiye, Bandwidth Limitation’ is satisfiedhen
finite value forr;, noted asr;. This second solution break;
happens in the case whe®(®;, ;) > 3 -p; and 16 eng”fgr'f

’n(—f(m—fr(% ) % . .
R@®,_,) > ¢ ¢ . The later value is 18 Output®” = arg min D(R(®;),w(®;));

®,;,1<i<n

obtained by solvmw r,=0= 0. It represents the

minimum rater,_+, after which, adding an extra ratg During the initialization processAlgorithm 1 must
could lead to an increase in distortion. In the case whetempute all available paths between the streaming se¥ver
b; < r;7VPj with j7 > 4, adding another flow, will not and the clientC. This is a well-known problem in graph
decrease the overall distortion, since unused bandwidtieory, and a solution can be easily found by implementing
is not sufficient anymore to compensate for the increasedepth-first searchZ{F'S) [13], for example. The algorithm

in loss probability in case an extra flow is added. Ithen arranges the discovered network paths as a flow tree in
that case, according to Theorem 2 and to the definiti@scending order of their end-to-end loss probabilities. Any




sorting algorithm of complexityO(nlog(n)) can be used. affecting the transmission process are independent among
After the flow tree is constructed, the core of the algorithmedia flows (e.g. scenarios 2 and 3). An analysis of the rate
finds the optimal rate allocation with a complexiy(n), at allocation problem in general networks characterized by a

maximum. Gilbert loss model (where the transformation in Section II-
C can only be considered as an approximation) can be found
in [9].

D. Possible Applications . L . .
The mentioned applications present in general a limited

We identify in this section a few typical scenarios Wherg, mper of available network paths between the streaming
optimal rate allocation between multiple stream paths C@@ryer and the client. It is fairly easy for a server to contin-
bring interesting benefits in terms of media quality. In eacl, 5y monitor these paths and to estimate their parameters.
of these examples, the application of the algorithm proposgdqeq on these parameters, the execution of our presented
above is straightforward. algorithm will output the optimal choice of paths and rates

1) Wired Overlay Network Scenarios (e.g. Content Distribin terms of media quality at the client. For very large net-

ution Networks). The media information from a server igyork scenarios, it can be noted that the assumption of full
forwarded towards the client by multiple servers belongnowledge about the network can be relaxed in setting up a

ing to the same overlay network. The client consumesfstributed version of the proposed algorithm [18].
the aggregated media from multiple network paths, and

the algorithm proposed above can be applied directly to V. SIMULATION RESULTS
find the optimal rate allocation. . .
. . - . Simulation Setu

2) Wireless Network Scenarios (e.g., WiFi Networks). AA‘ p ) ) o
wireless client can aggregate the media information We test our optlmal rate allocation alg_onthm in differ-
transmitted on multiple wireless channels. Interferen@t Nétwork scenarios, and we compare its performance to
among transmission channels can be minimized HygUristic rate allocation algorithms. We use an H.264 encoder,
choosing non-overlapping wireless channels (e.g., thesBd the decoder imple_ments a simple frame repetition error-
are 8 non-overlapping channels according to the IEEgENcealment strategy in case of packet loss. We concatenate
802.11a standard specifications), and by optimizing tfige foreman_cif sequence to produce a 3000 frame-long
transmission schedule in the wireless network [14]. Thddeo stream, encoded at 30 frames per second. The encoded
authors of [15] test a protocol stack that allows onBitStream is packetized into a sequence of network packets,
wireless network card to be simultaneously connected gach packet containing information related to one video frame.
and switch between, multiple networks in a transpareﬁf‘e packets are sent through the network on the chosen paths,
way for the application. In the same time, the authotg @ FIFO order, following a simple earliest-transmission-time-
of [16] present a video system over WLANSs that usdd'st scheduling algorithm. We further consider a typical video-
multiple antennas in order to aggregate the rate 8f-demand {oD) streaming scenario, where the admissible
multiple wireless channels. playback delay is large enough (larger than the time to transmit

3) Hybrid Network Scenarios (e.g. UMTS/GPRS/WiFi Netthe biggest packet on the lowest bandwidth path). Hence, a
works). A mobile client can simultaneously benefivideo packet is correctly decoded at the client, unless it is lost
from multiple wireless services in order to retrievéluring transmission due to the errors on the network links.
the media information from a server connected to the Our simulations first validate the distortion metric proposed
internet backbone. Existing commercial products [17] EQ- (5). Then, the performance of our optimal rate allocation
can already maintain connectivity to multiple wirelesélgorithm is compared to heuristic rate allocation algorithms,
services (e.g. UMTS, EDGE/GPRS and WiFi hotspots9" & set of random network topologies. Finally, we carefully
and transparently switch at any time to the servicdhalyze the behavior of optimal rate allocation for a particular
that offers the best channel performance, for a fixddtwork scenario, and discuss optimal solutions.
subscription price. It is only a question of time before
such commercial products will be able to aggregate tifii Distortion Model Validation

resources of multiple such services in order to enhanceThe video sequence is encoded at rates betve@8hbps

the user streaming experience, and telecommunicatiofitd 1 )/bps, and the mean-square-erra¥/GE) between the

operators are actively working on such systems. original sequence and the decoded one is computed, in error-

All these applications can be modelled well according tivee scenarios. Simulation results are compared in Figure 6(a)

Section II-A. The implementation of our mechanisms ani the distortion model values, whose parameters have been
algorithm in the previous scenarios is generic and independset toa = 1.7674 - 10°, ¢ = —0.65848, and 3 = 1750, re-
of any particular bandwidth and loss model, as long as tkpectively. We observe that the model distortion curve closely
media flows can be considered independent in terms of losseiows the experimental data, which validates the source
This assumption is valid in any disjoint path network scenaridjstortion model.
since the media flows are independent in terms of both rate andn order to validate the loss distortion componefit,,
losses. In generic network scenarios, our analysis still holdsndom errors are introduced during the network transmission
(namely the transformation between the network graph and hecess, where each packet is lost with an independent loss
tree of flows in Section 11-C), as long as the predominant losspeobability PLR. Simulations are performed with different
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Fig. 6. Distortion Model Validation with Video Streaming Experiments using the H264 encoder.
values of loss probabilities, and different encoding rates. V| /";“‘\;\
observe in Figure 6(b) that the theoretical model close /e %yf/cne\q\t
. . . ) \
approximates the experimental data, where each experime s ><. ol
point is averaged over 10 simulation runs. Even if it stay \f%% /\/ J
quite simple, the distortion model used in our work closely fit \2\ o ./
the average behavior of lossy video streaming scenarios. NI &) wired Nework (5) Wireless Network () Fybrid Network
that the sequence-dependent parameters may obviously have

different values for other encoders or other video sequencgg. 7. Three Network Scenarios.
The evolution of the distortion function however stays the
same, independently of the exact values of these parameters. TABLE |

PARAMETERS FORRANDOM GRAPH GENERATION

C. Optimal Rate Allocation Algorithm Performance l Parameter | Wired Scenario] Wireless Scenarig
Wi h f f th d . Nr. of Nodes 10 10
e now present the performance of the proposed optimal—csnnectivity Probabilityy 04 06
rate allocation algorithm, in various random network scenarios. Drmin 10%0ps 10°bps
We simulate three different categories of network topologies: Pmaz 3. 106§p5 7 1053{)1)8
1) Wired network graphs, in which the edges between Omin 10 — 10 —
Omaz 5-10 4-10

nodes are characterized by high bandwidth and low error
probability;

2) Wirelessnetwork graphs, with low bandwidth and hlghmultipath transmission scenario that picks the best two paths

error probability for the intermediate links; in,terms of goodput,D2r), and (iv) a multipath transmission
3) Hybrid network scenarios, where the server is connectdy ) goodput, ¥2r), an ultip
enario that uses the maximum available number of flows,

to the wired infrastructure, and the client can access tﬁg
internet via multiple wireless links, (Dyrr). The results, averaged over 500 random graphs are

. N presented in Table II.
The network scenarios are presented in Figure 7. In each . .
As expected, our algorithm provides the best average per-
of the three cases, we generate 500 random graphs, where . . .
. . .. Tormance in the three considered scenarios. It has to be noted

any two nodes are directly connected with a probabiity

hat, in each individual run of simulation, our algorithm never
The parameters for each edge are randomly chosen accor ing -
L T ; performs worse than any of the heuristic schemes. Also, we
to a normal distribution, in the intervab,,in, pmaz], for the

- ; rve that, in the wirel nario, the rate allocation that
bandwidth, and respectively, .., 0,mq.] for the loss proba- observe that, € wireless scenario, the rate a¥ocation tha

- ; . -~ is the closest to the optimal strategy is the one offered by the
bility. The parameters for the wired and wireless scenarios are . ; .
. . . use of the best single path in terms of loss rate. This can be
presented in Table I. The hybrid scenario uses the parameters, . X - : .
: explained by the high loss probabilities of the intermediate
of both scenarios. ; .
. links, which cannot be compensated by extra rate added by
For each of the three types of scenarios, we compute
the average end-to-end distortion when rates are optimally
allocated, and we compare it to the results obtained by other

simple rate allocation algorithms, namely, (i) a single path

TABLE I
AVERAGE DISTORTION RESULTS (M SE)

transmission scenario, which selects the best path in terms [scenario[ Doy | Drzr | Dr | Dar | Darr |
of loss probability, Dprr), (i) a single path transmission Wireless | 91.2 | 99.74 | 122.861 | 143.79 | 108.52
scenario, which uses the best path in terms of effective Wired 16.7 | 20.47 234 2327 | 17.62
bandwidth or “goodput” computed as (1 —p;), (Dr), (iii) a Hybrid | 634 | 73.809 | 83.97 | 92533 ] 7257
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best approximation is presented in most of the cases by the

subsequent flows. On the other hand, in the wired scenaligwest loss probability path streaming. Still, in almost 40% of
characterized by very small loss probabilities, the scheme tiigé simulation runs, the optimal rate allocation improves the
is the closest to the optimal solution is given by the greedy ugfstortion result by more than 10%. Finally, in the hybrid sce-
of all available flows. In this case, the improvement broughario, the rate allocation algorithm provides significant quality
by adding extra transmission rate outruns the losses suffef@ghrovements compared to all other heuristic approaches. It
throughout the transmission process. The results for the hybidchlso interesting to observe that the rate allocations based on
scenario are situated, as expected, between the two extremebest goodput path, and best two goodput paths algorithms
cases. The total streaming rates in the three scenarios areliiays provide the worst results.
average,? = 4Mbps for the wired scenarioR = 450kbps We also compute the optimal average number of flows used
for the wireless scenario, and respectivély= 800kbps for in each simulation scenario, compared to the average number
the hybrid one. of available paths. The results are presented in Table Ill. We

Next, we study the benefit offered by optimal rate allocatiombserve that the wireless scenario uses the smallest number of
as compared to the simple heuristic schemes. The relevancéi@fs, while the wired one has an average of no more than
the optimal solution is measured by counting the number three flows, for a number of available paths that is far larger.
simulation runs in which the optimal rate allocation brings aRrom the multipath streaming point of view, it interestingly
improvement of0—5%], [5—10%], [10—20%] and above0%, shows that, using a very large number of streaming paths does
in terms of end-to-end video distortion, compared to the otheot contribute to an improvement of the video quality at the
streaming strategies. The results are presented in Figurerdgeiver. The distribution of the number of flows used per
Figure 9, Figure 10. simulation run, is presented in more details in Figure 11 ,

We observe that, in more than half of the cases, netwodrigure 12, Figure 13.
flooding represents a good approximation of the optimal In summary, we observe that a small number of transmission
solution in the wired scenario where losses are rare. Howevidows is sufficient for an optimal video quality at the receiver,
we argue that it is still worth applying the proposed ratm all simulation scenarios. Paths with lower error probability
allocation algorithm, because it is of very low complexity, andhould be preferred to higher bandwidth paths in wireless sce-
can still save network resources. In the wireless scenario, therrios, while in all-wired scenarios, where the error probability
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Fig. 15. Network Scenarios Computation: Theoretical Distortion Model vs.
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is expected to be low, adding high-rate flows can improve

the overall video 'quality. In hybrid Spenariqs, a COmpromisseequences. Each experimental point is averaged over 10 sim-
between the two is expected to provide optimal results. ,tion runs. Ther and parameters, along with the model
and experimental distortion values are presented in Figure 15,
D. A Case Study for each of the algorithms. . ' .
_ . It can be observed that the optimal rate allocation algorithm
Th|s section proposes to anallyze the performance of tBﬁtperforms all other heuristic-based strategies. The optimal
opumallliate allocation algorithm 'E agiven rlletwork Scenanie allocation reaches a balance between total used bandwidth,
setup, i usFrated In Figure 14. The network parameters a{gner of network paths, and error probability that affects
presented in Table IV. For each of the five rate allocatiqfe syreaming process. The example clearly shows that it is
algorithms, we compute the distortion measure according §8s ontimal to use only the best paths in terms of rate. In the
the theoretical distortion metric, and we validate it againgh e time, the greedy use of all available network resources,
experimental values, obtained from simulations with videggag not provide better results. This clearly motivates the im-
plementation of the proposed rate allocation algorithm, which

TABLE Il optimizes the received video quality, without wasting network
AVERAGE NUMBER OF PATHS resources. Finally, it can be noted again that the theoretical
[ Scenario| Optimal Nr. | Available Nr. | distortion model represents a very good approximation of the
Wireless 2.04 5.04 experimental values.
Wired 3.049 4.856
Hybrid 2.17 4419 VI. RELATED WORK

The research community has recently started to investigate
the idea of multipath routing and streaming in order to improve
the QoS of media applications. The authors of [19] present
[Parameter] Ly | Ly | Ls | La | Ls | Le | Lv | a distance-vector algorithm for finding multiple paths, while

0; 0.02 [ 0.01] 0.035] 0.01 [ 0.015[ 0.035 | 0.01 the authors of [20] present a multipath extension of Direct
pu (kbps) | 256 | 384 | 256 | 128 | 256 | 256 | 128 Source Routing for wireless ad-hoc environments. The purpose

TABLE IV
PARAMETER VALUES FOR THELINKS IN G(V, E)
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of the algorithms is to achieve load balancing over multiplrmulation is general and deals with both joint and disjoint
paths, and to simultaneously minimize delays. Disadvantagesths. We show that, from the media application point of
of mutipath routing, in terms of network destabilization, areiew, an optimal flow allocation is achievable in any network
examined in [21]. scenario, by joint optimization of the number of paths used,
While all these works give a detailed analysis of thand the aggregated rate of the flows.
multipath routing problem form the networking point of view, Finally, the multipath problem is specifically addressed in
we address the same problem from a media application p#te case of media streaming in [31]. The authors present a
spective. The process of choosing the paths for transmissilEC scheme combined with server diversity and a packet
and their respective rate allocation is subordinated to achievisgheduling mechanism, which intends to minimize the cumu-
a better streaming experience, measured in terms of vidative distortion of individual erroneous video packets. Our
distortion. The work presented in [22] addresses a similaork focuses on a non-multicast communication scenario, with
problem of choosing the best path from a media perspectiag intermediate network comprising multiple available trans-
However, the authors only address the question of path switehission paths. Multi-stream coding, combined with multipath
ing efficiency from the media application point of view, andransmission, has been presented in [32] as a solution to fight
do not investigate the benefits of multipath streaming. against network errors in an ad-hoc network environment.
More generally, routing with multiple metrics is the targein the same time, the authors of [33] analyze a multiple
of many works in QoS routing. But QoS routing with multiplepath streaming scenario for the transmission of a video
constraints is, in general, an NP complete problem. An initisequences encoded in multiple descriptions. They minimize
proof, for the case of at least two additive metrics is given ian additive distortion metric, computed as the sum of the
[23]. The authors propose heuristic algorithms for both souraedividual distortions of each of the independent descriptions.
routing, and hop-by-hop routing, which find one path satisfyror complexity reasons, their analysis is reduced to a scenario
ing the QoS requirements of multimedia applications. Recesdmprising two encoded descriptions and two transmission
works in multi-constrained routing optimize a linear [24]paths. In our work we rather address the questions of how
respectively a non-linear [25] relation between constraintsiany transmission paths to use, and how to chose them, in
using low complexity algorithms. A similar function built onorder to maximize the efficiency of the streaming application.
multiple path metrics is used in [26] to find multiple networlOur streaming framework is more general, and applicable to
paths for streaming. any streaming scenario that obeys an additive rule for the
In contrary to common QoS routing problems, we proposgygregated transmitted rate and loss process. The proposed
a media-specific distortion metric, which comprises multiplalgorithm finds the optimal transmission strategy and encoding
network link parameters together with media aware paramete, based only on the available network resources, and video
ters. The metric describes the quality of the received videsgquence dependent parameters.
as a function of the specific network scenario and streaming
process. The optimization of the end-to-end distortion trans-
lates into choosing the best set of paths, and the respective op-
timal rate allocation. Classical optimization methods however In this paper, we propose to use a flow model to analyze
fail to obtain a simple solution due to the non-convexity of ththe opportunity of multipath media streaming over the internet.
optimization function. An in-depth analysis of the behavior dBased on an equivalent transformation between the available
this metric however allows to derive a simple algorithm thatetwork graph and a tree of flows, we jointly determine the
achieves the optimal solution in linear time, as it has beeéetwork paths, and the optimal rate allocation for generic
shown in this paper. streaming scenarios. A media specific performance metric is
In parallel, exploiting diversity in wireless ad-hoc or cellulaused, which takes into account the end-to-end network path
networks has been addressed in [27] and [28]. The mdiarameters along with media aware parameters.
purpose of the works is to increase the survivability and powerAn in-depth analysis of the end-to-end distortion behavior,
efficiency of the network, or to reduce the impact of frequemtrives the design of a linear time algorithm for optimal rate
transmission errors. Even if in our work we also considetlocation, which is in general an NP complete problem. The
wireless or hybrid streaming scenarios, we are interestedfomm of the optimal rate allocation solution follows a simple
finding the optimal set of paths from a media applicatiogreedy rule that always uses the paths with the lowest loss
perspective. Available network resources are used in orgepbability first. In particular, we show that extra network
to ensure the best possible transmission quality in terms pths are either used at their maximum available bandwidth,
received video. if their value is large enough, or simply ignored. The overall
Flow assignment problems have been addressed in [28]e allocation solution offers a careful trade-off between extra
and [30]. The authors of the first paper are concerned wittansmission rate and increase in the end-to-end error process.
optimally splitting the data on multiple disjoint paths in ordeEven for large network scenarios, only a small number of
to avoid packet re-sequencing at the client. The second papaths should optimally be used for transmission, taken from
presents an algorithm that minimizes the end-to-end delthe lowest loss probability channels.
of data transmission while complying with an aggregated The optimal rate allocation algorithm has been tested in
bandwidth constraint. The algorithm is optimal only in thearious random network scenarios, and it significantly out-
case of unit capacity links and disjoint paths. Our flow probleperforms simpler schemes based on heuristic rate allocation

VIl. CONCLUSIONS
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strategies. In many cases, our algorithm even provides [as] T. Korkmaz and M. M. Krunz, “Routing multimedia traffic with qos
end-to-end distortion improvement of more than 20%. Due to

its low complexity, and important benefits in most streamiqg6]
scenarios, the optimal rate allocation algorithm provides a very

interesting solution to efficient media streaming over resource-
constrained networks.
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