
Hindawi Publishing Corporation
Advances in Multimedia
Volume 2007, Article ID 39524, 8 pages
doi:10.1155/2007/39524

Research Article
Packet Media Streaming with Imprecise Rate Estimation

Dan Jurca and Pascal Frossard

Ecole Polytechnique Fédérale de Lausanne (EPFL), Signal Processing Institute, 1015 Lausanne, Switzerland

Received 2 November 2006; Accepted 19 December 2006

Recommended by Guobin (Jacky) Shen

We address the problem of delay-constrained streaming of multimedia packets over dynamic bandwidth channels. Efficient stream-
ing solutions generally rely on the knowledge of the channel bandwidth, in order to select the media packets to be transmitted,
according to their sending time. However, the streaming server usually cannot have a perfect knowledge of the channel bandwidth,
and important packets may be lost due to late arrival, if the scheduling is based on an over-estimated bandwidth. Robust media
streaming techniques should take into account the mismatch between the values of the actual channel bandwidth and its estima-
tion at the server. We address this rate prediction mismatch by media scheduling with a conservative delay, which provides a safety
margin for the packet delivery, even in the presence of unpredicted bandwidth variations. We formulate an optimization prob-
lem whose goal is to obtain the optimal value for the conservative delay to be used in the scheduling process, given the network
model and the actual playback delay imposed by the client. We eventually propose a simple alternative to the computation of the
scheduling delay, which is effective in real-time streaming scenarios. Our streaming method proves to be robust against channel
prediction errors, and performs better than other robustness mechanisms based on frame reordering strategies.

Copyright © 2007 D. Jurca and P. Frossard. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Media streaming over the internet is experiencing solid
growth and success in the past few years. However, the in-
herent best-effort characteristics of the underlying transport
medium, need to be matched by intelligent streaming mech-
anisms in order to ensure the success of media applications.
In particular, flexible rate adaptation mechanisms must be
deployed to compensate for the bandwidth variability ob-
served in the internet. When effective media transcoding ca-
pabilities are excluded due to application constraints, packet
selection and scheduling represent a powerful solution for
adapting the media content transmission to the available re-
sources offered by the transport network. Under timing con-
straints imposed by a fixed playback delay, efficient media
scheduling solutions must rapidly adapt the media packets
transmission, to the available channel resources, in order to
optimize the quality of service at the client.

Among the most popular scheduling schemes, a first
family of methods models the underlying network in a sto-
chastic framework. Given a permitted playback delay at the
client, they attempt to maximize the expected received media
quality by packet dropping or retransmission. They trans-
form the scheduling decision into a stochastic optimization

problem whose result achieves the maximum possible steam-
ing quality for the end user [1]. However, even for simple
channel models, the optimal solution requires complex algo-
rithms that necessitate large computational resources. Hence,
low delay streaming applications cannot rely on this mech-
anism for successful data transfer over the network. A sec-
ond set of scheduling solutions rather considers the network
topology and parameters as known in advance and realizes
a deterministic scheduling of the packets, in order to maxi-
mize the received media quality. Such solutions are simpler,
and can be employed in real-time applications. Polynomial
time algorithms can take fast decisions on the pool of media
packets [2, 3], in order to optimize the streaming process to
the available channel conditions. However, this method may
prove inaccurate and prone to errors in the case where the
exact channel parameters are not fully known, or inexactly
predicted by available channel estimation protocols.

Even the best rate estimation algorithms are not able to
follow the rate variations of the channel, and often work
on a coarser timescale [4]. Since channel prediction errors
are inevitable and can lead to late arrivals of important me-
dia packets, the streaming server has to design robust packet
selection and scheduling strategies against estimation mis-
matches. Our proposed method relies on a simple FIFO



2 Advances in Multimedia

scheduling mechanism. However, we increase the algorithm’s
robustness by using a conservative virtual playback delay,
smaller than the playback delay imposed by the client [5].
The scheduling process considers the conservative playback
delay as the hard deadline for packet arrival at the client,
hence it is more aggressive in the packet selection process.
On the other side, the difference between the conservative
scheduling delay and the effective playback delay after which
the client starts playing the video, transparently compensates
for the eventual late packet arrivals due to the erroneously
estimated end-to-end channel rate variations.

Overall, we observe that a very conservative scheduling
delay tends to limit the selection of transmitted media data to
only a few packets, which penalizes the quality at the receiver.
Alternatively, a scheduling delay that is too close to the effec-
tive playback delay may result in late arrival of packets, which
also penalizes the quality. Hence, the purpose of this work is
to analyze the trade-off between robustness against channel
prediction errors, and packet selection limitations, observed
as a result of tighter scheduling constraints.

The rest of this paper is organized as follows: Section 2
presents an overview of existing work in the domain of ro-
bust media streaming. We formulate in Section 3 an opti-
mization problem whose goal is to find the optimal con-
servative delay used in the scheduling process, which max-
imizes the quality of the received video for a given channel
rate model, and a given playback delay at the client. We dis-
cuss the complexity of the exact solution for the optimization
problem and we present a fast solution in Section 4. Section 5
presents our simulation results and Section 6 concludes this
paper.

2. RELATED WORK

Robustness to network failures is one of the necessary at-
tributes of a successful media application. Application layer
tools have been designed for providing the required flexibil-
ity in order to cope with network variations. The authors of
[6, 7] present an overview of video coding techniques that
confer flexibility and robustness to the streaming process. Er-
ror resilient video encoding and error-concealment strategies
at the client side are detailed. These techniques can be fur-
ther enhanced with network layer error-robustness strategies
like ARQ or FEC [8, 9]. While these mechanisms offer the
flexibility needed in order to cope with network channel er-
rors and variations, their design is based on the knowledge
of network parameters. Their functionality depends on the
accuracy of the channel estimation, hence when these esti-
mations are inexact, they are susceptible to failure. Intelligent
scheduling on a packet level can adapt the media streaming
decisions in case of network parameter variability, and add
an extra layer of flexibility in the wake of adverse network
conditions (e.g., bandwidth shortage, or variable transmis-
sion delays and jitter).

Informed scheduling decisions optimize the received me-
dia quality under network resources constraints. In the Rate-
Distortion framework presented in [1], the scheduling al-
gorithm takes an optimal decision (transmission policy) for

p2 p4 p6 p8 p10

p1 p3 p5 p7 p9

EL

BL

ω2 ω4 ω6 ω8 ω10

ω1 ω3 ω5 ω7 ω9

I B P B P

Figure 1: Video packets as a directed acyclic graph.

each media packet/set of packets, based on the parameters
of the channel model. The channel is stochastically mod-
elled, and the optimal scheduling solution comes at the ex-
pense of complex computations and large delays [10, 11]. On
the other hand, deterministic scheduling algorithms [2, 12]
are faster, but require exact knowledge of channel param-
eters, and are prone to errors in case of unpredicted net-
work variability. Previous works [13, 14] enhance the ro-
bustness to channel prediction errors, by designing a new
scheduling model, in which the packets/frames in a bit-
stream are rearranged. The most important parts of the bit-
stream are advanced ahead of the less important ones, so
that they are scheduled for transmission with higher pri-
ority. Such mechanisms increase the probability of success-
ful transmission of information necessary for correct decod-
ing, even in adverse network scenarios. While these methods
increase the robustness to network delay fluctuations, they
are also more demanding in terms of codec buffer sizes and
computation.

In this work, we rather enforce a FIFO scheduling mech-
anism because of its simplicity and efficient use of buffering
resources. However, we propose to increase its robustness to
channel estimation errors by scheduling packets with a vir-
tual playback delay, smaller than the playback delay imposed
by the client. The difference between the scheduling delay
and the playback delay after which the client starts playing
the video, can transparently absorb the effects of the erro-
neously predicted end-to-end rate variations on packet ar-
rival times.

3. STREAMING WITH CONSERVATIVE DELAY

3.1. System overview

We consider a single path streaming scenario between a
server S and a client C. The media stream can either be pre-
stored at the server (VoD), or can be obtained in real time
(real-time streaming). The video content is encoded into one
or more layers and fragmented into network packets such
that one packet contains information related to one frame
and one video layer. Let P = {p1, . . . , pn} be the set of avail-
able packets at the server, with n representing the total num-
ber of packets. Similarly to [3], each packet pi is completely
characterized by its size si, its decoding deadline ti, its im-
portance ωi, and its list of dependency packets Ai, which are
necessary for a correct decoding (see Figure 1).



D. Jurca and P. Frossard 3

r
r(t)

rp(t)

t

Server Client

Figure 2: Network end-to-end model with rate variations r(t) and
estimated rate rp(t).

The intermediate network between S and C is modelled
as an end-to-end channel characterized by the variable rate
r(t). While we consider no link error in our model, packets
can still be lost from a media application perspective, due to
late arrivals. The server S estimates on a periodic interval, the
available channel rate rp(t), using any estimation mechanism
Γ (see Figure 2). Based on that estimation, the streaming ap-
plication employs a generic scheduling algorithm Ψ that de-
cides the subset of packets π ⊆ P that are sent in a FIFO order
to the client, so that the reconstructed video quality is maxi-
mized, given the playback delay Δ imposed by the client. The
video quality measure Ω can be computed at the client as

Ω = ΩS(π)−ΩL(π), (1)

where ΩS(π) = ∑
i ωi, for all pi ∈ π represents the quality

of the video packets selected for transmission, and ΩL(π) =∑
i(ωi · Pi) represents the video quality degradation due to

packets that cannot be decoded because of late arrivals at
the client. Pi represents the probability that packet pi arrives
past its decoding deadline at the client. These late arrivals are
caused by channel bandwidth variations, and inaccuracy in
the rate estimation used by the server. Indeed, the estimation
of the available rate in the future time instants is generally
not perfect, and often not able to exactly follow the frequent
variations of the bandwidth.

We propose to modify the scheduling strategy, in order to
be robust to over estimations of the channel rate. We define
a virtual playback delay, or scheduling delay δ, which is used
by the server to compute the subset of packets to be sent. As
δ is smaller than the actual playback delay Δ, the server will
select a reduced number of packets for transmission (ΩS de-
creases), but the selected packets have a lower probability to
be lost (ΩL increases). In other words, π now contains only
packets that can reach the client before their decoding dead-
line (ti + δ) with a streaming rate rp, and each packet pi is
scheduled and transmitted only once. The choice of the vir-
tual playback delay becomes obviously a trade-off between
source quality and robustness to rate variations, and its opti-
mization is proposed in the next sections.

3.2. Illustrative example

We demonstrate the rationale behind our proposed mecha-
nism by a concrete example. Imagine that server S needs to

Table 1: Example parameter values for conservative delay schedul-
ing.

Instantaneous rate (kbps) 420

Predicted rate (kbps) 450

Packet size si (bits) 8000

Packet weight ωi 1000

Decoding deadline ti 0

Playback delay Δ (ms) 200

Conservative playback delay δ (ms) 180

Time t (ms) 0

decide at time t whether to send packet pi to the client C or
not. The scheduling decision is based on the predicted net-
work rate at moment t, rp(t), the size si, weight ωi, depen-
dency list Ai and decoding deadline ti of packet pi, and on
the conservative playback delay δ. In the same time, C ex-
pects packet pi before time ti + Δ, so that it can successfully
decode it.

For the sake of clarity, assume that the list Ai = ∅, for ex-
ample, packet pi can be independently decoded at C, and that
the server’s buffer does not contain any other media pack-
ets except pi. The rest of the parameters are set according to
Table 1.

Observe that S will take the decision to send the packet
on the network after computing the expected arrival time at
the client: Tp = t + si/rp(t) ≈ 177 ms ≤ 180 ms = ti + δ. Even
if the channel rate is overestimated and packet pi arrives at
the client at Ta = t + si/r(t) ≈ 190 ms > ti + δ, packet pi
will still arrive on time for successful decoding at the client,
as ti + Δ = 200 ms.

On the contrary, imagine the same procedure is ap-
plied to packet pj , under the same conditions, except s j =
9.000 bits and the scheduler does not use the conservative de-
lay δ, rather directly the playback delay Δ. S decides to send
the packet as Tp = t + s j /rp(t) = 200 ms ≤ 200 ms = ti + Δ.
However, packet pj is useless for the client as it arrives past
its decoding deadline: Ta = t + s j /r(t) ≈ 220 ms > ti + Δ. In
such a case packet pj consumes network resources that could
be used more effectively.

Finally, please observe that in the case where S uses the
conservative delay δ in scheduling packet pj , the decision
would be to drop the packet, as it would arrive late. This
insight lies the ground for the trade-off between robustness
against channel prediction errors, and packet selection limi-
tations, observed as a result of tighter scheduling constraints.

3.3. Optimization problem

The virtual playback delay δ used by the scheduler represents
a compromise between a conservative selection of packets
that minimizes the probability of late arrivals, and the selec-
tion of a sufficient number of packets for an effective quality.
Given the video sequence, the quality metric Ω, the schedul-
ing strategy Ψ, the rate estimation algorithm Γ, and the play-
back delay Δ, the optimization problem translates into find-
ing the optimal conservative delay δ ≤ Δ to be used by



4 Advances in Multimedia

0

0.1

0.05

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

pr
ob

ab
ili

ty
of

la
te

pa
ck

et
s

10 20 30 40 50 60 70 80 90 100

Δ− δ (ms)

r = 200 kbps
r = 350 kbps

r = 500 kbps
r = 650 kbps

Figure 3: Average probability of late packets (Δ = 300 ms).

the streaming application, in order to maximize the received
video quality Ω, for a given channel model

δ∗ = arg max
∀δ≤Δ

Ω(δ). (2)

In general, this optimization problem does unfortunately
not provide any simple solution. Even for fixed Ψ, Γ, and Δ,
the scheduling policy π is not constant with the choice of δ,
hence finding the optimal solution for the problem has com-
binatorial complexity. However, for small values of Δ (as in
practical real time streaming scenarios), δ∗ can be accurately
approximated in real time. In the next section, we present our
approach towards finding an appropriate solution, based on
heuristics from real-time video streaming.

4. FINDING THE CONSERVATIVE DELAY

4.1. General solution

On the one hand, the quality measure ΩL(π) depends only
on the difference Δ−δ, for a given transmission policy π and
the channel model. Very conservative values for δ will ensure
a big difference Δ − δ, hence more margin in dealing with
rate prediction errors, and consequently a smaller value for
ΩL (see Figure 3).

On the other hand, the quality measure ΩS(π) depends
only on the scheduled packets according to the predicted rate
rp(t) and δ. Interestingly, our experiments show that, for a
given channel model, ΩS does not vary much with δ, as long
as δ is large enough to accommodate the transmission of the
largest video packets of the sequence.

Let Ri(Δ) be the cumulative rate of the channel up to time
ti + Δ: Ri(Δ) = ∫ ti+Δ

0 rdt, and Ri
p(δ) be the cumulative esti-

mated rate up to time ti + δ: Ri
p(δ) = ∫ ti+δ0 rpdt. For given δ

2

4

6

8

10

12

14
×104

A
ve

ra
ge

eff
ec

ti
ve

da
ta

tr
an

sf
er

(b
it

s)

200 225 250 275 300

Conservative playback delay (ms)

r = 500 kbps
r = 400 kbps

r = 300 kbps
r = 200 kbps

Figure 4: Effective average data transfer (Δ = 300 ms).

and Δ, we define the effective data transfer Cδ
Δ(i) on the time

interval [0, ti+Δ], as the amount of data scheduled according
to rp before ti + δ, and received before ti + Δ according to r:

Cδ
Δ(i) = Ri

p(δ) · Pr{Ri
p(δ) ≤ Ri(Δ)

}
. (3)

An illustration of the effective data rate transfer is given
in Figure 4.

Given this measure, we transform the original optimiza-
tion problem into a new one that chooses δ in order to max-
imize C, defined as

δ∗ = arg max
0≤δ≤Δ

Cδ
Δ(i). (4)

Cδ
Δ(i) is invariant in time, as long as the channel model

does not change, hence it can be computed at any ti. The
previous optimization problem translates into maximizing
the chances of every packet pi, scheduled for transmission at
time t, to reach its destination by time t +Δ. Unlike the orig-
inal optimization problem of (2), (4) depends only on the
channel model, hence it is easy to solve, once this model is
known. It can be noted that both optimization problems are
equivalent in the case of a smooth video model (the video
packets have the same size and importance, and there are no
dependency among them). We later show in Section 5 that
even in realistic video streaming scenarios the solution ob-
tained for this problem is a very good approximation of the
optimal solution.

4.2. Example channel model

We now develop all necessary relations for a typical channel
modelled as a discrete-time system, with a sampling interval
of Ts seconds. The network can communicate a maximum of
riTs bits of data in the time interval [iTs, (i+ 1)Ts], where ri is



D. Jurca and P. Frossard 5

the available bandwidth of the channel in the ith time inter-
val. The channel rate ri is given as a Gaussian autoregressive
process of the form

ri = μ + (1− α)
∞∑

j=0

αjni− j , j ∈ Z, nk = 0, ∀k < 0. (5)

Each nj is an independent zero mean Gaussian random
variable with variance σ2, α is a modelling parameter, and μ
denotes the average available bandwidth. The validity of that
model for internet traffic traces on time scales of milliseconds
up to a few seconds has been verified in [15].

A simple auto-regressive prediction model is used for
bandwidth estimation at the server, where the available rate
of the network in the next time interval, k + 1, is given by

rk+1 = γ

∑k−1
j=1 r j

k − 1
+ (1− γ)rk, (6)

where γ is the prediction coefficient. The estimation is run
periodically, on time windows of size Tp. While instanta-
neous rate variations of the channel can happen on very
small time scales (of tens to hundreds of milliseconds), the
fastest estimation mechanisms provide accurate results on
time intervals of the size of a few round-trip times (e.g.,
one second or more), and prediction inaccuracies cannot be
avoided.

Assuming that ti +Δ = k ·Ts ≤ Tp, with k an integer,1 we
can compute

Ri(Δ) = k · μ +
k∑

j=0

(1− γ) · γ j−1 ·
k− j∑

l=1

nl. (7)

Finally, Si denotes the cumulative size of the transmitted
packets up to packet pi : Si =

∑i
j=1 s j , for all pj ∈ π. The

probability that a packet arrives too late at the receiver, Pi,
can be computed as

Pi = Pr
{
Si > Ri/Si ≤ Ri

p

}
. (8)

Since Ri is a normal random variable and Ri
p is a known

constant, given any δ and Δ, the error probabilities Pi can be
easily computed with the help of the er f c function.

4.3. Scheduling algorithm

While the presented robustness mechanism is generic, and
can be applied to any packet scheduling algorithm, in this
section we describe the specific algorithm employed in the
experimental phase of this paper.

The algorithm is an adaptation of the LBA scheduling
algorithm introduced in our prior work [12], to the single-
path network scenario presented above. In short, the algo-
rithm performs a greedy scheduling of the most valuable

1 The extension of the computation for the general case, on multiple pre-
diction intervals, and when k is not an integer, is straightforward, and
omitted in this manuscript.

packets first. Less valuable packets are scheduled only if the
network capacity permits, and only if they do not lead to the
loss of a more valuable packet already scheduled (due to sub-
sequent late arrivals at the client).

First, the n network packets are arranged in descending
order of their weight, obtaining a new representation of the
encoded bitstream, P′ = {p′1, p′2, . . . , p′n}. Then, the algo-
rithm attempts a greedy scheduling of the packets on the net-
work link, starting with the most important one. To decide
which action to take on each packet p′i , the algorithm first at-
tempts to schedule all ancestors that have not been scheduled
yet. If one of them cannot be scheduled, then the algorithm
automatically drops the packet p′i . This ensures that our al-
gorithm does not waste network resources on transmitting
network packets that cannot be correctly decoded at the re-
ceiver.

Finally, all packets marked to be transmitted, are re-
ordered according to their decoding deadlines before trans-
mission. When a new packet is inserted for transmission, it
triggers a new packet ordering. If packet p′i can be inserted,
without compromising the arrival time of any other already
scheduled packet, then it is marked for transmission. Other-
wise, packet p′i is dropped. Please observe that the schedul-
ing algorithm can be run on the total video sequence to be
streamed, in the case of VoD streaming, or on a limited win-
dow of video packets in the case of real-time streaming.

The total complexity of the scheduling algorithm is
driven mainly by the sorting and insertion operations. While
the sorting can be performed by any algorithm in time
O(n logn), the insertion of each packet p′i requires a com-
plete parse through all previously scheduled packets. Hence
the total complexity of the algorithm is O(n2).

5. SIMULATIONS

We discuss the performance of the streaming application
with conservative delay and we compare the results obtained
by our heuristic solution for δ with the optimal one, and
with other frame reordering techniques. We scalably encode
the foreman cif sequence (130 frames) using MPEG4-FGS,
at 30 frames per second, with a GOP structure of 31 frames
(IPBPBPB. . . ). By splitting the bitplanes, we encode one BL
and 2 ELs of average rates of 260 kbps. In all our experiments
we use the simple packet scheduling algorithm as presented
above. We set the weights ωi of the packets as a function of
their relative importance to the encoded bitstream (depend-
ing on the type of encoded frame, I, P, or B, and on the en-
coded layer they represent, BL, EL1, or EL2), as illustrated in
Figure 1. In a first approximation, we choose the following
packets weights: 5 for I frame BL packets, 4 for the P frame
BL packets, 3 for the B frame BL packets, 2 for the EL1 pack-
ets, and 1 for the EL2 packets [3].

For the channel model and estimation mechanism, we set
the required parameters to α = γ = 0.8, Ts = 20 ms, Tp = 1 s,
and we vary σ2 ∈ [100, 250], according to the channel aver-
age rate. These values insure realistic channel variations on
small time scales around the average bandwidth value. Fi-
nally, we set Δ = 200 ms.



6 Advances in Multimedia

50

55

60

65

70

75

80

85

M
SE

350 400 450 500 550 600

Average channel rate (kbps)

Optimal conservative delay

Heuristic conservative delay

Figure 5: Quality evaluation for scheduling with heuristic and op-
timal δ.

Table 2: δ∗ and δ for various average channel rates.

Rate (kbps) 350 400 450 500 550 600

Optimal δ∗ (ms) 163 156 172.5 161 154 155.5

Heuristic δ (ms) 172 170 168 167 166 165

Ω(δ∗)−Ω(δ)
Ω(δ∗)

(%) 4.94 1.71 3.53 2.86 6.04 2.63

First we compare the results obtained by streaming with
the heuristic δ, computed according to (4), and the optimal
δ∗, obtained after a full search through all possible values
for δ ∈ [0,Δ]. We use different channel average rates and
we average over 10 simulations for each case. The results are
presented in Figure 5. We observe that for all simulated rates,
our results in terms of MSE are very close to the optimal ones.
This validates our simplification to the original optimization
problem, presented in Section 4. In the same time, Table 2
presents the obtained values for the heuristic and optimal δ
for the same channel conditions as above, along with the rel-
ative error between the streaming performances. We observe
that the values are very close and that δ∗ is in general more
conservative than δ. An explanation to this phenomenon re-
sides in the fact that the sequence under consideration does
not present any scene changes and the packet sizes remain
constant in time.

Next, we compare the proposed conservative δ streaming
with other frame reordering streaming techniques. We use a
simple technique similar to the one presented in [13], which
brings forward all I and P frames by two positions in the orig-
inal bitstream before scheduling. Both techniques are com-
pared in terms of number of late packet arrivals with a sim-
ple FIFO scheduling scheme that is unaware of channel rate
variations. Simulation results are averaged over 100 channel
realizations for an average rate of 500 kbps. Figure 6 presents

0

5

10

15

20

25

30

N
u

m
be

r
of

la
te

pa
ck

et
s

Conservative playback Frame reordering FIFO

Transmission strategy

Figure 6: Late packets: conservative δ; frame reordering; FIFO
scheduling.

the number of late packets for each of the 3 schemes with the
95% confidence intervals. We observe that the conservative
δ scheme performs the best in terms of average number of
late arrivals, due to the fact that the application can trans-
parently use the difference Δ − δ to compensate for unpre-
dicted channel rate variations. Figure 7 presents one schedul-
ing example for the conservative δ and frame reordering
techniques. We observe that in the case of frame reorder-
ing, the strategy trades off a higher confidence in receiving
I and P frames on time, at the expense of less important B
frames. Hence, some B frames are lost due to late arrivals. On
the contrary, the conservative δ strategy manages to sched-
ule a similar amount of packets, and uses the extra time
Δ − δ to minimize the impact of rate variations on late ar-
rivals. Hence, less packets are late at the receiving end of the
application.

Finally, we test the proposed conservative delay schedul-
ing method on network rate traces generated with the help
of the ns-2 simulator in the presence of background traffic.
We simulate 10 background flows that use the same bottle-
neck link as our media stream. These flows are generated
according to the on/off exponential distribution, with aver-
age rates between 100 and 300 kbps. The available instanta-
neous rate for our streaming application is considered to be
the difference between the total link bandwidth and the ag-
gregated instantaneous rate of the background traffic. Even
if the average available rate stays constant, instantaneous rate
variations can be larger than 100%. We compare the perfor-
mance of the scheduling obtained by using the heuristic and
the optimal conservative delays, respectively, by averaging the
obtained results over 10 randomly generated network rate
traces. Results are presented in Figure 8 for average network
rates of 300 and 450 kbps. We observe that the results are very
close, even if the exact channel model is not known when the
conservative delay is computed, and the channel estimation



D. Jurca and P. Frossard 7

0

5

10
×103

Sc
h

ed
u

le
d

fr
am

e
si

ze
,

IP
B

P
B

P
B
..
.

st
ru

ct
u

re
(b

yt
es

)

200 300 400 500 600 700 800 900 1000

Frame time at the decoder (ms)

Encoded frame size

Conservative playback scheduling

(a)

0

5

10
×103

Sc
h

ed
u

le
d

fr
am

e
si

ze
,

IP
B

P
B

P
B
..
.

st
ru

ct
u

re
(b

yt
es

)

200 300 400 500 600 700 800 900 1000

Frame time at the decoder (ms)

Encoded frame size

Frame reordering scheduling

(b)

Figure 7: Example of conservative δ and frame reordering scheduling.

81

82

83

84

85

M
SE

200 220 240 260 280 300

Playback delay Δ (ms)

Optimal conservative delay 300 kbps

Heuristic conservative delay 300 kbps

(a)

70

71

72

73

74

M
SE

200 220 240 260 280 300

Playback delay Δ (ms)

Optimal conservative delay 450 kbps

Heuristic conservative delay 450 kbps

(b)

Figure 8: Quality evaluation for scheduling with heuristic and optimal δ for ns-2 network rate traces.

method is imperfect.2 Results show that being conservative
in terms of scheduling delay and initial channel rate estimate,
increases the robustness of the streaming application, with-
out significantly penalizing the received video quality. It in-
dicates that our method is robust even in extreme cases when
exact information related to the channel model is not avail-
able.

6. CONCLUSIONS

We present a new mechanism to improve the robustness of
adaptive media stream scheduling algorithms against net-
work channel variability and estimation inaccuracies. By us-
ing a conservative virtual playback delay in the scheduling
process, we compensate for possible prediction errors. The
difference between the conservative and actual playback de-
lay imposed by the client transparently absorbs the negative
effects of inexact rate estimation (e.g., increased packet delay
at the client due to channel variations). We propose a method
to determine the value of the conservative delay, as a trade-off

2 For more details on efficient bandwidth estimation mechanisms, we refer
the reader to [4].

between source quality, and robustness to bandwidth varia-
tions. The proposed solution is generic and can be employed
with any given streaming mechanism. Results show that be-
ing conservative in choosing the scheduling delay pays off,
even if the exact channel model is unknown (e.g., on simu-
lated network rate traces with competing background traf-
fic) and the rate estimation mechanism only approximates
the channel rate variations over time. The simplicity of our
solution and its effectiveness make it appropriate for any real-
time streaming mechanism over best-effort networks.

ACKNOWLEDGMENT

This work has been supported by the Swiss National Science
Foundation under Grant no. PP-002-68737.

REFERENCES

[1] P. A. Chou and Z. Miao, “Rate-distortion optimized streaming
of packetized media,” IEEE Transactions on Multimedia, vol. 8,
no. 2, pp. 390–404, 2006.

[2] K. Chebrolu and R. R. Rao, “Bandwidth aggregation for real-
time applications in heterogeneous wireless networks,” IEEE
Transactions on Mobile Computing, vol. 5, no. 4, pp. 388–403,
2006.



8 Advances in Multimedia

[3] D. Jurca and P. Frossard, “Distortion optimized multipath
video streaming,” in Proceedings of the International Packet
Video Workshop, Irvine, Calif, USA, December 2004.

[4] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: efficient available bandwidth estimation for net-
work paths,” in Proceedings of Passive and Active Measurement
Workshop (PAM ’03), La Jolla, Calif, USA, April 2003.

[5] D. Jurca and P. Frossard, “Media streaming with conservative
delay on variable rate channels,” in Proceedings of the IEEE In-
ternational Conference on Multimedia and Expo (ICME ’06),
pp. 1841–1844, Toronto, Ontario, Canada, July 2006.

[6] B. Girod and N. Färber, “Feedback-based error control for
mobile video transmission,” Proceedings of the IEEE, vol. 87,
no. 10, pp. 1707–1723, 1999.

[7] Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos, “Error re-
silient video coding techniques,” IEEE Signal Processing Maga-
zine, vol. 17, no. 4, pp. 61–82, 2000.

[8] F. Wu, H. Sun, G. Shen, et al., “SMART: an efficient, scalable,
and robust streaming video system,” EURASIP Journal on Ap-
plied Signal Processing, vol. 2004, no. 2, pp. 192–206, 2004.

[9] D. G. Sachs, I. Kozinetsev, M. Yeung, and D. L. Jones, “Hybrid
ARQ for robust video streaming over wireless LANs,” in Pro-
ceedings of the International Conference on Information Tech-
nology: Coding and Computing (ITCC ’01), pp. 317–321, Las
Vegas, Nev, USA, April 2001.

[10] R. Zhang, S. L. Regunathan, and K. Rose, “End-to-end dis-
tortion estimation for RD-based robust delivery of pre-com-
pressed video,” in Proceedings of the 35th IEEE Annual Asilomar
Conference on Signals, Systems and Computers, vol. 1, pp. 210–
214, Pacific Grove, Calif, USA, November 2001.

[11] C.-Y. Hsu, A. Ortega, and M. Khansari, “Rate control for ro-
bust video transmission over burst-error wireless channels,”
IEEE Journal on Selected Areas in Communications, vol. 17,
no. 5, pp. 756–773, 1999.

[12] D. Jurca and P. Frossard, “Video packet selection and schedul-
ing for multipath streaming,” to appear in IEEE Transactions
on Multimedia.

[13] S. Wee, W.-T. Tan, J. Apostolopoulos, and M. Etoh, “Opti-
mized video streaming for networks with varying delay,” in
Proceedings of IEEE International Conference on Multimedia
and Expo (ICME ’02), vol. 2, pp. 89–92, Lausanne, Switzer-
land, August 2002.

[14] J.-W. Ding, Y.-M. Huang, and C.-C. Chu, “An end-to-end de-
livery scheme for robust video streaming,” in Proceedings of
2nd IEEE Pacific Rim Conference on Multimedia (PCM ’01),
vol. 2195 of Lecture Notes In Computer Science, pp. 375–382,
Bejing, China, October 2001.

[15] A. Sang and S.-Q. Li, “A predictability analysis of network traf-
fic,” in Proceedings of the 19th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFCOM ’00),
vol. 1, pp. 342–351, Tel Aviv, Israel, March 2000.


	Introduction
	Related Work
	Streaming with Conservative Delay
	System overview
	Illustrative example
	Optimization problem

	Finding the Conservative Delay
	General solution
	Example channel model
	Scheduling algorithm

	Simulations
	Conclusions
	Acknowledgment
	REFERENCES

