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Abstract— Ultrasonic motors are a good alternative to electro-
magnetic motors in medical robotics, since they are electroma-
gnetically compatible. Estimating speed instead of using encoders
reduces cost and dimension of the robot on the one hand and
increases reliability on the other hand. However, no sensorless
speed controller is yet industrialized. Analytical models of the
traveling wave ultrasonic motor being too complex to be exploited
for sensorless control purpose, we suggest speed estimation based
on artificial neural networks. The artificial neural network is de-
signed based on a sensitivity analysis using design of experiments
methods. Factorial designs have been chosen to find out the effects
of each input factor, but also the effect of their interactions.
First results show that speed estimation using artificial neural
networks is a promising approach. The artificial neural network
optimized with design of experiments methods is a valid model
of the traveling wave ultrasonic motor to estimate speed.

I. MOTIVATION

We are developing haptic interfaces compatible with func-
tional magnetic resonance imaging (fMRI) for neuroscience
studies. A one degree of freedom prototype actuated by
a traveling wave ultrasonic motor (USM) using load and
speed sensors for operation under admittance control has been
developed. This device can be used in conjunction with fMRI,
providing torque and motion feedback simultaneously with
imaging without deteriorating imaging quality [1]. While the
load torque must be measured for experimental purposes,
a sensorless speed controller would reduce complexity and
favor miniaturization of the device and therefore facilitate the
intended construction of multiple degree of freedom systems.

II. TRAVELING WAVE ULTRASONIC MOTOR
A. Characteristics

USM are well suited to haptic interfaces in medical appli-
cations [2], because on one hand, they present a high power
density and a high output torque at low speed, and on the other
hand due to their magnetic compatibility [3].

Figure 1 shows a schematic of the used USM. There are
two stages of energy conversion :

o In the stator, electrical energy is converted to strain energy
through piezoceramics, where the supply signal induces
mechanical vibrations.

e The frictional impact at the stator-rotor interface trans-
forms these ultrasonic vibrations into rotary movement
of the stator.
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Fig. 1. Schematic of the motor structure. The piezoceramique wafer is etched
into sectors according to wavelength () of traveling wave. @ or © indicate
poling direction of sector.

The detailed operating principle of the USM is explained
in [4] and [5].

B. Modeling

While the linear characteristics of free vibration in the stator
in the first stage can be modeled by equations of motion, the
phenomenon at the stator-rotor interface inherently displays
non-linear dynamics and modeling becomes complex.

Important contributions are the equivalent circuit model
[4], finite element approaches [6] or the analytical model
incorporating the stator-rotor interface forces and predicting
the resulting motor performance as a function of design
parameters [7].
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Due to their complexity, these models are either difficult
or even impossible to exploit for sensorless control purposes.
Hence, we decided to model the actuator using artificial neural
networks (ANN).

In an earlier work [8] we studied the performance of the
USM. Namely, we investigated efficiency and optimized the
axial prestressing force between stator and rotor (cf. Figure
1), which is chosen according to the results obtained in [8].
Here, we consider the motor to be a black box. We use
Design of Experiment (DoE) techniques to identify how the
input parameters influence the output speed and in which
manner the inputs interact. We consider only the linear regions
of the experimental domain where the motor’s behavior is
useful. In such a way, a linear model can represent the
motor characteristics well enough. The results obtained in this
process show us which input parameters are useful as inputs
to the ANN. The ANN is then trained using the DoE data
obtained with a test bench as well as experimental data from
the prototype of the haptic interface presented in [1].

III. SENSITIVITY ANALYSIS

We know that the output of the ANN will be the motor
speed. But the possible input parameters must be the subject of
an evaluation process to understand which of them are suitable
to achieve the most accurate speed prediction at minimal cost.
Sensitivity analysis can be used to determine factors that have
a large influence on the output and also to identify interactions
between factors. These findings may show that it is sufficient
to use as inputs some subset of the correlated variables.

A. Design of Experiments

The sensitivity analysis using DoE distinguishes the present
project from earlier research done on the subject [9]. It allows
one to find the ideal input parameters to the neural network
while optimizing the accuracy of the output speed prediction.
There exists a large variety of experimental designs [10]. The
sensitivity analysis using the DoE methods is divided into the
following tasks :

e Choice of possible input parameters, and definition of

their range.

e Data acquisition, by varying the input parameters accor-

ding to the defined range.

e Determination of the influence on the output and corre-

lation of the input parameters.

The last and crucial step is carried out by applying the DoE
formalism implemented in Matlab to the experimental data. All
measurable input parameters are tested for their influences on
the output and their correlation. If the influence on the output
of a parameter is below a specific value or if its correlation
with another, more critical parameter, is above a defined value,
it will not be used as an input for the ANN.

B. Factorial Design and Polynominal Linear Regression

This method allows us to study the effect of each factor on
the response variable, while requiring fewer observations than

by conducting separate experiments for each factor indepen-
dently. This is achieved by choosing the points of measure
at the edge of the multi-dimensional domain defined by the
input parameter ranges and fitting the acquired data to an
appropriate polynomial function corresponding to a Taylor
series of the model being analyzed (Equation 1). It also allows
studying the effect of the interaction between factors on the
response variable. Full factorial design allows for determining
all coefficients of a linear model with all possible interactions
within 2N runs.

The coefficients are found by polynomial linear regression
(least square fitting) from the data obtained according to the
designed experiment.

N N
Y(z)=ao+ Zaiwi + Zaijmixj +
i=1 i#j
N (1)
Z QT T Tk + Q5. NTi-..TN
i#jFk
The coefficients ag,a... are called the half effects of the
x; factors, which are classified as follows :
ap constant effect (equal to the experiments mean)
a; main half effects
ai; first order interaction half effects
a;j1; second order interaction half effects
If the response of the system is organized in a vector R =
[RiRs...R,])T and the coefficients of the model in a vector
C = [apayas...a1s...a12.. )7, then the system of equations is
written down and solved by the following way :

XC=R=C=(XT"X)"'XTR )
IV. RESULTS OF THE SENSITIVITY ANALYSIS

A. Data Analysis and ANOVA

There are two main methods of data analysis :

e The comparison of the data with a statistical distribution

e The comparison of a subset of the data with another

subset of the data

We are interested in comparing the effects with the residual
error. Therefore, we opt for the second approach by applying
an analysis of variance (ANOVA) on the modeling data. Let
n be the number of sets of identical observations within each
of K factors and y;; be the jth observation within factor <.
We balance the ANOVA by restricting n to be the same for
each factor.

The total sum of squares :

k n
SST = ZZ(y” —5)2 (3)

i=1 j=1
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ANOVA global

Source SS df MS F p
Model | 1297505.22 | 36 | 36041.81 | 101.38 | 0.00
Residual 8888.03 25 355.52
Test | 1306393.25 | 61

ANOVA model factors

Source SS df MS F P
Iph | 477413.32 1 | 477413.32 | 1342.85 | 0.00
Uph | 156202.14 1 156202.14 | 439.36 0.00
Itot | 389072.18 1 | 389072.18 | 1094.37 | 0.00
M | 184274.89 1 184274.89 | 518.32 0.00
f 12960.12 1 12960.12 36.45 0.00
phi 906.65 1 906.65 2.55 12.28
Uo 661.86 1 661.86 1.86 18.46
Iph*Iph 4519.94 1 4519.94 12.71 0.15
Iph*Uph 5304.48 1 5304.48 14.92 0.07
Iph*Itot 3740.86 1 3740.86 10.52 0.33
Iph*M 26893.81 1 26893.81 75.65 0.00
Iph*f 305.03 1 305.03 0.86 36.32
Iph*phi 4038.34 1 4038.34 11.36 0.24
Iph*Uo 1522.80 1 1522.80 4.28 4.90
Uph*Uph 27.21 1 27.21 0.08 78.43
Uph*Itot 2831.74 1 2831.74 7.97 0.92
Uph*M 6793.38 1 6793.38 19.11 0.02
Uph*f 1710.36 1 1710.36 4.81 3.78
Uph*phi 625.64 1 625.64 1.76 19.66
Uph*Uo 144.41 1 144.41 0.41 52.97
Itot*Itot 3191.91 1 3191.91 8.98 0.61
Itot*M 189.53 1 189.53 0.53 4721
Itot*f 1487.05 1 1487.05 4.18 5.15
Itot*phi 6570.12 1 6570.12 18.48 0.02
Itot*Uo 452.15 1 452.15 1.27 27.01
M*M 1578.93 1 1578.93 4.44 4.53
M*f 148.35 1 148.35 0.42 52.42
M*phi 220.63 1 220.63 0.62 43.82
M*Uo 0.00 1 0.00 0.00 99.81
£+ 449.77 1 449.77 1.27 27.14
f*phi 28.89 1 28.89 0.08 77.80
f*Uo 92.38 1 92.38 0.26 61.47
phi*phi 511.47 1 511.47 1.44 24.16
phi*Uo 16.11 1 16.11 0.05 83.31
Uo*Uo 55.77 1 55.77 0.16 69.54
Residual 8888.03 25 355.52
Test | 1306393.25 | 61

TABLE I
THE TABLE SHOWS SUM OF SQUARES (SS), DEGREES OF FREEDOM (DF),
MEAN OF SQUARES (MS), THE F-RATIO (F) AND THE PROBABILITY
GETTING THE SAME RATIO RANDOMLY (P). THUS THE ANOVA
INDICATES WHICH EFFECTS ARE SIGNIFICANT.

The sum of squares of the model :
2 2

1 k n
— o [ 22w 5)

i=1 j=1

k n
1
ssu=13" (3w,
i=1 \j=1
The sum of squares of the residual :

k n

SSR=Y"Y (i — )’ = SST — SSM (6)

i=1 j=1

where g; is the mean of observations within a factor and y
is the mean of means [11].

The results of the ANOVA are shown in Table I. We
calculate the F-Ratio (F) of the mean squared values (MS)
of model and residual. It is expected that the mean square of
a significant effect will be significantly greater than the mean
square of the residual errors. The evaluation of the ratio is
done in an objective way by comparing it with the probability
of such a ratio between two random variables following a
x? distribution. This comparison is then done using the F-
cumulative distribution function, giving the probability of
getting the same ratio randomly :

vy —2

o I { 2 v\ * toz
e s ==
SR N G L
Here, the higher the probability of p, the less the effect is

significant. The distribution depends on the degrees of freedom
v1 (the considered effect) and 15 (the residual).

B. Test Bench

A schematic representation of the test bench is shown in
Figure 2.
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Fig. 2. Test bench.

The mechanical system is composed of a Shinsei USR
60 USM mounted on a aluminium support and coupled to
a hysteresis dynamometer. The dynamometer delivers load
torque independently of motor speed and therefore allows for
measuring the motor characteristics on the full range from
no load to motor blocking. Speed is measured with a rotary
optical encoder.

A TI TMS2407 Microcontroller is used to compute the
control signal ; the power conversion circuit described in [12]
generates the two alternating voltages which drive the motor.
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C. Linear Model of USM

To represent the system characterized by the input parame-
ters in Table II with a linear model, we use a method including
also quadratic effects. The space spanned by the factorial
design was augmented with star points along the axes, and
center points at the origin to form a central composite design.
Second order and higher interaction effects were neglected.

aN/a0 [-]

al a2 a3 a5 a6 al

a4
coefficients

(a) Principle relative effects of the different input parameters.

a34 a3s
coefficients

(b) Interaction effects.

aN/a0 [-]

it il r L
ass 66 a7l

all a22 a33 add
coefficients

(¢) Quadratic effects.

Fig. 3. Linear model coefficients.

Temperature is held constant in experimentation, which is
justified as in our application the motor is never in continuous

| Parameter | Symbol | [-+] | Unit
al Phase current Iyn [0.095,0.553] | A
az | Phase voltage Uph [49.9,122.2] \%

as Supply current Tiot [0.6,2.8] A

aq | Torque M [0,1] Nm

as | Frequency f [39.5,44] kHz

ag | Phase shift 10} [%,g] rad

a7 | Supply voltage | Up [15,20] A%
TABLE II

PARAMETER DEFINITION FOR THE DESIGNED EXPERIMENT.

motion for longer than a few seconds, and therefore its surface
temperature remains stable. This hypothesis is valid only in
well defined laboratory conditions and the study presented here
must be extended to be of general validity.

As we see from Equation 1, the coefficients of the obtai-
ned linear model contain information about the parameter’s
influence on the output. Referring to Figure 3(a), we see that
the parameters with the greatest influence on the speed output
are frequency (f), current (Iph and I;,;) and the applied load
torque (M). Figure 3(b) represents the interaction coefficients.
Interaction of Iph with Uph (a12), Itot (a13) and f (ais5) is
important. The interaction of the two current measures being
obvious, phase voltage and current are linked as the voltage
is a image of the current by the piezoceramic impedance.
Amplitude and intensity are then linked to frequency as
the piezoceramic impedance is a function of its vibration
frequency (cf. Figure 4).
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Fig. 4. Impedance as a function of frequency.

From the above observations, it is apparent that frequency
and load torque must be taken into account as inputs for the
neural network. From the other possible inputs, phase current
is selected as a third input parameter. Although its contribution
to the output is slightly lower than the supply current’s, the
correlation with phase and supply voltage is higher.

D. Response Surface Analysis

The excitation voltage of the piezoceramics must be chosen
to obtain an optimal behavior and is not exploited as main
control variable. For speed control we have thus the choice
between frequency f and phase shift ¢. We are especially
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(b) a1 = ¢ and az = M.

c‘(‘)lcl'l'icic;x‘is
(@) a1 = f and a2 = M.

Fig. 5. Coefficients of the response surface models ; (a) corresponds to Figure
6 and (b) to Figure 7.

interested in how the motor reacts on an externally applied load
torque because this represents the intended working condition.
Two studies are therefore necessary :

speed [rpm]

frequency f [kHz]

torque M [Nm]

Fig. 6. Response surface : Torque and frequency
e speed output of the motor and the behavior under load
when phase shift between the two excitation signals is
varied at constant optimal driving frequency
e speed output of the motor and the behavior under load
as a function of drive frequency when the phase shift
between the two excitation signals is held constant.

In both cases, a set of two parameters (f,M and ¢,M
respectively) is chosen to find the model coefficients by
the method of least squares (Figure 5). The coefficients are
then used to draw the response surface based on the entire
normalized input space. The second order model taking into
account main effects, interactions and squared terms delivers
the best model of the real motor behavior, which was verified
with measures outside the central composite design. At three
levels of load torque, the respective second model parameter
was varied in the region of interest (Figure 7 and Figure
6). The response surface corresponding to phase shift control
(Figure 7) does not match reality at high torque for low values
of phase shift. Speed becomes negative there, which is not
true, but rotor stops due to non-linearity in the rotor-stator
surface contact phenomenon. This is known, and dead-zone
compensation methods have been proposed [13]. However, for
the present application, where high load torque is applied, this

speed [rpm]

torque M [Nm]

phase ¢ [°]

Fig. 7. Response surface : Torque and phase.

dead-zone is not acceptable and we therefore use a different
frequency control method. Figure 6 shows that by controlling
the frequency on an interval of 40[/kHz] < f < 44[kHz],
the speed output follows a linear law over the entire working
domain (load torque of M > 0.8 Nm is never applied at normal
working conditions).

V. MOTOR CONTROL

Now we know that, basically, the speed of the USM can be
controlled by varying the frequency, the voltage amplitude and
the phase difference of the two sinusoidal input waveforms.
However, the USM suffers from severe system nonlinearities
and parameter variations due to changes in load torque as
well as surface temperature. Therefore, it is not possible to
use a basic PID type controller without any precaution. We
have developed a controller based on amplitude modulation of
the supply voltage. We use the degree of freedom offered by
the amplitude to linearize the frequency-speed characteristic
chosen as control law in the previous section. The optimal
variation of the supply voltage, making it possible to linearize
this characteristic, is obtained when the parameter of control a
is a function of the frequency according to the diagram shown
in Figure 8.
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I P —
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motor

Pl speed
A controller

Ne

speed Iph
observer M

Fig. 8. Schematic representation of the implemented speed controller.
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A. Speed limitation

As soon as the motor is operated outside the linear domain,
it is likely to stop abruptly. Most commonly this happens when
the commanded frequency is dropped below antiresonance
which varies as a function of applied torque as illustrated in
Figure 9. This characteristic is taken into account in the control
algorithm in order to prevent this pull-out phenomena.
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Fig. 9. Change of the frequency-speed characteristic with varying load torque
conditions.
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Fig. 10. Speed limitation to prevent pull-off due to changes in the frequency-
speed characteristic.

Figure 10 shows schematically that as we would limit the
allowed frequency range by fi.in, the drift of the resonance
frequency induced by tempereture shift AT would decrease
the maximum speed by Anjy. Hence we introduce a speed
limit ny;, leaving just a small security gap Ang relating to
the resonance peak.

VI. SPEED ESTIMATION USING ARTIFICIAL NEURAL
NETWORKS

Estimating speed instead of using encoders reduces cost
and dimensions of the robot and increases reliability. An
ANN algorithm is chosen for the purpose of speed estimation
because of the nonlinearity of the motor characteristics and
the fact that valid analytical models are still too complex to be
exploited for control purposes. A neural network, given that
enough information is supplied, can be trained to learn any
function. Inspired by biologic nervous systems, it is composed

of simple elements (neurons) working in parallel which are
linked by weighted connections. These weights are adjusted
during offline training in order to minimize the error between
measured and estimated output.

The study described in the preceding chapters showed that
a mathematical relation

n = fa(f, Ipn, M) (7

gives the relationship between motor speed n and frequency
f, phase current I, and load torque M. Using this function
fa, we are able to estimate motor speed. The ANN is then
trained using the DoE data obtained with a test bench as well
as experimental data from the prototype aiming to identify this
relation. After the training step, the online simulation of the
network, excited with measurements of frequency (f), phase
current (1) and load torque (M), allows us to estimate speed
(Figure 13).

Neuron

Input vector p

a=/f,(Wp +b)
> » fn >

Fig. 11. Neuron model.

The model of the neuron used is represented in Figure
11, with R the number of elements in the input vector p.
Each input is balanced by a corresponding weight W r. The
sum of the balanced inputs, with bias b, represents the input
of the transfer function f, associated to each neuron. Any
differentiable transfer function f,, may be used to generate
the neuron output.

Several neurons combined in parallel form a layer and
multiple layers are called a multi layer ANN. Every element of
the input vector p is connected to every neuron via the matrix
W containing the corresponding weights. The neuron model
is hence applied for every neuron in the layer to generate the
output vector,

a= f,(Wp+b) )

which is the input to the next layer of the network. The
structure of the ANN designed to estimate the function given
in Equation 7 is shown in Figure 12.

Once the structure is determined, the weights and biases
for each neuron must be initialized and training can start. The
training process requires a set of input vectors p and corres-
ponding objective output vector t. During training, the weights
and biases are adjusted with the objective of minimizing the
performance function 9. The performance function is defined
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Hidden layer Output layer

Input p

a'=7/(W'p+b) 0 =/2 (Wl +b?)

Fig. 12. The ANN is composed of a hidden layer with 12 neurons (sigmoid
type transfert function) and a output layer with a single linear neuron.

as the mean of the squared error between network output a(k)
and objective output t(k) over the length N of one training
step. The weights and biases are updated at the end of each
training step.

N

— 2
V=5 (k) - t(k)) ©

k=1
The backpropagation algorithm [14] is used to train the ANN.
The idea of this algorithm is to calculate the partial derivative
of the performance function with respect to each weight of the
network. Let WW; ; be the weight of any neuronal connection
i-j of the network, the adjustment AW; ; at the end of every
training step is found with

oV
—
6Wi’j

The algorithm calculates then the new value of the connection
weight by the following Equation :

Wi’j(h + 1) = Wzyj(h) + AWl’J(h)

AW; ;= (10)

Y

where h is the h!" iteration of the backpropagation algorithm.

To find the minimum of the performance function 9, we
apply the Levenberg-Marquardt algorithm [15]. The Hessian
matrix (second derivatives) is approximated as

ViV =J") (12)
and the gradient can be computed as
vV =1J"e (13)

where J is the Jacobian matrix that contains first derivatives
of the network errors with respect to the weights and biases,
and e is a vector of network errors. Computing the Jacobian
matrix through a standard backpropagation technique is much
less complex than computing the Hessian matrix [16].
Finally, with our network structure shown in Figure 12, an
analytical approximation of the function f; (Equation 7) given
by the ANN after being trained, enables speed estimation :

n=f2(W(f, (Wp+b'))+b? (14)

Where
W! is the weight matrix for the connection between the
hidden layer and the input of the network.
W2 is the weight matrix for the connection between the
output layer and the hidden layer of the network.
b! is the bias vector of the hidden layer.
b? is the bias vector of the output layer.
p is the input vector containing here the values of
frequency, phase current and load torque as follows :

f
P= Iph
M

5)

The transfer function of the hidden layer (cf. Equation 16)
is of sigmoid type, which allows the identification of non-
linearities, while the transfer function of the output layer is of
linear type, which means that the output may be outside the
interval [-1 1].

1 2

fal@) = Ate) (16)

fi(x)=ua (17)

VII. EXPERIMENTAL RESULTS

The ANN is trained offline with the backpropagation me-
thod in 500 epochs using the DoE data. To verify the validity
of the proposed speed estimation method, the estimated rotor
speed is used as actual speed in the PI speed controller (cf.
Figure 8). We compare the predicted motor speed 7 to the
measured motor speed for the transient response (Figure 13)
and the steady-state response (Figure 14). While the speed
prediction error is below 5% when the temperature remains
approximatively constant, the error reaches 10% when the
maximal resonance frequency shift due to motor heating is
reached. Hence, the proposed speed estimation method is valid
for the application in the haptic feedback device, but is less
accurate for continous operation of the USM.

VIII. CONCLUSION

In this paper, we presented a sensorless speed controller
for USM using an artificial neural network model for speed
estimation. Design of experiments methods make it possible
to precisely identify the sensitivity of the speed output on the
different input parameters of the USM. This approach is par-
ticularly interesting because significant data can be acquired
with a minimal number of experiments. Using this data, we
designed an ANN modeling the rotor speed of the USM based
on frequency, phase current and load torque measures. The
implemented speed estimation based on this ANN model was
tested for its transient and steady state response. However,
while the results were good for the presented application,
validity for other USM and different applications has yet to
be shown. Therefore, the research will be continued with the
aim to generalize the presented speed estimation method.
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Fig. 13. The results of speed estimation : transient response.
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Fig. 14.  The results of speed estimation : steady-state response.
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