Sensorless Speed Control of Traveling Wave Ultrasonic Motor

Ultrasonic motors are a good alternative to electromagnetic motors in medical robotics, since they are electromagnetically compatible. Estimating speed instead of using encoders reduces cost and dimension of the robot on the one hand and increases reliability on the other hand. However, no sensorless speed controller is yet industrialized. Analytical models of the traveling wave ultrasonic motor being too complex to be exploited for sensorless control purpose, we suggest speed estimation based on artificial neural networks. The artificial neural network is designed based on a sensitivity analysis using design of experiments methods. Factorial designs have been chosen to find out the effects of each input factor, but also the effect of their interactions. First results show that speed estimation using artificial neural networks is a promising approach. The artificial neural network optimized with design of experiments methods is a valid model of the traveling wave ultrasonic motor to estimate speed.

Publié dans:
Conference Record of the 2006 IEEE Industry Applications Conference, 5, 2488-2495
Présenté à:
IEEE Industry Applications Conference, Tampa, FL, Oct. 2006

Note: Le statut de ce fichier est: Anyone

 Notice créée le 2006-12-22, modifiée le 2020-10-28

Télécharger le document

Évaluer ce document:

Rate this document:
(Pas encore évalué)