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Abstract—Distributed estimation of an unknown signal is a
common task in sensor networks. The scenario usually envi-
sioned consists of several nodes, each making an observation
correlated with the signal of interest. The acquired data is then
wirelessly transmitted to a fusion center that aims at estimating
the desired signal within a prescribed accuracy. Motivated by
the obvious processing limitations inherent to such distributed
infrastructures, we seek to find efficient compression schemes
that account for limited available power and communication
bandwidth. In this paper, we propose a transform-based approach
to this problem where each sensor provides the fusion center
with a low-dimensional approximation of its local observation by
means of a suitable linear transform. Under the mean squared
error criterion, we derive the optimal solution to apply at one
sensor assuming all else being fixed. This naturally leads to an
iterative algorithm whose optimality properties are exemplified
using a simple though illustrative correlation model. The station-
arity issue is also investigated. Under restrictive assumptions,
we then provide an asymptotic distortion analysis, as the size of
the observed vectors becomes large. Our derivation relies on a
variation of the Toeplitz distribution theorem, which allows us to
provide a reverse “water-filling” perspective to the problem of
optimal dimensionality reduction. We illustrate, with a first-order
Gauss–Markov model, how our findings allow for the computation
of analytical closed-form distortion formulas that provide an
accurate estimation of the reconstruction error obtained in the
finite-dimensional regime.

Index Terms—Asymptotic eigenvalue distribution, distributed
approximation and estimation, Karhunen–Loève transform
(KLT), large Toeplitz matrices, principal component analysis,
Toeplitz distribution theorem.
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I. INTRODUCTION

WIRELESS sensor networks comprising a multitude of
battery-operated sensing devices have recently emerged

as a promising technology for a wide range of applications [2].
Typical examples are the reconstruction of a tridimensional
scene by means of multiview images acquired with a network
of cameras [3], acoustic beamforming using an array of mi-
crophones [4], or environmental monitoring by way of nodes
measuring temperature, light or pressure variations [5]. All
these scenarios involve a set of acquiring devices distributed
over a large area and making local observations correlated with
a signal (or field) of interest [6]. Each sensor then transmits
information about its measurements to a fusion center whose
primary goal is to merge the received data in order to recover
the original signal within a prescribed accuracy. In this context,
efficient transmission strategies should reduce the amount of
information conveyed to the fusion center to account for the
stringent power consumption and communication bandwidth
limitations imposed by such wireless architectures.

In this paper, we adopt a transform-based approach to the
aforementioned problem. More precisely, each sensor (or ter-
minal) applies a suitable linear transform to its random observa-
tion vector so as to reduce its dimensionality. The fusion center
then reconstructs the random source vector of interest by appro-
priately combining the low-dimensional approximations pro-
vided by the terminals. The case with two terminals is depicted
in Fig. 1. Under the mean squared error fidelity criterion consid-
ered in this paper, we seek to find the optimal transform matrix
to be applied at each terminal, accounting for correlation across
the observations and the fact that intersensor communication
is precluded. Under these assumptions, we derive the optimal
strategy at one terminal assuming all else being fixed. This local
perspective suggests an iterative algorithm, referred to as Algo-
rithm 1, that is proved to converge to a stationary point of the
underlying cost function. The possible suboptimality of this dis-
tributed algorithm is illustrated with a simple yet insightful ex-
ample. We then prove that, if the involved signals exhibit some
stationarity properties, it is possible to provide an asymptotic
analysis of the distortion incurred by our distributed transform,
as the size of the vectors becomes large. This aims at taking into
account the correlation structure of the sources across space or
time. To this end, we define the infinite block-length distortion
and demonstrate how a variation of the Toeplitz distribution the-
orem [7]–[9] allows us to compute the distortion in closed form.
The optimality results provided in the finite-dimensional regime
are then extended to the infinite case and an asymptotic coun-
terpart to Algorithm 1, referred to as Algorithm 2, is given. We
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Fig. 1. Block diagram of the distributed approximation and estimation problem
with two terminals. Terminal l observes a vector X correlated with the signal
of interest S and provides the FC with a k -dimensional approximation Y =
C X of the observed vector (l = 1; 2). Based on the information received, the
FC computes the reconstruction Ŝ .

also show, with a first-order Gauss–Markov correlation model,
how the infinite-dimensional distortion analysis considered in
this paper allows us to derive closed-form analytical formulas
of the infinite block-length distortion for various scenarios of in-
terest. A crucial observation is that, in this example, our asymp-
totic analysis provides an excellent approximation of the distor-
tion obtained in the finite dimensional regime already for small
block lengths, highlighting the practicality of our approach.

In the literature, the problem of distributed estimation with
communication constraints has been studied by various re-
searchers over the past decade (see, for example, [10]–[14]).
While our asymptotic analysis appears to be new, the trans-
form-based approach considered here in the finite-dimensional
regime is equivalent to the linear estimation fusion problem
investigated by Zhang et al. in [15] and [16]. Our solution is,
however, different from theirs and allows us to conveniently de-
scribe the optimal architecture as a two-stage process. Recently,
and in parallel to our work, Schizas et al. [17] extended the
results of [15] and [16] to the important case of nonideal com-
munications links (fading and noise) and non-Gaussian signals.
While of great interest, this generality will not be considered
here since we chiefly aim at conveying the basic ideas behind
our asymptotic study. Our construction builds upon the dis-
tributed Karhunen–Loève transform (KLT) devised by Gastpar
et al. [13]. It is, however, slightly more general as the vectors
of interest do not need to be directly observed at the sensors.
These transforms extend the concept of principal component
analysis [18], [19] to a distributed setup. As shown in [13],
they also enjoy some optimality properties in the compression
(rate-distortion) framework [20]. They thus provide a transform
coding perspective [21] to the (remote) multiterminal source
coding problem whose general solution remains unknown to
date. Moreover, various optimality results can be proved in the
high-rate regime, as demonstrated by Rebollo-Monedero et al.
in [22] and [23]. From a more practical viewpoint, they have
been successfully applied, for example, to distributed audio and
video coding [24]–[26].

The outline of this paper is as follows. In Section II, we
present the distributed approximation and estimation problem.
Section III offers a local perspective to the general optimization
task by means of an iterative algorithm. The optimality of the
proposed scheme is also investigated and some stationarity
issues are discussed. A distortion analysis in the infinite-di-
mensional regime is then provided in Section IV. Using these
findings, we derive closed-form analytical distortion formulas

for a simple correlation model in Section V. Section VI con-
cludes this paper.

II. DISTRIBUTED APPROXIMATION AND ESTIMATION PROBLEM

The considered setup consists of terminals and a fusion
center (FC). Terminal observes a vector

correlated with a random vector that needs to be
estimated at the FC. For simplicity, we will assume that

for all . Limited by communication constraints, terminal
provides the FC with a -dimensional approximation of its
observed vector . This is achieved by means of the
linear transformation

(1)

where is a transform matrix of size . The FC
then computes the reconstruction based on the vec-
tors provided by the terminals. For ease of notation,
we will write and

with and
. The involved signals are assumed to be

zero-mean jointly Gaussian random vectors with (cross-)co-
variance matrices known at both the sensors and the FC. In
the sequel, denotes the covariance matrix of a vector ,

denotes the cross-covariance matrix between and ,
and denotes the covariance matrix of the prediction error

, where denotes the conditional expectation.
Under the mean squared error (MSE) criterion considered in
this paper, the optimal reconstruction is given by the condi-
tional expectation of given . In the jointly Gaussian case,
this can be simply expressed as [27, Sec. IV.B]

(2)

where denotes the conjugate (Hermitian) transpose and is
the block diagonal matrix with diagonal blocks .
Note that, in the sequel, the involved covariance matrices are as-
sumed to be invertible. The singular case can be handled simi-
larly using the modifications explained in Appendix I. For given

’s, the goal is thus to find the block diagonal transform that
minimizes the mean-squared estimation error [27, Sec. IV.B]

(3)

where stands for the Euclidean norm and denotes the
trace operator. A solution to this optimization problem seems
difficult to derive because the optimal matrix is constrained
to have a particular block-diagonal form that reflects the dis-
tributed nature of the setup. In the next section, we investigate
a local perspective to the above minimization task where the
transforms are optimized in turn at each terminal. Moreover,
the benefits, tradeoffs, and complexity issues that are inherent
to this distributed estimation problem are fully captured by a
two-terminal scenario as illustrated in Fig. 1. For sim-
plicity of exposure, we will thus concentrate on this setup for the
rest of the discussion. The case where can be similarly
treated by fixing a group of terminals while optimizing
the remaining one.
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III. LOCAL PERSPECTIVE IN THE FINITE-DIMENSIONAL REGIME

We provide a local perspective to the problem illustrated in
Fig. 1. In the first part, we derive the optimal transform to be
applied at one terminal assuming the other is fixed. We then de-
scribe an iterative algorithm (Algorithm 1) based on this result
and discuss its optimality. In the second part, we address some
stationarity issues which are of particular interest in this discus-
sion.

A. Local Optimality

Let us assume that one of the terminals (say terminal 2)
provides a low-dimensional approximation of its
local observation and that we wish to find an optimal transform

that needs to be applied at terminal 1. The solution to this
problem is characterized by the following theorem.1

Theorem 3.1: The optimal transform is given
by

(4)

where is the matrix whose columns are the
eigenvectors of the matrix corresponding to the
largest eigenvalues and where with

. The resulting minimum mean squared error (MMSE) is
computed as

(5)

where denote the largest eigenvalues of
arranged in increasing order.

Proof: See Appendix II.

Theorem 3.1 shows that the optimal transform amounts to
first compute the best estimate of (Wiener filtering) as if the
error vector (or, equivalently, the side information ) were
available at the encoder and then simply apply a KLT on this
estimate. In other words, it says that we should send the part
of that can be predicted by but not by . Furthermore,
it is seen in the proof of Theorem 3.1 that the availability of
the side information at both the encoder and the decoder
results in the same MMSE. In particular, the minimum distortion

in (5) corresponds to the part of that can be
estimated neither by nor by , while the sum corresponds to
the subspace approximation error. Note that here, and are
assumed to be fixed. One may investigate how a total budget
can be optimally shared among the two terminals by considering
the possible pairs satisfying .

Similarly to the iterative algorithms developed in [15], [17],
and [13], the local perspective offered by Theorem 3.1 suggests
an iterative approach to the quest of an optimal distributed trans-
form coding architecture. Namely, terminals 1 and 2 both se-
lect an arbitrary initial transform matrix of size and

1By construction, an optimal transform for this distributed approximation and
estimation problem inherits the nonuniqueness of the KLT in the centralized
scenario [18], [19]. The optimal solution is thus not unique in general.

, respectively.2 In turn, each terminal then updates its
transform as described by Theorem 3.1 . Note that Theorem 3.1
is stated from the perspective of terminal 1. It should be clear
that an optimal transform for terminal 2 is obtained by simply
exchanging the role of the two terminals. This allows us to re-
place the original bidimensional block-component optimization
problem by an iterative one-dimensional block-component min-
imization task for which conclusive results can be found. The
algorithm can be described as follows.

Algorithm 1

Select a fixed tolerance and initial matrices and of
size and , respectively.

while (true)

for

Compute as given by Theorem 3.1.

end

If MSE MSE then stop.

;

end

The outcome of this iterative algorithm is, however, not guar-
anteed to be a global minimum of the cost function but just a
stationary point that is either a local minimum or a saddle point.
This property follows straightforwardly from [13, Th. 9]. To fur-
ther illustrate this fact, we will now consider a simple numerical
example.

Example 3.2: Suppose that the source is a Gaussian random
vector with mean zero and covariance matrix

for some correlation parameter . The observed vectors
and are noisy version of the source, i.e.,

and , where is a Gaussian random vector with
mean zero and covariance matrix . Here,

denotes the identity matrix of size . The vectors , ,
and are assumed to be independent. Both terminals are re-
quired to provide a one-dimensional approximation of their ob-
servation. Because the performance is invariant under scaling,
the transforms applied at the terminals may be parameterized
as and for some
scalars and . We plot in Fig. 2(a) the distortion surface ob-
tained for and . A top view of a portion of the
optimization surface is depicted in Fig. 2(b). We observe that the
point corresponds to a local minimum along both (op-
timization) directions and , but is, however, a saddle point of
the overall cost function. Algorithm 1 will thus stop if it reaches

2Strictly speaking, only one terminal needs to be initialized in a two-terminal
setup. The initial transform of the other terminal is computed at the first iteration.
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Fig. 2. Distortion surface of Example 3.2 with � = 0:5 and � = 1. (a) Cost
function to be minimized. (b) Top view of a portion of the optimization surface.
The point (� ; # ) is a local minimum along both the optimization directions �
and # (indicated by the horizontal and vertical lines) but only a saddle point of
the overall cost function.

this point, yielding a suboptimal solution in this case. Proba-
bilistic methods, such as simulated annealing [28], may be used
to increase the probability of reaching the global optimum. A
thorough exposure of such techniques is, however, beyond the
scope of this work.

B. Stationarity

Another optimality issue that arises with the iterative algo-
rithm described previously, and which is of central interest in
our discussion, is the question of stationarity. Note that here, the
term stationarity refers either to space or time stationarity since
both can be handled equivalently. Most signals encountered in
practice do not exhibit such stationarity properties. However,
in many practical applications (e.g., multichannel audio coding
[29]), the signals are processed on a frame-by-frame basis so as
to reduce the computational complexity. Every frame is then as-
sumed to be the samples of a real, periodic, and time stationary
random process such that the involved covariance matrices are
(Hermitian) circulant. In this case, the decorrelating transform
is the discrete Fourier transform (DFT) [8, Sec. 3.1]. Moreover,
the (real) eigenvalues are simply obtained by taking the DFT
of the first row of such matrices. The aforementioned practical

motivations suggest that we analyze the proposed distributed
transform coding algorithm with processes that exhibit addi-
tional stationary properties. Because the next section specifi-
cally addresses the distortion behavior in the limit of large vector
size, the finite-dimensional analysis provided here will further
assume that the source and observed vectors are of the same
length and that the (cross-)covariance matrices
involving , , or are circulant. This aims at analyzing the
important remote sensing scenario where the observations are
filtered (with a linear and time-invariant filter) and noisy ver-
sions of the vector of interest. Returning to Algorithm 1, we
observe that the MSE incurred at each step (Theorem 3.1) can
be computed using the eigenvalues of some carefully chosen
covariance matrices, namely, and . In the next
proposition, we show that, with proper initialization, the itera-
tions of Algorithm 1 will only involve circulant matrices, hence
making the distortion at each step analytically tractable.

Proposition 3.3: Assume that the (cross-)covariance matrices
involving , , and are circulant and that the initial trans-
forms of Algorithm 1 can be written under the form

for (6)

where is the circulant matrix and is the
matrix whose columns are chosen among the columns of the

DFT matrix defined by

for

Then, at each step of Algorithm 1, the transforms can
be expressed under the form (6) and the covariance matrices in-
volved in the computation of the MSE given by (5) are (Hermi-
tian) circulant.

Proof: See Appendix III.

Initial transforms that satisfy the assumptions of Proposition
3.3 include the scenario where the two terminals disregard each
other’s presence and apply an optimal strategy in this context,
i.e., by selecting

and (7)

where the columns of are the eigenvectors corresponding
to the largest eigenvalues of . A careful ini-
tialization thus ensures that, at each step of Algorithm 1, the
covariance matrices involved in the computation of the MSE
are of (Hermitian) circulant form. Their (real) eigenvalues can
hence be easily characterized analytically. While not being cru-
cial when the observed vectors are of finite length, an analo-
gous property will allow us to derive closed-form analytical ex-
pressions of the distortion incurred by the distributed transform
in the infinite-dimensional regime. This will be investigated in
greater details in Section IV. Again, it is important to emphasize
that the particular form imposed by Proposition 3.3 on the initial
transforms may not conduct the proposed iterative algorithm to
the global minimum. In other words, the ability to analytically
track the MSE obtained at each iteration may come at the cost
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Fig. 3. Difference, in MSE, between the outcome of Algorithm 1 and the globally optimal solution for different values of � and �. We observe the possible
suboptimality of the proposed iterative scheme.

of a suboptimal solution. This fact is illustrated by the following
numerical example.

Example 3.4: Consider the vectors , , and defined
in Example 3.2. It is easily seen that the (cross-)covariance ma-
trices are given by

and

i.e., are Hermitian circulant. Here again, both terminals are re-
quired to provide a one-dimensional approximation of their ob-
servation. Algorithm 1 was run for different -pairs using
the initial transforms (7). In Fig. 3, we plot the loss MSE
incurred by Algorithm 1 with respect to the optimal solution
obtained by inspection. While global optimality is achieved for
a wide range of values, the considered initialization leads the it-
erative algorithm to a suboptimal solution in some cases.

IV. LOCAL PERSPECTIVE IN THE INFINITE-DIMENSIONAL

REGIME

In the previous section, we analyzed the distortion incurred
by Algorithm 1 in the finite-dimensional regime under the addi-
tional assumption that the involved (cross-)covariance matrices
are circulant. The main goal of this section is to extend this anal-
ysis to the infinite-dimensional regime, i.e., as we let the length

of the source and observed vectors go to infinity. More pre-
cisely, we show in the sequel how a variation of the Toeplitz
distribution theorem [8, Th. 4.2] (see, also, [9, Ch. 7]) can pro-
vide closed-form characterizations of the reconstruction error

incurred by the distributed transform derived in Theorem 3.1,
hence for each step of Algorithm 1. In the context of data com-
pression, the Toeplitz distribution theorem can be used to de-
rive rate-distortion functions of stationary random processes in
both centralized [30] and distributed [31] scenarios. The infinite
block-length distortion analysis provided here is similar in spirit
but is carried from a pure approximation (dimensionality reduc-
tion) standpoint, keeping up with the perspective adopted so far.

Let us study the setup considered in the finite case but let-
ting tend to infinity. In this context, terminal
provides the FC with a description of size with

, i.e., where only a fraction of transformed coeffi-
cients is kept. Here, denotes the floor operation. It is worth
noting that both sizes of the observed and transformed vectors
go to infinity whereas the ratio remains constant and is given by3

. The study of the MSE under the above asymptotic
considerations is achieved by means of the following definition.

Definition 4.1 (Infinite Block-Length Distortion): Let
for . The infinite block-length distortion (IBLD)

is defined as

if the limit exists.

In Definition 4.1, denotes the distortion in the
finite-dimensional regime when terminal provides a -di-
mensional representation of its -dimensional observation by
means of a transform matrix . Note that the normalization
factor can be somewhat chosen arbitrarily. Here, we set it as
the size of the source vector . From the local perspective

3The notation � � k =m means that lim k =m = � .
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developed in Section III-A, the minimum IBLD obtained when
terminal 2 is fixed can be obtained from Theorem 3.1 by
letting tend to infinity. The ability to describe the optimal
processing to be done at terminal 1 and to compute the resulting
IBLD at the FC thus heavily depends on the knowledge we
have about the eigenvalues of the involved covariance matrices
in the limit of large vector sizes. In the sequel, we show that
under additional stationarity assumptions, conclusive results
can be found.

Before we proceed, let us establish some notation. We will de-
note by a sequence of Toeplitz matrices, with
eigenvalues , obtained from an absolutely summable se-
quence . Its discrete-time Fourier transform (DTFT)
exists, is continuous, and is bounded.4 It is referred to as power
spectral density (PSD). In the case the function is real,
we denote its essential infimum and essential supremum by
and , respectively. In the sequel, we will require the set over
which a real PSD is constant to be of (Lesbegue) measure
zero, i.e.,

(8)

for all . In particular, we will assume that is
nonzero almost everywhere (a.e.). The above technical condi-
tion ensures the continuity of the corresponding limiting eigen-
value distribution given in this case by [8, Corollary 4.1]

where . Here, corresponds
to the cardinality of the set .

Because we aim at studying the distortion behavior of pro-
cesses that exhibit stationarity properties, we will assume that
the (cross)-covariance matrices involved in Theorem 3.1 are
asymptotically Toeplitz (see [8, Sec. 2.3]). We thus follow a
similar approach to that of Section III-B, because, in the limit,
asymptotically Toeplitz matrices enjoy similar properties to
those of circulant matrices [8, Th. 2.1 and Th. 5.3]. Note that a
random vector process whose covariance matrix is asymptot-
ically equivalent to the Toeplitz matrix will be said to
have a PSD even if, strictly speaking, it is only stationary
in the limit of large .

As a means to provide an asymptotic counterpart to Theorem
3.1, let us define the -dimensional vector , where

is given by Theorem 3.1. Because , can be
obtained from and vice versa. The distortion formula of The-
orem 3.1 can hence be equivalently expressed as a function of

by simply replacing by . Considering instead of
allows us to investigate, as , the optimal way to process
the sequence observed at terminal assuming that the

4While 2�-periodic, the DTFTs considered in this paper will have ! as an
argument instead of e . This considerably lightens the notation.

strategy adopted by the other terminal is fixed. Let us consider
again the problem from the perspective of terminal 1. Assume
that the process provided by terminal 2 is expressed as

for some fixed filter , with
transfer function , chosen as to retain only a fraction
of transformed coefficients. Here, denotes the convolution op-
erator. Let us define the set

(9)

with and where satis-
fies . The complementary set of in
is denoted . Furthermore, we define the process as

where the transfer function of is given by
. Using these definitions, the choice of an op-

timal strategy for terminal 1 can be described as follows.

Theorem 4.2: The optimal process provided by ter-
minal 1 when only a fraction of transformed coefficients are
retained is given by

where the transfer function can be expressed as

(10)

The resulting infinite block-length distortion is given
by

(11)

Proof: See Appendix IV.

The optimal strategy amounts thus to bandlimit the process
such that the set of retained frequencies is of measure

. The choice of these frequencies is given by which
depends on the process provided by terminal 2. It is seen
in the proof of Theorem 4.2 that the term is
not needed for optimality because it is assumed to be nonzero
a.e. We provide it here by analogy to the finite-dimensional case.
Note also that, in a strictly analogous manner to (5), the distor-
tion given by (11) is the sum of a first term that is not influ-
enced by terminal 1, and a second term that amounts to integrate

in a reverse “water-filling” fashion where plays the
role of the “water level.” This fact is illustrated in Fig. 4(a). As

ranges from to , scopes from to as dictated
by the relation

(12)

The result is intuitively clear: the second term of the distortion
corresponds to the sum of the eigenvalues below an admissible
threshold . The relationship between and is given
by the limiting eigenvalue distribution . A closed-form
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analytical expression of the IBLD thus depends on the ability to
find satisfying (12). For an arbitrary PSD , this might
turn out to be difficult. However, if is symmetric (i.e.,
the corresponding covariance matrix is real-valued) and strictly
monotonic in , then a simple geometrical argument reveals
that the set in (9) can be expressed as

(13)

if is strictly decreasing in [see Fig. 4(b)], and

if is strictly increasing in . Interestingly, under these
restrictive assumptions, the knowledge of the limiting eigen-
value distribution is not required to compute the IBLD. This will
greatly simplify the derivation presented in Section V.

Similarly to the finite-dimensional regime, Theorem 4.2 can
be used to describe the optimal step of an iterative algorithm,
hereafter referred to as Algorithm 2. If the assumptions of the
previous theorem are satisfied at initialization, the consecutive
steps simply amount to the choice of the optimal filters
and as described by (10). In fact, by strict analogy to
Proposition 3.3, the (cross-)covariance matrices involved in the
computations of Theorem 4.2 remain asymptotically Toeplitz
over the iterations. Algorithm 1 can thus be restated in its infi-
nite-dimensional version as follows.

Algorithm 2

Select a fixed tolerance and arbitrary bandlimiting filters
and such that the sets and are of

measure and , respectively.

while (true)

for

Compute as given by Theorem 4.2.

end

If MSE MSE then stop.

;

end

In this case, the quest for optimality amounts to bandlimit,
in turn at each terminal, the observed spectrum with respect to
what is provided by the other terminal. The algorithm thus re-
duces to a “spectrum shaping game” whose outcome provides
the necessary filters. Similarly to Section III-A, it is important to
point out that the particular initialization imposed by Theorem
4.2 may lead Algorithm 2 to a suboptimal solution. The design
of an optimal distributed dimensionality reduction architecture
thus remains a challenging task.

Fig. 4. Computation of the second term in the distortion of Theorem 4.2 in a
reverse “water-filling” fashion (up to a scaling factor 2�). The value x plays
the role of the “water level.” When � = 0, x = B and � (!) is inte-
grated over [0; 2�], i.e., the distortion is maximal. When � = 1, x = b

and the distortion is minimal. (a) � (!) is arbitrary. (b) � (!) is symmetric
around � and strictly decreasing in [0; �].

V. FIRST-ORDER GAUSS–MARKOV PROCESS

We apply the results obtained previously to a first-order
Gauss–Markov process. Owing to its simplicity, it is particu-
larly suited for the analytical development that will be presented
in the sequel. We derive analytical closed-form formulas for the
IBLD that allow us to assess the performance of the distributed
estimation scheme in the infinite-dimensional regime and to
precisely compare different scenarios of interest. More impor-
tantly, we show that, in this example, our asymptotic analysis
provides an accurate estimation of the distortion incurred in
the finite case with vectors of small dimension. We also relate
these analytical results to the general two-terminal distortion
surface obtained numerically using Algorithm 1.

Let us consider a first-order Gauss–Markov process
with correlation parameter , i.e., a random process that satisfies

for

where 5 and where is a white Gaussian
noise with PSD . We will consider
the case where terminal 1 samples the odd coefficients of

and terminal 2 observes the even ones. In vector
notation, we can define the -dimensional source vector

with -dimensional observed vec-
tors and

. The sequences , ,

5The case � 2 (�1; 0) follows immediately by considering j�j.
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and are zero-mean stationary random processes whose
PSDs can be computed as

for . This setup is motivated, for example, by super-reso-
lution imaging problems, where two subsampled versions of the
same signal are acquired by cheap sensing devices in order to
build a higher resolution image. In this case, correlation (hence
stationarity) is considered across space. The analysis of the dis-
tortion in this scenario allows us to precisely quantify the gain
achievable by the use of a low-resolution image as perfect side
information, i.e., when one terminal entirely conveys its ob-
served signal to the FC. It also gives a useful characterization of
the loss incurred due to the need of interpolating missing sam-
ples, i.e., in the case one terminal does not transmit anything.

A. Centralized Scenario

We first consider the centralized scenario where the two ter-
minals are allowed to process their observations jointly. In this
case, the observed process is and a fraction of trans-
formed coefficients is kept. The next proposition provides an an-
alytical closed-form formula for the IBLD under these assump-
tions.

Proposition 5.1: The infinite block-length distortion in the
centralized scenario where a fraction of transformed coeffi-
cients is kept is given by

Proof: See Appendix V-A.

We provide in Fig. 5(a) the IBLD obtained in Proposition
5.1. We show in Fig. 5(b) how the IBLD is approximated for

and . We observe that even for small values of
, the asymptotic analysis presented here offers a very good ap-

proximation of the distortion in the finite-dimensional regime.
We also compute in Fig. 5(c) the approximation error

to quantify the quality of the
estimate with respect to the size of the source vector. The ob-
served decay suggests, once again, that the results obtained by
our asymptotical analysis approximate accurately the distortion
we would compute with a finite number of measurements. This
can be explained by the rapid decay of the correlation function

in this particular example.

B. Perfect Side Information Scenario

Let us now consider the case where terminal 1 needs to
transmit using a fraction of transformed coefficients
and that the process acts as side information, i.e., is
perfectly conveyed to the FC . The next proposition
provides an analytical closed-form formula for the IBLD under
these assumptions.

Fig. 5. IBLD in the centralized scenario. (a) IBLD for � = 0; 0:1; . . . ; 0:9
(from top to bottom). (b) IBLD (solid) and its approximation (dashed) for � =
0:6 and m = 12. (c) Approximation error e(m) as a function of the size of the
source vector for � = 0:6.

Proposition 5.2: The infinite block-length distortion in the
perfect side information scenario where a fraction of trans-
formed coefficients is kept is given by

Proof: See Appendix V-B.

We show the IBLD obtained in Proposition 5.2 in Fig. 6(a). It
is seen in the proof of the proposition that the prediction error of
the odd coefficients by the even ones has uncorrelated compo-
nents, i.e., the error process is white. This is due to the first-order
property of the Gauss–Markov process and it yields a linear de-
crease in distortion. When is completely available at the
FC, the IBLD of is equivalent to that of up to a
factor . The above IBLD is thus half the reconstruction error
of the process with as side information. In con-
trast, replacing by and setting in Proposition 5.1
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Fig. 6. IBLD in the perfect side information scenario (renormalized by a factor
1=2). (a) IBLD for � = 0; 0:4; 0:8 (from top to bottom). (b) IBDL with (solid)
and without (dashed) side information for � = 0:6. (c) Gain due to side infor-
mation as a function of � for � = 0:1.

amounts to computing the IBLD in the absence of side informa-
tion at the FC. We compare these two scenarios in Fig. 6(b). We
clearly see the gain achieved by providing the FC with some cor-
related side information. The exact gain can be expressed using
Propositions 5.1 and 5.2 with the aforementioned modifications.
As , the processes and become uncorre-
lated, i.e., the presence of the side information does not provide
any gain. When , the correlation among the components
of allows us to perfectly recover the discarded coeffi-
cients without the need for . However, between these two
extreme cases, a substantial gain is achieved by the use of noisy
side information. This is depicted in Fig. 6(c).

C. Partial Observation Scenario

We treat now the case where terminal 1 needs to transmit
using a fraction of transformed coefficients and where

the process is completely discarded by terminal 2, i.e.,
acts as a hidden part . The next proposition provides

Fig. 7. IBLD in the partial-observation scenario. (a) IBLD for � =

0; 0:1; . . . ; 0:9 (from top to bottom). (b) IBDL with (dashed) and without
(solid) hidden part for � = 0:6. (c) Loss due to the hidden part as a function
of � for � = 0:1.

an analytical closed-form formula for the IBLD under these as-
sumptions.

Proposition 5.3: The infinite block-length distortion in the
partial observation scenario where a fraction of transformed
coefficients is kept is given by

Proof: See Appendix V-C.

The IBLD obtained in Proposition 5.3 is depicted in
Fig. 7(a). We also compare in Fig. 7(b) the IBLD obtained
with and without hidden part. We clearly see the loss incurred
by having to reconstruct the missing information at the FC.
Furthermore, increasing allows us to estimate more and more
accurately the missing data, hence reducing the gap between
the two distortions as shown in Fig. 7(c). The exact loss can
be expressed from Proposition 5.3 and by replacing by ,
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Fig. 8. IBLD in the general scenario for � = 0:6. The inside of the distortion surface is obtained using Algorithm 1 and a block length m = 30.

setting , and normalizing by a factor the distortion
obtained in Proposition 5.1.

D. General Scenario

Let us now consider again the general two-terminal setup in-
troduced in Section II. Assume that terminal only keeps a frac-
tion of transformed coefficients. We can then conveniently
represent the entire IBLD surface as a function of and ,
both taking values in . This is shown in Fig. 8 for

. The inside of the distortion surface is obtained numerically
using Algorithm 1 with a block length of size , whereas
the analytical expression of the border is perfectly known. In
fact, it corresponds to the IBLD obtained for the partial obser-
vation scenario or and the perfect side infor-
mation scenario or . The inherent symmetry
is due to the fact that and are equal. This per-
spective shows that even if the overall distortion surface is not
known, it is constrained by its borders. In fact, the perfect side
information and partial observation scenarios, respectively, pro-
vide a lower bound and an upper bound of the IBLD.

VI. CONCLUSION

We have addressed the problem of estimating an unknown
random vector source at a fusion center using a set of distributed
sensors (terminals). We have proposed a transform-based ap-
proach where each terminal applies a suitable linear transform in
order to provide a low-dimensional approximation of its obser-
vation. Under the MSE criterion, the optimal transform to apply
at one terminal assuming all else being fixed has been derived.
Based on this result, we have developed an iterative algorithm
whose optimality has been discussed. The equivalent problem
has then been studied in the infinite-dimensional regime, i.e., as
the size of the involved vectors goes to infinity. In this regime,

similar optimality results have been proved under some restric-
tive stationarity assumptions. Finally, we have illustrated with a
simple correlation model how the considered asymptotic anal-
ysis may be used to derive closed-form distortion formulas that
provide an accurate estimate of the MSE in the finite-dimen-
sional regime.

APPENDIX I
MINIMUM MEAN SQUARE ESTIMATE WITH SINGULAR

COVARIANCE MATRICES

Let and be zero-mean jointly Gaussian
random vectors. In this case, the conditional expectation is a
linear operation, that is , where the matrix

is obtained from the Wiener–Hopf equations

(14)

When is invertible, the solution directly follows as
. When is singular (say of rank ), we con-

sider its eigenvalue decomposition

and rewrite (14) as

or, equivalently,

(15)

The diagonal matrix contains the nonzero (real) eigen-
values of . The unitary matrix of eigenvectors is parti-
tioned accordingly into and . It thus follows that the el-
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ements of the vector have variance zero. Using
Cauchy–Schwarz’s inequality [32, Th. C.1.1], we have that

for and , such that
. The equality (15) thus re-

duces to

The above system has equations and unknowns, hence
an infinite number of solutions . One possible solution
is obtained using the Moore–Penrose pseudoinverse of
given by

which yields the solution

APPENDIX II
PROOF OF THEOREM 3.1

The proof makes use of the following two lemmas.
Lemma II.1: Let , , and be zero-mean jointly

Gaussian random vectors. Define . It holds
that .

Proof: We can write

where follows from the expression of the conditional expec-
tation in the jointly Gaussian case [27, Sec. IV.B], from the
inversion formula of a partitioned matrix [33, Sec. 0.7.3], and

from that of a small rank adjustment [33, Sec. 0.7.4].
Lemma II.2: Let , , and be zero-mean jointly

Gaussian random vectors. Define . Then,
.

Proof: Using Lemma II.1, we can write

By the orthogonality principle, is orthogonal to both
and , hence to . We thus have

This allows us to write

yielding the claimed equality.
Proof of Theorem 3.1: It was shown in [15, Th. 2] that an

optimal solution must be such that the MMSE is given by

where denote the eigenvalues of the matrix
arranged in increasing order. Using Lemma II.2, we have that

Using the determinant formula , it
follows that the largest eigenvalues of are
given by , the remaining ones being zero. The
MSE incurred by an optimal transform can thus be written as

It remains to show that the transform given by (4) provides this
MSE. We can write
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where follows from Lemma II.1 and from the expres-
sion of the conditional expectation in the jointly Gaussian
case [27, Sec. IV.B]. The equality follows from the
definition of the Euclidean norm, the fact that expectation
and trace commute, and from the orthogonality of and

(orthogonality principle). Finally, follows from the
properties of the trace and the definition of . Because

, the availability of at the
encoder does not change the MMSE. In this case, the optimal
transform is still given by (4), but the transmitted coefficients
are different because the optimal transform can be applied on

instead of .

APPENDIX III
PROOF OF PROPOSITION 3.3

Assume that the transform applied by one terminal (say ter-
minal 2) at step is of the form (6), i.e., can be written as

To prove the first part of the claim, we simply need to show that
the transform selected by the other terminal (terminal 1) is of the
same form. The result then follows by induction on and the fact
that, at , the claim is trivially verified by initialization. The
transform matrix to be applied at terminal 1 is given by Theorem
3.1. In particular, we have

Because and the involved (cross-)covariance matrices are
circulant, the matrix is easily proved to be circulant using
the properties of circulant matrices [8, Th. 3.1] and the fact that
the product is diagonal. A similar argument
shows that is also circulant. The matrix of Theorem
3.1 diagonalizes the circulant matrix and hence
satisfies the condition on . The transform matrix is thus
of the desired form (6).

The second part of the claim follows by noticing that the ma-
trix can be written using the inversion formula of a
partitioned matrix [33, Sec. 0.7.3] as the sum, product, and in-
verse of circulant matrices. It is thus circulant. A similar argu-
ment holds for .

APPENDIX IV
PROOF OF THEOREM 4.2

The proof consists of two parts. In part A, we prove that the
minimum achievable distortion is given by (11). In part B, we
show that the filtering strategy (10) achieves this distortion.

A. Minimum Achievable Distortion

Let us first define the function

if
if

and prove the following two lemmas.

Lemma IV.1: Let be a sequence of Her-
mitian Toeplitz matrices such that satisfies the condition
given in (8). Then, for any nonnegative integer

where denote the eigenvalues of and
.

Proof: Let us proceed by induction. For , we know
that the assertion holds true by [8, Th. 4.1], i.e.,

Assume it has been proved for ; we now prove it for . We
first note that the left-hand side of the assertion can be expressed
as

Because is a continuous function, we can apply the eigen-
value distribution theorem [8, Th. 4.2] to the first and second
summations and our induction assumption to the third one to
obtain

which yields the desired result.

Because any polynomial in can be expressed as a linear
combination of monomials , Lemma IV.1 can be
straightforwardly extended to polynomials. Furthermore, in-
voking the Stone–Weierstrass theorem [8, Th. 2.3] immediately
yields the following generalization.

Lemma IV.2: Let be a sequence of Hermitian
Toeplitz matrices such that satisfies the condition given
in (8). Then, for any function continuous on
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where denote the eigenvalues of and
.

Note that Lemma IV.2 allows us to carry similar computa-
tions on functions with a finite number of discontinuities by
simply isolating the continuous pieces. Extension to an infinite
but countable number of discontinuities may be envisioned but
special care has to be taken with the function so as to sat-
isfy Lebesgue’s theorem assumptions [32, Th. 12].

We can now turn to the proof of part A. The optimal finite-
dimensional distortion is computed from Theorem
3.1 by replacing by to obtain

where denote the eigenvalues of
arranged in increasing order. The first term in the IBLD directly
follows from the limiting eigenvalue distribution theorem [8,
Th. 4.2], i.e.,

Now using Lemma II.2, we have that

The second term thus follows from the fact that

where is chosen such that the fraction of eigenvalues smaller
than is equal to , i.e., such that .
The last equality follows from Lemma IV.2 with and

.

B. Optimal Filtering Strategy

The distortion can be expressed as

We now distinguish two cases.
1) When , a.e. since we assumed that

the involved PSDs are nonzero a.e. Thus,
a.e. where

with . From Lemma II.2,
a.e. It

thus follows that a.e.
2) When , and .

We can thus write

which proves part B and hence the theorem. Note that the term
in is not needed for optimality, because

it is assumed to be nonzero a.e. This solution is, however, pro-
vided by analogy to the finite-dimensional case.

APPENDIX V
PROOFS OF PROPOSITIONS 5.1, 5.2, AND 5.3

Proof of Proposition 5.1: The IBLD in the centralized
scenario can be computed using Theorem 4.2 assuming that

, , and (i.e., ). We can
readily check that is strictly positive, symmetric, and
strictly decreasing in . The IBLD can thus be expressed
using (13) and known integration formulas [34, p. 181] as

and the proof follows.

Proof of Proposition 5.2: The IBLD in the perfect side
information scenario can be obtained by setting in
Theorem 3.1. In this case, using the definition of the vector ,

and

where denotes the all-zero matrix of size . Thus,
the largest eigenvalues of are those of , the
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remaining ones being zero. Using the inverse formula of a
Kac–Murdoch–Szegö matrix [9], we have that

i.e., the nonzero eigenvalues of are all given by
except the maximum one which is equal to

. Because the IBLD is not affected by the change of a
finite number of eigenvalues, it can be computed from Theorem
3.1 as

where . Note that the normalization factor ac-
counts for the size of the source vector as compared to the
subsampled observation vectors and .

Proof of Proposition 5.3: The IBLD in the partial observa-
tion scenario is obtained by setting in Theorem 3.1. In
this case, using the definition of the vector , we have

Because , the IBLD corresponding to the
first term of the distortion in (5) is equal to the IBLD of the
perfect side information scenario with , i.e.,

The IBLD corresponding to the second term can be obtained by
noticing that

For conforming matrices, we have that
. Thus, for , we can write

Hence, the largest eigenvalues of are
those of , the remaining ones

being zero. The matrix is easily seen to be asymptotically
equivalent to the Toeplitz matrix with defined
as

We can readily check that is strictly positive, symmetric,
and strictly decreasing in . The IBLD corresponding to the
second term of the distortion in (5) can thus be evaluated using
Lemma IV.2, (13), and integration formulas from [34, p. 181]
as

where . Note that the normalization factor ac-
counts for the size of the source vector as compared to the
subsampled observation vectors and . The result follows
by adding and .
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