
MAC layer functions for SLEF

Lorenzo Keller <lorenzo.keller@epfl.ch>

October 20, 2006

Contents

1 Requirements 1
1.1 Pseudo broadcast . 1
1.2 Controlled injection rate in the MAC layer 2
1.3 Monitoring of other stations in range . 2

2 Implementation 2
2.1 Structure . 2
2.2 Pseudo broadcast . 3

2.2.1 RTS/CTS . 3
2.2.2 Reception of unicast packets for other stations 3

2.3 Controlled injection rate in the MAC layer 4

2.3.1 Channel maximal rate . 4
2.3.2 Rate control . 5
2.3.3 Retries . 6

2.4 Monitoring of other stations . 7

3 Performance comparison of UDP and jpcap 7
3.1 Test setup . 8

3.2 Acquisition of performance data . 8
3.3 Analysis of the results . 9

3.3.1 Channel conditions . 9
3.3.2 Performance results . 9

4 Sample code using the library 9

1 Requirements

1.1 Pseudo broadcast

Pseudo broadcast is a technique used to improve throughput of broadcast trans-
missions in case of congested networks. The mechanism consists in sending a

1

packet in unicast to a station using RTS/CTS. Other stations will receive the packet
by capturing all the frames that are transmitted on the network, even if they are
not directed to them.

1.2 Controlled injection rate in the MAC layer

The injection rate of packets in the MAC layer has to be controlled. The application
must not be allowed to deliver to the MAC layer more packets than the number
that can be sent by the network adapter. It is also necessary to know the nominal
rate of the network.

1.3 Monitoring of other stations in range

An indication of activity on the network has to be provided. This function has to
detect the activity of other SLEF stations in the neighborhood. The address of the
last transmitting station and the time of transmission have to be provided.

2 Implementation

2.1 Structure

The required function are implemented using jpcap, a library that allows to send
and receive raw Ethernet frames form Java. Jpcap relies on pcap1 , a C library that
provides an high level interface to packet capture systems. The structure of the
implementation can be seen in figure 1. Pcap is OS specific but it has already been
ported on many OSs2. This library is included in standard Linux distributions and
an interactive setup for Windows is available. Since this library gives access to very
low level and security sensitive functions administrative rights are required to use
it. Performance tests shows that it is possible, using this mechanism, to achieve
the same throughput of standard UDP3.
It was necessary to use this library to be able to implement channel activity

monitoring and reception of pseudo broadcast. With standard Java Sockets it is
not possible to receive packets that are sent between other stations. TCP/IP stack
never receives unicast frames that are addressed to other stations because they are
discarded by the network card4.
Since the application is not using IP sockets it is not necessary to send real IP

frames. Simple Ethernet frames are used in the implementation, . The type field
of the Ethernet header is different from the one used by IP therefore these frames
do not interfere with other applications that could be running on the same station
or on other stations of the same network. This approach has the interesting side

1See pcap(3) on systems where it is installed and http://www.tcpdump.org/
2among them Linux and Windows
3See the corresponding section in this report
4The topic is explained in details in the corresponding sections of this report

2

effect that IP networking has not to be initialized on the station, no IP address is
necessary.

2.2 Pseudo broadcast

2.2.1 RTS/CTS

In order to use the RTS/CTS mechanism the station has to be configured accord-
ingly. The 802.11 standard specifies a variable in the MIB (Management Infor-
mation Base) called dot11RTSThreshold5: packets with a size smaller than this
value are sent without RTS/CTS. By default the threshold is set to a value that
completely disables the mechanism. The parameter is accessible by OS specific
interfaces.
Under Linux 2.6 the parameter can be set with a command line utility6 . The

OS provides a programmatic access to this parameter via two ioctls7.
Windows NDIS (Network Driver Interface Specification) 5.18 provides an API to

access some parts of the 802.11 MIB, parameters can be managed via OIDs (object
identifiers). They can be queried from user space through the WMI API (Windows
Management Instrumentation) but it is not possible to change them from user
space. This requires the creation of a new device driver or the use of a non public
interface9. This API is not very useful because the new WiFi configuration client
used in Windows XP conflicts with this kind of kernel drivers and because updated
drivers for the wireless cards are necessary10. A more successful approach is to
use driver specific settings to control some parts of the MIB11. These are accessible
from the device properties window and form the registry, allowing a programmatic
access.
In the implementation it was decided to create an additional library that allows

to change the RTS threshold under Linux. An even simpler solutions however is not
to use this library and simply run the configuration command in the application
startup script. An example of such script can be viewed in listing 1
For Windows the user of the application has to change the parameters of its

card by hand since it is not possible to have a generic method to do it.

2.2.2 Reception of unicast packets for other stations

Reception of unicast packets that are sent to other stations is not supported by
the normal network stack. NICs normally discard packets that are not directed to
their address nor to broadcast address. This behavior avoids useless interrupts for

5See page 483 802.11-1999
6iwconfig [interface name] rts [value] (for more informations see iwconfig(8))
7See wireless.h (SIOCSIWRTS, SIOCGIWRTS)
8Available in Windows XP SP1 and Windows 2003
9NDISUIO, this interface is not stable and has changed between service packs
10Toshiba wireless cards for instance don’t have such driver
11Toshiba wireless cards based on Orinoco don’t provide this kind of option, but for instance U.S.
Robotics 22Mbps cards provide them

3

packets that are not for the station. In order to capture packets that are sent to
other stations it is necessary to set the NIC to use a special promiscuous mode.
This feature is supported by most NICs12. In promiscuous mode only data frames
can be captured. Management frames like RTS and CTS are not captured. Frames
captured are normally translated to normal Ethernet frames: it is not possible to
capture 802.11 specific headers13.

Capturing packets in promiscuous mode is not supported by Java. The APIs
are OS specific. On Linux and on most Unix systems the kernel provides a special
socket type to do raw operations14, this socket has an option that can used to enter
promiscuous mode15. Windows don’t provides a socket type to do frame sniffing.
An NDIS intermediate device has to be implemented an inserted in the kernel.

Packet capture is a very common task and for this reason the pcap library has
been developed. Pcap interfaces with the different OS specific mechanisms and
provides an high level API. This library is available for all the major OSs. The stan-
dard bindings are in C but two Java binding have been developed, one from Keita
Fujii of University of California Irvine16 and the other by Patrick Charles17. The UCI
implementation of the bindings seems more actively maintained and therefore was
selected for the project.

2.3 Controlled injection rate in the MAC layer

2.3.1 Channel maximal rate

When a station wants to start a new IBSS it uses MLME-START.request18; it has
to specify two set of rates, one, called BSSBasicRateSet, has to be supported by
all the stations that want to join and the other, called OperationalRateSet, is a
superset of the first and contains all the supported rates of the IBSS.

When a station wants to join a BSS it uses the MLME-JOIN.request19 primitive.
With this primitive a set of operational rates supported by the stations is specified.

All management, broadcast and multicast frames have to be transmitted at a
rate contained in BSSBasicRateSet. All CTS and ACK have to be transmitted at the
rate of the immediately previous frame when this rate belongs to PHY mandatory
rates, or otherwise at the highest possible rate in the BSSBasicRateSet.
An internal algorithm has to select a rate for the transmission of the other

frames. This rate is stored in an internal variable called MACCurrentRate. This

12Some Cisco 802.11 cards with standard drivers cannot be put in this mode
13Some cards can be forced to capture management frames and 802.11 headers but this function
is not widely supported
14The name of the socket type depends on OS and version, under Linux 2.6 it is PF_PACKET (see

packet(7))
15In Linux 2.6 its name is PACKET_MR_PROMISC (see packet(7))
16http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html
17http://jpcap.sourceforge.net/
18See 802.11-1999 § 10.3.10.1.2
19See 802.11-1999 § 10.3.3.1.2

4

variable is not readable from the MAC upper edge interface nor is the rate at which
frames are received.

In order to be sure of the nominal PHY rate the two sets of supported rates
have to contain only one value. This can be achieved by setting the NIC MIB
accordingly. The same API discussed for the RTS threshold parameter applies in
this case. Under Linux the rate can be set and queried via a command line utility20

or through ioctls21. Under Windows NDIS OIDs are provided and some drivers
provides proprietary setting to change their rates, but it is not in general possible
to set a fixed rate.

The implementation contains a library that can change and retrieve the rate
of a wireless card, however this runs only on Linux. Like with the RTS threshold
parameter, the use of the library is not advised. A simpler solution is to use a script
like the one that is shown in listing 1 at the application startup. Under Windows
the user has to change manually, if available, the parameter.

2.3.2 Rate control

If the send method blocks until the frame is sent, it is guaranteed that the injection
rate in the MAC layer is not higher than the maximal channel rate. This mechanism
to control the rate was used under Windows because the send method of pcap on
this platform follows this behavior 22. Unfortunately any error code is returned in
case of transmission failure.

Under Linux the networking code in the kernel is different. Each socket has a
send buffer which will contain packets waiting to be sent. The default size of this
buffer is specified by the kernel parameter net.core.wmem_default. The size is
measured in bytes and can be set per socket with the socket option SO_SNDBUF23,
it is possible to changed it at any time. Moreover in the kernel a queue discipline
(qdisc), a module that manages the scheduling of packets24 is associated to each
network device. By default the qdisc is pfifo_fast: this discipline is composed
by three queues which contains packets with different priorities. Packets from
lower priority queues are sent only when higher priority queues are empty. The
size of the bands can be controlled by a command line utility25 or via ioctls26 and
it is measured in packets. Other types of disciplines can be installed in the kernel
with the same utility.

The send function under Linux blocks until there is sufficient space in the
socket buffer to store the new packets. After a packet has been stored in the
buffer the send function tries to enqueue its transmission; the qdisc can either

20iwconfig [device name] rate [rate] fixed
21SIOCSIWRATE, SIOCGIWRATE
22Third party intermediate devices (like packet schedulers, firewalls or VPN clients) could change
this behaviour
23it is not possible to change this options directly from pcap, OS specific code has to be written
24Some software network devices can be without qdisc
25ifconfig [device name] txqueuelen [length]
26SIOCGIFTXQLEN, SIOCSIFTXQLEN

5

accept or refuse the packet. The send function then finishes with a return value
corresponding to the qdisc decision. In the case the packet is refused by the
qdisc it is immediately removed from the socket buffer. The time at which the
transmission will happen is not known by the caller of send function neither is the
acknowledgement. A packet in the queue will never be discarded27. On the other
side of the qdisc the network device driver dequeues packets and sends them to
the card firmware for transmission. When transmission is completed the network
card generates an interrupt that triggers the deallocation of the packet from the
socket buffer.

The default value of the queue lengths is 1000 packets and the default buffer
size is 107520 bytes28. This means that the buffer can contain less than 1000
packets bigger than ˜110 bytes and therefore if only one application is running on
the station and is using that packet size the send call will always block. In other
conditions the two parameters have to be tuned.

The jpcap library throws the same exception for any kind of transmission er-
ror29, for this reason it is not possible to treat in a special way queue drops. The
code that was implemented immediately aborts on errors when doing unicast. For
broadcast, in case of error, the implementation retries a user configurable num-
ber of times the transmission before throwing an exception. Unicast transmission
is tried only if a fresh MAC address is available, this is necessary because failed
transmissions, very probable in case of MAC addresses sensed long time, before
are not detectable. The complete algorithm can be seen in figure 2. The dashed
line represent a path that not is taken in case when the destination station is not
available.

2.3.3 Retries

At MAC layer unicast packets are retransmitted for a specific number of times in
case of error. This parameters is part of the MIB but there are no widespread
methods to set it30. Pseudo broadcasts sent to non reachable stations are there-
fore retired many times. After a packet has been delivered to the MAC layer it is
impossible to change it, for this reason it is impossible to change its destination
address between retries. When RTS is not used packets that are retransmitted are
received multiples times by the stations sniffing the network 31. With RTS enabled
a frame is sent only after a CTS is received therefore packets sent to non reachable
stations are never seen by other stations. In this case since Linux don’t provide
any acknowledgment of transmission to the applications it is not possible to detect
that an unicast packet has not really been transmitted.

In the implementation no attempt to change the number of retries is done.

27but its transmission could be delayed indefinitely
28Fedora Core 5 kernel 2.6.17-1.2187_FC5
29packet is bigger than the MTU, packet is not acknowledged, packet is dropped by the qdisc,...
30NDIS 5.1 don’t provide an OID to set this property; on Linux this option is configurable with

iwconfig [device] retries [number] but changing this property is not supported by all cards
31Tested with a Windows machine transmitting and a Linux machine receiving

6

2.4 Monitoring of other stations

Monitoring network activity is implemented with the same mechanism used to re-
ceive pseudo broadcast packets. In order to detect only stations that are using the
SLEF protocol a filter is used: only frames with the correct Ethernet type id are
captured.
This method can’t detect management frames. Monitoring this kind of traffic

requires a lower level access to network devices that is not widely supported 32.
Sniffing management frames is anyway not generally advisable because this traffic
could be generated by other applications and not indicate real SLEF activity on
other nodes.
In the implementation the wireless interface is put in promiscuous mode and

all data frames of the Ethernet type corresponding to SLEF are captured. For every
packet received an internal variable holding the source MAC address and another
holding a timestamp are updated.

3 Performance comparison of UDP and jpcap

Since SLEF needs an efficient use of the channel jpcap was tested in order to verify
that it will not be significantly slower than the standard IP stack. The objective of
the comparison was to check if one of the two stacks can achieve a bigger maximal
throughput than the other.
The following factors were considered significant for the comparison: packet size

and operating system.
Other factors influence the absolute value of the test but should not change

significantly the relative performance of the different methods:

1. MAC Protocol settings: RTS, fragmentation, short preamble, WEP, Mode

2. Signal conditions (noise level, signal level)

3. Load of the receiving / transmitting system

4. Other traffic on the network

5. Transmission rate

6. System performance

7. Wireless card model

In the test a station sent packets as fast as possible to a receiver. The perfor-
mance metric used in the test was the number of bytes of application data received
per second.
A fact needs to be remarked jpcap can send raw Ethernet frames, so it has a

smaller overhead than UDP. The length of a Jpcap header is 34 bytes, the one of
each UDP packet is 62 bytes.

32Under Linux and Windows monitor mode is available only on specific drivers

7

3.1 Test setup

For the test the following computer were used:

1. Computer A: Pentium IV, 512 MB Ram, Dell TrueMobile 1150 (orinoco), Fe-
dora Core 5 (kernel 2.6.17-1.2187)

2. Computer B: Pentium IV, 512 MB Ram, U.S. Robotics 2216 (acx100), Windows
XP Home

The two systems had a minimal number of process running and were not gen-
erating any significant amount of network traffic.
The MAC and PHY layers were configured as follows:

1. RTS threshold: 10 byte

2. Fragmentation threshold: never

3. Preferred TX rate: 11Mbps

4. Short preamble: off

5. WEP: off

6. Mode: ad-hoc

A scan of the neighborhood showed that channel 11 and 6 were quite busy.
On channel 1 only one network was present and didn’t show much traffic. This
channel was used to carry out the test. The two computers were the only nodes in
the IBSS.

3.2 Acquisition of performance data

The test was done with two Java programs, one that sent data and one that received
it. The test was done once with computer A transmitting and computer B receiving
and then in the other direction to test the impact of different operating systems.
This is not a complete analysis of the operating system factor but already gives a
good picture of the situation.
The test was carried out with packet sizes varying from 100 to 1300 bytes of

application data.
The algorithm of the test was the following:

1. The sender first sends a control packet to the receiver to inform of the packet
size that will be used for the test.

2. The sender waits 10 seconds.

3. It sends data for 30 seconds.

8

4. Finally it waits other 10 seconds.

Sender and receiver polled internal counters every second and wrote them to a
log file. Computer A logged channel condition during the test; this was done only
on computer A because the method used to read data is available on Linux only.

3.3 Analysis of the results

3.3.1 Channel conditions

Uniform channel conditions have to be guaranteed across tests in order to have a
fair comparison. During the four test the conditions were the following:
The signal level is almost always the same, considering that the values are

recorded with integer precision. The noise level is more variable but the upper
level is always similar. There are some interferences that are not constant in time
but considering that the signal level is always higher than the maximal noise level
it possible to say that interferences were never a problem in any of the tests. From
inspection of the error counters on computer A it is possible to see that these con-
sideration are correct, indeed no significant transmission problems were detected;
more than 4 millions packets were sent, the number of detected errors was of order
of 10. From these considerations it is possible to say that the conditions during
the test on the channels were uniform.

3.3.2 Performance results

The rate is computed over a period of 20 seconds in the middle of the test in
order to avoid transients conditions. The graphs in figure 6 and figure 5 show the
data. UDP and jpcap approaches have similar performances. The difference in
throughput when computer B sends UDP packets of length 1300 bytes is due to
the fact that Windows starts fragmenting UDP packets at that size.
The results clearly shows that there is no significant performance loss while

using jpcap.

4 Sample code using the library

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;

import ch.epfl.lca.slef.mac.SlefMAC;
import jpcap.JpcapCaptor;
import jpcap.NetworkInterface;
import jpcap.NetworkInterfaceAddress;

9

import jpcap.PacketReceiver;
import jpcap.packet.EthernetPacket;
import jpcap.packet.Packet;

/*
* Sample application

*/

public class Sample implements PacketReceiver {

private SlefMAC mac;

public static void main(String[] args) {
Sample s = new Sample();
s.start();
s.send(new byte[100]);

}

/* send some data */
private void send(byte[] bs) {

try {
mac.sendPacket(bs);

} catch(IOException ex) {
System.out.println("The OS refused the packet, another

application on this computer is probably using too
much aggresively the network");

}
}

/* start receiving packets */
private void start() {

mac.start();
}

public Sample() {
try {

mac = new SlefMAC(this, 1000, 1000, 10);
} catch (Exception ex) {

try {
/* autodetection has failed try to manually select

an interface */
NetworkInterface[] devices = JpcapCaptor.

getDeviceList();
System.out.println("Select one of the following

interfaces");

10

for (int i = 0; i < devices.length; i++) {
System.out.println(i+" :"+devices[i].name + "("

+ devices[i].description+")");
}
System.out.println("Select the card (insert -1 for

automatic detection):");
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
int id = Integer.parseInt(br.readLine());
mac = new SlefMAC(id,this, 1000, 1000, 10);

} catch (IOException e) {
/* an error happened opening the device, give up */
System.out.println("Error opening the device");
System.exit(-1);

}
}

}

/* Implements the PacketReceiver interface, called everytime a
packet is recevied */

public void receivePacket(Packet packet) {
/* If the packet is an ethernet packet it is possible to

look at the source address */
if (packet.datalink instanceof EthernetPacket) {

EthernetPacket ethernetPacket = (EthernetPacket) packet
.datalink;

System.out.println("Received packet from :" +
ethernetPacket.src_mac);

}
System.out.println("Packet contains following data: " +

packet.data);
}

}

11

Figure 1: Stack used by the application

#!/bin/bash

for dev in ‘grep : /proc/net/wireless | sed ’s/:.*//’‘
do

set the RTS threshold
iwconfig $dev rts 0
set the rate to the fixed rate of 11 Mbps
iwconfig $dev rate 11M fixed

done

Listing 1: Initialization script for linux

12

MAC address recently sensed?

Send Pseudo broadcast

Send Broadcast with retries

Error?

Error?

Throw exception Activity recently sensed?

return true

return false

Figure 2: Algorithm of the send function

13

A −> B jpcap B −> A jpcap A −> B UDP B −> A UDP

−67

−66

−65

−64

−63

−62

−61

[d
B

m
]

Signal level

Figure 3: Signal level during the tests

14

A −> B jpcap B −> A jpcap A −> B UDP B −> A UDP

−115

−110

−105

−100

−95

−90

[d
B

m
]

Noise level

Figure 4: Noise level during tests

15

200 400 600 800 1000 1200 1400
5

6

7

8

9

10

11

12
x 10

5

Application data payload length [bytes]

A
pp

lic
at

io
n

da
ta

 r
ec

ie
ve

d
pe

r
se

c
 [b

ps
]

B −> A UDP
B −> A jpcap

Figure 5: Performance results from Windows to Linux

16

200 400 600 800 1000 1200 1400
0.5

1

1.5

2

2.5

3

3.5
x 10

6

Application data payload length [bytes]

A
pp

lic
at

io
n

da
ta

 r
ec

ie
ve

d
pe

r
se

c
 [b

ps
]

A −> B jpcap
A −> B UDP

Figure 6: Performance results from Linux to Windows

17

