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In their article, ‘‘AC frequency characteristics of coplanar

impedance sensors as design parameters’’, Hong et al.1 present

an analytical model for the calculation of the resistance between

two electrodes in a microchannel. However, their measurements

fit poorly with their suggested model, and they attribute the

discrepancies to electrode thickness and a ‘fringing effect’. In

this note we show that the discrepancies are due to the neglected

channel height in their model, and that by including two

additional transformations, the resistance between two electro-

des in a microchannel can be accurately modelled.

The cell constant describes the proportionality between the

resistivity of the medium in contact with two electrodes and

the resulting resistance. The usefulness of the cell constant for

microelectrode design optimization has been presented pre-

viously.2,3 Both these papers treat sensor design for coplanar

strip lines in contact with a semi-infinite medium. In order to

use the Schwarz–Christoffel (SC) conformal mapping, as

described in these papers, the electrodes must be symmetrical

about the origin, and the electrode width must be negligible

compared to the sample height.

In the article by Hong et al.,1 the geometry is such that the

height of the channel (30 mm) is not negligible compared to the

electrode widths and spacings (20–500 mm) of their device.

The approximation of a semi-infinite medium on top of the

electrodes therefore fails, since it does not take into account

the insulating boundary condition at the top of the channel.

We will show in this paper that the large discrepancies

between theory and experiment presented by Hong et al.

(see Fig. 8 and Fig. 10 in their paper) can be reconciled by

appropriate use of conformal mapping for calculation of the cell

constant. We introduce two additional conformal mappings

that must be performed before the resistance can be analyzed as

suggested by Hong. These two conformal mappings are a sine-

transformation followed by a bilinear transformation.

If we consider the 2D case, the length-wise cross-section of

the microchannel can be modelled as a rectangle (Fig. 1(a)).

Exploiting the symmetry of the geometry, we can replace the

left half of the microchannel with a conductor at the center

between the two electrodes. The problem is then to calculate

the resistance between the center conductor and one of the

active electrodes.

Let the geometry of the real microchannel be defined in the

Z-plane, with coordinates

z 5 x + iy (1)

The center conductor is defined by the points z1 5 h/2

and z2 5 2h/2, and the microelectrode is defined by z3 5 2h/2 +
is/2 and z4 5 2h/2 + i (s/2 + w), where s is the interelectrode

distance, w is the electrode width and h is the height of the

channel (Fig. 1(a), note that the axes are reversed).

The problem now consists of transforming the rectangle, with

the symmetry conductor at the left side and the active electrode

along the bottom wall, to a half-plane with all channel walls and

the symmetry electrode along the real axis. This can be done

using a sine-transformation of the Z-plane. Using the trans-

formation of a trigon, as described by Schinzinger,4 the first

transformation of the microchannel should be:

u~ sin p
z

h

� �
(2)

Since

sin(x + iy) 5 sin(x)cosh(y) + icos(x)sinh(y) (3)
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Fig. 1 (a) A cross-section of half of the microchannel, with the center conductor and one of the electrodes marked in bold. To use the Schwarz–

Christoffel transform, the geometry of the microchannel must first go through two complex transformations: (b) the sine-transform to place the

channel walls on the real axis of the U-plane, followed by (c) the bilinear transform to make the electrodes symmetrical about the origin. (d) Finally,

the SC mapping can be used to obtain a geometry in which the resistance can be easily calculated.
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all points on the real axis in Z will lie on the real axis in U,

as will all points along the walls of the microchannel

(z~+
h

2
ziy). The points in the interior of the right half of the

channel are mapped to the top half-plane in the U-plane (Fig. 1(b)).

To be able to use the SC conformal mapping as described

by Jacobs et al., the electrodes must be of equal length and

symmetrical about the origin. This is not yet the case in the

U-plane. We therefore need to perform an asymmetric

‘‘stretching’’ of this plane, which can be carried out using a

bilinear transformation:5

v~
uzB

CuzD
(4)

The constants B, C and D must be adjusted so that the

electrodes are symmetric around the origin and of equal width.

We also set v3 5 2v2 5 1, so that we can proceed directly with

the SC mapping afterwards. This gives us a system of equations

u1zB

Cu1zD
~{

u4zB

Cu4zD

u2zB

Cu2zD
~{1

u3zB

Cu3zD
~1

8>>>>>><
>>>>>>:

(5)

Solving the systems of equations for B, C and D then gives

the following expression for v4:

v4~

u3{u2ð Þ u4{u1ð Þ
u4 u3zu2{2u1ð Þz2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u4{u3)(u4{u2)(u3{u1)(u2{u1)

p
zu1u2zu3 {2u2zu1ð Þ

(6)

For the geometry in the V-plane, the modulus for the SC

transformation is given by4

kmchannel~
1

v4
(7)

where u1..u4 are the coordinates of the electrodes in the

U-plane. Since the cell constant calculated using the procedure

described here only represents half of the microchannel, we

need to multiply the expression for the cell constant in Olthuis

et al.3 by a factor 2. The final expression for the cell constant in

a microchannel is then:

kmchannel~4
K kmchannel

� �

K 0 kmchannel

� � (8)

where K and K9 are elliptic integrals of the first order, and can

be calculated using a commercial software package such as

Matlab1.

In the paper by Hong et al., the bulk resistances of different

geometries and different conductivities have been measured,

and the cell constants subsequently calculated. However, the

resistivities of the different solutions are not given.

Furthermore, using the only given resistivity, that of the

deionized (DI) water, their cell constants do not correspond to

the measured values. For example, the value of the bulk

resistance through DI water can be deduced from Fig. 6 in

Hong’s paper, and it is found to be y20 MV. The authors claim

that the conductivity of this DI water is 0.06 mS cm21. According

to eqn (8) in their paper, the cell constant should then be y0.01

assuming an electrode length of 100 mm. This is two orders of

magnitude lower than the theoretical value they present.

To be able to compare their measurements with our theory,

we have therefore assumed that the indicated resistivity of the

DI water is not correct. We believe this is reasonable, since the

resistivity of ultra-pure water quickly drops due to contamina-

tions, and Hong et al. do not report having made any reference

measurements of the resistivities. We took the liberty of fitting

their measurements to our model by varying the conductivity.

We then found a more likely value to be 20 mS cm21. In Fig. 2

we indicate the cell constants of Hong et al., after having

adjusted the conductivities, and the theoretical results based on

our model. The model then provides a very good fit with their

measurements.

In conclusion, we have presented a model for the calculation

of the cell constants for coplanar electrodes in a microchannel

in which the height of the channel is taken into account. The

cell constants are easily calculated by first finding the values of

u1...u4 (eqn (2)), and then use these four values to find the

modulus (eqns (6) and (7)) for the elliptic integrals and finally

evaluate the elliptic integrals of eqn (8) using Matlab1,

Mathematica1, or any other suitable software. Using this

model, we can explain the measurements obtained by Hong

et al., and we therefore argue that our model is more suitable

for lab-on-chip applications.
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Fig. 2 Cell constants for different geometries with a channel height of

30 mm. The experimental data points are taken from Fig. 8a and

Fig. 10a in Hong’s paper, assuming a conductivity of 20 mS cm21.

Lines A and B represent the theoretical values for the cell constants

developed in this paper, A for the case of a fixed electrode width (w),

and B for a fixed gap (s). Line C represents the cell constants for a

semi-infinite sample, as described by Hong et al.

(6)
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