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Abstract— This paper analyzes the capacity of a wireless relay
network composed of a large number of nodes that operate in an
amplify-and-forward mode and that divide into a fixed number of
levels. The capacity computation relies on the study of products
of large random matrices, whose limiting eigenvalue distribution
is computed via a set of recursive equations.

I. INTRODUCTION

A typical relay network consists of three groups of nodes:
the sources, the destinations and the relays. In one-direction
transmission, the messages are sent from the sources to the
destinations with assistance from the relays. A special case is
when there is no direct link between the information sources
and the destinations. Direct links are absent when the sources
and the destinations are far from each other or when there
are obstructions between the sources and the destinations.
Therefore, the sources must first send the messages to the
relays. Then the relays forward the received signals to the
destinations. In an amplify-and-forward (AF) relay network,
the relays simply scale the received signals according to their
power constraint and forward the scaled signals to the des-
tinations. This amplify-and-forward operation is a reasonable
strategy when relays have a limited computation power and no
centralized control nor feedback exists. The AF relay network
is illustrated in Figure 1.

 

Fig. 1. AF relay network

When the sources and the destinations are too distant or
numerous obstructions exist, multiple levels of relays may be
needed. In a multi-level AF relay network, the first level of
relays amplify the received signals and forward the amplified
signals to the next level of relays. The next level of relays

repeats the same operation, and so on. Finally, the last level
of relays forwards the signals to the destinations. Figure 2
illustrates the multi-level AF relay network.

 

Fig. 2. 2-level AF relay network

The multi-level amplify-and-forward strategy allows saving of
both computation time and energy at the relays, at the price
of noise amplification at each level. This paper quantifies
precisely the loss incured by this noise amplification when
the number of nodes gets large, but the number of relay levels
remains fixed. The capacity of the multi-level AF scheme is
the expectation of the log determinant of a product of random
matrices. This work needs classical tools from Random Matrix
Theory throughout, as developed in [1]-[4].

The analysis of the capacity-scaling behavior of AF relay net-
works has also been conducted by Morgenshtern and Bolcskei
in [5]-[7]. They use results in [4], but consider only one level
of relays. This paper modifies Morgenshtern and Bolcskei’s
approach to obtain a general formula for multi-level AF relay
networks. Multi-level AF networks have also been considered
by Borade and Zheng in [8], but in the high SNR regime. Our
contribution is a fixed SNR analysis.

II. SYSTEM MODEL

This paper follows the same system model as in [5]-[7]. Under
the simplified assumption of a flat-fading channel and perfectly
synchronized transmission and reception among all terminals.
Suppose there are mT source terminals and mR destination
terminals. If the source terminals are far from the destination



terminals and no direct link between them exists, there will
be at least one level of relay terminals present to assist the
transmission. Suppose that there are in total K levels of relays.
Aversion of interference suggests a time-division transmission
strategy: In every transmission cycle, there are K + 1 time
slots. At the first time slot, the source terminals transmit the
signals to the first level of relays. Each level of relay terminals
performs the AF operation; that is, they amplify their received
signals and forward them to the next level of relays. The kth

level of relays transmits the messages to the (k + 1)th level
of relays at the (k + 1)th time slot. At the (K + 1)th time
slot, the messages arrive at the destination nodes from the last
level of relays.

Let lk be the number of relays at level k for k = 1, ...,K and
l0 = mT , lK+1 = mR. Let then Hk = {Hi,j

k } ∈ Clk×lk−1

denote the channel gain matrix between the (k − 1)th and
kth level of relays (where k = 0 corresponds to the source
nodes and k = K + 1 to the destination nodes). The matrices
Hk are independent and their entries are i.i.d.∼ NC(0, 1)
random variables, varying ergodically over time (fast fading
assumption). Additive white Gaussian noise Zk (with unit
variance) adds at each level k. Z = ZK+1 is thus the noise at
the final destinations.

There is no cooperation nor channel-state information (CSI)
at the source and relay terminals, but full cooperation and full
CSI (i.e. the knowledge of the realizations of all the random
matrices H0, . . . ,HK+1) is assumed at the destinations. The
power constraint at each node in the network is inversely
proportional to the number of nodes at its level.

Let Yk = [yk1, yk2, . . . , yklk ] and Xk = [xk1, xk2, . . . , xklk ]
be the signals received and transmitted by the kth level of
relay, respectively. Then the K-level AF relay channel can be
modeled as:

Y1 = H1X + Z1

Yk = HkXk−1 + Zk, k = 2, . . . ,K

Y = HK+1XK + Z

For each level of relays, the received signals are scaled
according to the power constraint at this level. Let the scaling
factor of the kth level be αk. Therefore, the scaling is

Xk = αkYk, k = 1, . . . ,K

The total power constraint at the kth level is Pk. For the first
level,

P1 = E[X∗
1X1] = α2

1E[Y ∗
1 Y1] = α2

1E[(H1X+Z1)∗(H1X+Z1)]

Since X , H1 and Z1 are independent of each other,

P1 = α2
1(E[X∗E[H∗

1H1]X] + E[Z∗1Z1])
= α2

1(E[X∗(l1I)X] + l1) = α2
1l1(P + 1)

Similarly, for other levels:

Pk = E[X∗
kXk] = α2

klk(Pk−1 + 1), k = 2, . . . ,K

Define β1 = P+1
P1

; βk = Pk−1+1
Pk

, k = 2, 3, . . . ,K. The scaling
factors can then be written as αk = 1√

βklk
, k = 1, . . . ,K. For

completeness, β0 = 1
P and α0 = 1√

β0l0
=

√
P

mT
.

A recursive definition of a new series of matrices is {Gk}K+1
k=0 ,

where GK+1 = I and

Gk = αkGk+1Hk+1, k = K, . . . , 0 (1)

Therefore, the overall channel can be expressed via Gk as:

Y = GKYK + Z = GK−1YK−1 + GKZK + Z

= . . . = G1H1X +
∑K

k=1 GkZk + Z (2)

G1H1X is the signal part and
∑K

k=1 GkZk + Z is the noise
part. Perfect receiver channel-state information is assumed,
so the destination terminals know all the Hk’s. For ease of
notation, a new series of matrices {Σk}K+1

k=1 is introduced,
where ΣK+1 = I and

Σk = E((Z +
K∑

i=k

GiZi) (Z +
K∑

i=k

GiZi)∗|H1, . . . ,HK+1)

for k = 1, . . . ,K. The covariance matrix of the noise part is
then Σ1. Also, since Z1, Z2, ...ZK and Z have i.i.d.∼ NC(0, 1)
components, the matrices {Σk}K

k=1 obey the following recur-
sive relationship

Σk = Σk+1 + GkG∗
k, k = K, . . . , 1 (3)

Capacity computation requires knowledge of both the noise
and the signal covariance matrices. Based on the Gaussian
channel assumption, the capacity is achieved when the entries
of X are jointly Gaussian. Suppose the covariance matrix of
X is Q. Since by assumption, there is no CSI at the sources
and the entries of H1 are i.i.d. Gaussian and independent of
G1, [9] relates that the optimal X is distributed according to
NC(0, P

mT
I). Thus, the covariance matrix of the signal part

is P
mT

G1H1H
∗
1G∗

1 = G0G
∗
0.

The overall capacity is then

C =
1

K + 1
E log det

(
I +

P

mT
Σ−

1
2

1 G1H1H
∗
1G∗

1Σ
− 1

2
1

)
=

1
K + 1

E log det
(

I +
P

mT
H∗

1G∗
1Σ

−1
1 G1H1

)
(4)

(the 1
K+1 term comes from the use of the time-division

scheme). We analyze the above capacity when mT , mR, and
all lk’s tend to infinity, and they also tend to some given
ratios while going to infinity, say, l1

mT
→ c1; lk

lk−1
→ ck, k =

2, . . . ,K; mR

lK
→ cK+1.

III. CAPACITY ANALYSIS

A powerful tool for analyzing the limiting eigenvalue distri-
bution (LED) of large dimensional random matrices is the
Stieltjes transform. A thorough discussion of its applications
can be found in [2]. Let F be a distribution on R (here and in
the rest of the paper, one identifies a distribution on R with its
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cumulative distribution function). Then its Stieltjes transform
is defined as

g(z) ≡
∫ ∞

−∞

1
x− z

dF (x), z ∈ C+ ≡ {z ∈ C : Im (z) > 0}
(5)

with the inversion formula

lim
ε↓0

∫ x2

x1

1
π

Im(g(x + iε))dx = F (x2)− F (x1) (6)

and the useful fact that a sequence of distributions converges
to a limit if and only if the corresponding sequence of Stieltjes
transforms converges. The following result is a straightforward
consequence of a result by Silverstein [4]. Recall that the
empirical eigenvalue distribution of an n×n Hermitian matrix
An with real eigenvalues λ1, . . . , λn is given by FAn(x) =
1
n

∑n
k=1 1{x≥λk}.

Theorem 1: Let n, N ≥ 1 and let us assume that:
(a) Xn = (Xn

ij) is an n×N random matrix with i.i.d. entries
such that E |Xn

11 − EXn
11|

2 = 1;
(b) N = N(n) with n/N → c > 0 as n →∞;
(c) Tn is an n × n random Hermitian non-negative definite
matrix such that its empirical eigenvalue distribution FTn

converges almost surely, as n → ∞, to a (deterministic)
distribution FT , with corresponding Stieltjes transform gT ;
(d) Xn and Tn are independent.
Let An = 1

N X∗
nTnXn. Then its empirical eigenvalue dis-

tribution FAn converges almost surely, as n → ∞, to a
(deterministic) distribution FA, whose Stieltjes transform gA

satisfies

zgA(z) + 1 = c

(
−1

gA(z)
gT

(
−1

gA(z)

)
+ 1

)
(7)

in the sense that, for each z ∈ C+, g = gA(z) is the unique
solution to (7) such that g ∈ C+.

In the particular case where Tn = I , FT (x) = I{x≥1} and
gT (z) = 1/(1− z), so the above equation reads

zgA(z) + 1 =
cgA(Z)

1 + gA(z)
, (8)

and its solution is the Stieltjes transform of the well-known
Marčenko-Pastur distribution [1].

In order to illustrate why Silverstein’s theorem can be used
to compute the capacity expression (4), the single-level AF
relay network will be examined first. The single-level case
provides general guidance for computing the general multi-
level problem. We then derive a set of recursive equations that
can be used to compute the Stieltjes transform of the LED of
the multi-level AF relay network.

1) Single-Level AF Relay Network: The single level AF relay
network has also been analyzed in [5]-[7]. This paper suggests
another perspective on the formulation of the problem. The
advantage is extension to the multi-level case.

When K = 1, G1 = α1H2 and Σ1 = I + G1G
∗
1. Let T1 =

G∗
1Σ

−1
1 G1, M1 =

√
1

mT
T

1
2
1 H1 and M2 =

√
1
l1

H2. Then,

from (4),

C1-level AF =
1
2

E log det(I + PM∗
1 M1)

where

M∗
1 M1 =

1
mT

H∗
1T1H1 (9)

T1 = M∗
2 (β1 + M2M

∗
2 )−1M2 (10)

M∗
2 M2 =

1
l1

H∗
2H2 (11)

Capacity computation first finds the LED of M∗
1 M1. An

equation for the Stieltjes transform of the LED of M∗
1 M1 is

given in the following theorem. From now on, notation gM∗
k Mk

abbreviates gk.

Theorem 2: For matrices M1, M2 and T1 satisfying (9), (10)
and (11) with l1

mT
→ c1 and mR

l1
→ c2, the Stieltjes transform

g1 of the LED of M∗
1 M1 satisfies the following equations:

zg1(z) + 1

=
c1g1(z)

1 + g1(z)

(
−β1

1 + g1(z)
g2

(
−β1

1 + g1(z)

)
+ 1

)
(12)

zg2(z) + 1 =
c2g2(z)

1 + g2(z)
(13)

where g1 : C+ → C+ and g2 : C+ → C+.

Proof: The basic proof idea goes as follows. From (9), if
T1 is random Hermitian nonnegative definite and independent
of H1, with its eigenvalue distribution converging almost
surely as mT → ∞, then Theorem 1 applies to compute
the LED of M∗

1 M1. On the other hand, (11) implies that
the eigenvalue distribution of M∗

2 M2 converges a.s., with its
Stieltjes transform g2 satisfying (13) with g2 : C+ → C+.
Therefore, the missing link is the relationship between the
eigenvalues of T1 and M∗

2 M2. This relationship is given in
the following lemma, whose proof is straightforward.

Lemma 1: Consider two matrices T1 ∈ Cl1×l1 and M2 ∈
Cl1×mR satisfying (10), and denote by ti and mi the eigenval-
ues of T1 and M∗

2 M2 respectively, where t1 ≤ t2 ≤ . . . ≤ tl1
and m1 ≤ m2 ≤ . . . ≤ ml1 . Then

tk =
mk

β1 + mk
k = 1, . . . , l1 (14)

Therefore, their eigenvalue distributions satisfy

FM∗
2 M2(x) = FT1

(
x

β1 + x

)
(15)

and their corresponding Stieltjes transforms satisfy

zgT1(z) + 1 =
1

1− z

(
β1z

1− z
g2

(
β1z

1− z

)
+ 1

)
(16)

Since M∗
2 M2 is Hermitian nonnegative definite, T1 is also

Hermitian nonnegative definite, and its eigenvalue distribution
converges a.s. Therefore, Theorem 1 applies to find the Stielt-
jes transform g1: combining (7) and (16) yields the conclusion
that g1 satisfies (12) with g1 : C+ → C+.
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We can find g1 by solving the overall 4th-order equation
combining (12) and (13). Only one of the roots of the 4th

order equation satisfies both g1 : C+ → C+ and g2 : C+ →
C+. From g1, the inverse Stieltjes transform (6) provides the
corresponding LED F1. The single-level AF channel capacity
is then given by

C1-level AF ∼
mT

2

∫
log (1 + Px) dF1(x) (17)

as mT →∞. Therefore, as already noticed in [7], the capacity
increases linearly with the number of nodes at each level.

2) Multi-Level AF Relay Network: Generalization of the
previous result to the multi-level case requires a recursive
transformation of the matrices for iterative application of
Lemma 1 and Theorem 1 to compute the Stieltjes transform
of the LED of the matrix in (4).

In addition to the two series of matrices {Gk} and {Σk}
defined in (1) and (3), two new series of matrices are:

Tk = G∗
kΣ−1

k Gk

Mk =
√

βk−1Σ
− 1

2
k Gk−1, k = 1, . . . ,K + 1

Derivation of a recursive relationship between {Tk} and {Mk}
requires the following matrix-inversion lemma, whose proof is
straightforward.

Lemma 2: If Σ is positive definite, then

(Σ + GG∗)−1 = Σ−
1
2 (I + Σ−

1
2 GG∗Σ−

1
2 )−1Σ−

1
2 (18)

Use the above lemma and the recursive formulas (1),(3) for
Gk, Σk, leads to the following lemma.

Lemma 3: Let TK+1 = I . The recursive relationship between
Tk and Mk can be written as

M∗
k Mk =

1
lk−1

H∗
kTkHk, k = 1, . . . ,K + 1 (19)

Tk = M∗
k+1

(
βkI + Mk+1M

∗
k+1

)−1
Mk+1, k = 1, . . . ,K(20)

Proof: (19) comes directly from the definition of Tk and
Mk and the fact that Gk−1 = αk−1GkHk:

M∗
k Mk = βk−1G

∗
k−1Σ

−1
k Gk−1

= βk−1α
2
k−1H

∗
kG∗

kΣ−1
k GkHk =

1
lk−1

H∗
kTkHk

The derivation of (20) involves the recursion Σk = Σk+1 +
GkG∗

k and Lemma 2:

Tk = G∗
kΣ−1

k Gk = G∗
k(Σk+1 + GkG∗

k)−1Gk

= G∗
kΣ−

1
2

k+1(I + Σ−
1
2

k+1GkG∗
kΣ−

1
2

k+1)
−1Σ−

1
2

k+1Gk

= M∗
k+1

(
βkI + Mk+1M

∗
k+1

)−1
Mk+1

Again, capacity computation is through the LED of M∗
1 M1 =

1
l0

H∗
1T1H1 = 1

mT
H∗

1G∗
1Σ

−1
1 G1H1. The similarity between

(9), (10) and (19), (20) suggests a recursive way to compute

the Stieltjes transform of the LED of M∗
1 M1 for the multi-

level case.

Theorem 3: For matrix series {Mk}K+1
k=1 and {Tk}K+1

k=1 satis-
fying (19) and (20), the Stieltjes transforms gk of the LED of
M∗

k Mk satisfy the following equations for k = 1, . . . ,K:

zgk(z) + 1

=
ckgk(z)

1 + gk(z)

(
−βk

1 + gk(z)
gk+1

(
−βk

1 + gk(z)

)
+ 1

)
(21)

zgK+1(z) + 1 =
cK+1gK+1(z)
1 + gK+1(z)

(22)

where gk : C+ → C+, k = 1, . . . ,K + 1.

Proof: (20) implies that Tk is Hermitian nonnegative
definite. Lemma 1 provides the relationship between the
eigenvalues of M∗

k+1Mk+1 and Tk. As long as the eigenvalues
distribution of M∗

k+1Mk+1 converges a.s., then the eigenvalue
distribution of Tk converges a.s.
From Theorem 1, the eigenvalue distribution of M∗

k Mk con-
verges a.s. if the eigenvalue distribution of Tk converges
a.s. Since TK+1 = I , the convergence of the eigenvalue
distribution of M∗

K+1MK+1 is ensured, and thus, the eigen-
value distribution of TK also converges almost surely. This
again ensures the convergence of the eigenvalue distribution
of M∗

KMK and TK−1, and so on. By induction, we conclude
that the eigenvalue distribution of M∗

k Mk, k = 1, ...,K + 1
converges almost surely.
Finally, combining (7), (8) and (16), we obtain the recursive
equations (21) and (22) for the Stieltjes transform gk of the
LED of M∗

k Mk, k = 1, ...K + 1.

Computing the capacity (4) requires the knowledge of the LED
of M∗

1 M1. In order to be explicit, let us define a new sequence
{zk}K+1

k=1 , where z1 = z, zk+1 = −βk

1+gk(zk) , k = 1, · · · ,K. We
can then rewrite (21) and obtain for k = 1, . . . ,K:

gk+1(zk+1) =
−1

zk+1

(
1− 1 + gk(zk)

ckgk(zk)
(zkgk(zk) + 1)

)
=

1 + gk(zk)
βk

(
1− 1 + gk(zk)

ckgk(zk)
(zkgk(zk) + 1)

)
Above equation suggests expression of gk(zk), k = 2, ...,K +
1, in terms of z and g1(z). Therefore, substitution of the
expression for gK+1(zK+1) in terms of z and g1(z) into (22)
yields an equation for g1(z). The overall equation for g1 has
order 2K+1, and can be solved numerically. Only one of the
roots satisfies gk(zk) ∈ C+, ∀k = 1, . . . ,K + 1. The LED F1

of M∗
1 M1 is computed by the inverse Stieltjes transform (6),

and the capacity is given by the formula

CK-level AF ∼
mT

K + 1

∫
log (1 + Px) dF1(x)

as mT →∞. The capacity increases linearly with the number
of nodes at each level. Finally, it is possible to show that
when c1 →∞ and

∏K+1
k=1 ck = c remains fixed, F1 converges

to a classical Marčenko-Pastur distribution, whose Stieltjes
transform g1 is solution of an equation of the type (8).
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IV. NUMERICAL SIMULATIONS

First, this section compares the theoretical LED that we obtain
in Section III-.2 with the empirical eigenvalue distribution of a
finite-dimensional matrix. Figure 3 shows that there is indeed
a fairly good agreement between the two, even for a small
number of nodes in the network.
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Simulation result. mT = 100
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Fig. 3. Limiting versus empirical eigenvalue distribution

Next of interest is the effect of the number of relays upon
the LED and the capacity. The ratio between the number of
source and destination terminals is fixed, while the number
of relays in between varies. When there is only one level of
relays, the LED and the capacity are shown in figure 4 and 5
respectively.
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Fig. 4. Varying the number of relays in a 1-level AF relay network: LED

0 2 4 6 8 10 12 14 16 18 20
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

c1

C/
m T

One-level of relay terminals. c=1

 

 

Simulated normalized capacity. mT=50

Theoretical normalized capacity at mT → ∞

Capacity for c1 → ∞

 

Fig. 5. Varying the number of relays in a 1-level AF relay network: capacity

Figure 6 plots the limiting eigenvalue distribution of a two-
level AF relay channel. We vary the ratio between the number

of relays at the first level and the number of source terminals,
while the ratio between the numbers of relays in the first and
second levels is fixed.
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Fig. 6. Varying the number of first-level relays in a 2-level AF relay network

V. CONCLUSION

In this paper, the capacity of a large scale multi-level AF relay
network has been analyzed. The capacity formula is expressed
by means of the limiting eigenvalue distribution of a random
matrix, whose Stieltjes transform is shown to satisfy a set of
recursive equations. A general procedure for solving explicitly
these equations has been proposed, from which one can deduce
both the limiting eigenvalue distribution and the capacity.
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