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Abstract. Efficient subsumption checking, deciding whether a subscription or
publication is covered by a set of previously defined subscriptions, is of
paramount importance for publish/subscribe systems. It provides the core system
functionality—matching of publications to subscriber needs expressed as sub-
scriptions—and additionally, reduces the overall system load and generated traffic
since the covered subscriptions are not propagated in distributed environments.
As the subsumption problem was shown previously to be co-NP complete and
existing solutions typically apply pairwise comparisons to detect the subsump-
tion relationship, we propose a ‘Monte Carlo type’ probabilistic algorithm for the
general subsumption problem. It determines whether a publication/subscription
is covered by a disjunction of subscriptions in O(k m d), where k is the number
of subscriptions, m is the number of distinct attributes in subscriptions, and d
is the number of tests performed to answer a subsumption question. The prob-
ability of error is problem-specific and typically very small, and sets an upper
bound on d. Our experimental results show significant gains in term of subscrip-
tion set reduction which has favorable impact on the overall system performance
as it reduces the total computational costs and networking traffic. Furthermore,
the expected theoretical bounds underestimate algorithm performance because it
performs much better in practice due to introduced optimizations, and is adequate
for fast forwarding of subscriptions in case of high subscription rate.

1 Introduction

Content-based publish/subscribe systems are receiving growing interest with a large
number of relevant applications such as stock tickers, RSS news feeds, network mon-
itoring, traffic monitoring, and electronic commerce requiring selective information
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dissemination. Traditional content-based publish/subscribe systems usually employ high-
performance servers to handle high rates of publications and serve millions of sub-
scribers in static environments. They have been optimized for fast matching of publica-
tions to subscriptions [1,2,3,4] and typically maintain a special subscription index that
does not frequently change as the rate of subscription changes is negligible compared
to the publication rate.

Distributed content-based publish/subscribe systems traditionally assume static envi-
ronments and use a network of brokers to divide the publication and subscription load.
Brokers implement routing protocols to provide a consistent service with the goal of
reducing networking costs generated by publications and subscriptions [5,6]: Subscrip-
tions are typically routed through the network toward publishers to enable filtering of
publications close to their sources. Subscription traffic, on the other hand, is reduced
by not propagating covered subscriptions, as they are redundant, or by subscription
merging [7,8].

Although the importance of subscription set reduction for content-based publish/sub-
scribe systems has been stressed, e.g. in [8], existing deterministic algorithms [9,6,7]
focus either on efficient matching of publications to subscriptions only or rely on basic
heuristics for subscription set reduction such as pairwise subscription comparison or
subscription merging. In this paper we take a more fundamental approach to subscrip-
tion set reduction for (distributed) content-based publish/subscribe systems. In partic-
ular we show that when using general subsumption checking, where the covering of
subscriptions by multiple other subscriptions is exploited, important performance im-
provements can be achieved. However, efficient general subsumption checking is non-
trivial. Publications and subscriptions are typically modeled as logical expressions–
conjunctions of predicates–where each predicate defines a simple constraint on an at-
tribute. Geometrically, subscriptions can be viewed as convex polyhedra. Therefore,
the general subsumption checking problem corresponds to the problem of checking
whether a disjunction of subscriptions covers a subscription/publication, which can ge-
ometrically be interpreted as checking whether a convex polyhedron is contained within
a finite union of convex polyhedra. This problem was proven to be co-NP complete
in [10].

Since the general subsumption problem is practically unfeasible, for solving it, we
introduce a probabilistic ‘Monte Carlo type’ algorithm. This is the first probabilistic
approach to test the subscription coverage by a union of subscriptions. The algorithm
solves the subsumption problem in O(k ·m ·d), where k is the number of subscriptions,
m is the number of distinct attributes in subscriptions and d is the number of tests
performed to answer the subscription coverage question. The value of parameter d is
dependent on an acceptable predefined probability of error which is problem specific
and can be computed in polynomial time a-priori. Using this algorithm a subscription
set can be efficiently reduced to a minimized subscription set matching the same set
of publications. Experiments show that in practice our algorithmic approach performs
much better than the theoretical bound O(k · m · d). The same algorithm can also
be used to efficiently match publications from imprecise data sources, by representing
publications also as convex polyhedra, as it is advocated in recent publish/subscribe
models with approximate matching [11].
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The importance of subscription set reduction is highly significant in distributed
content-based publish/subscribe system for the following reasons:

– The publish/subscribe systems architecture is increasingly used in environments
with highly variable subscriptions, such as MANETs and sensor networks, where
the assumption of both network [12] and subscription stability no longer holds.
The rate of subscription changes may drastically increase as a consequence of both
changing interests and context changes, and also may substantially exceed the pub-
lication rate if rare events are monitored; therefore, novel indexing techniques have
been investigated that trade-off precision to performance [13], however they do not
solve the essential problem of subscription set reduction.

– As publish/subscribe systems mainly target usage scenarios where a subscription
space is moderately populated and subscriptions typically overlap due to similar but
not equal interest, there is a higher probability of a subscription being covered by a
set of subscriptions rather than a single one. Covered subscriptions are redundant.
Therefore, they are not propagated further which reduces the total number of sub-
scriptions in the system saving memory and reducing traffic. This in turn reduces
computational costs for matching publications to subscriptions and new subscrip-
tions to existing subscriptions as the set of subscriptions is reduced.

– As publish/subscribe systems are growing in scale to very large networks of bro-
kers, the benefit of any reduction in the number of subscriptions forwarded locally
by a broker, is amplified exponentially in the network diameter while broadcast-
ing subscriptions in the broker network. Thus even modest local reductions lead to
substantial global reductions in network traffic during subscription propagation.

Due to the probabilistic nature of the algorithm a concern about lost publications
(false negatives) may be raised. However, many recent applications are tolerant to lost
publications, because e.g. the data sources are already unreliable themselves, as in sen-
sor networks. Furthermore, the error probability can be controlled and adapted to appli-
cation needs, trading off computational cost for precision. Therefore, we expect that for
a wide range of important applications the probabilistic nature of the approach is fully
acceptable.

To summarize, the algorithm has the potential to significantly decrease costs in terms
of computation, memory, and bandwidth consumption in content-based and distributed
publish/subscribe systems by fully exploiting the potential subscription set reduction
and achieving computational efficiency through a probabilistic approach. In our exper-
imental evaluations we verify both the performance gain with respect to subscription
set reduction by comparing to the standard technique of pairwise reduction and the
performance characteristics of the algorithm as compared to the pessimistic theoretical
bounds.

The remainder of the paper is structured in the following way. We review the basic
principles of content-based publish/subscribe communication model in Section 2. To
motivate the presentation, Section 3 sketches a usage scenario and formally defines the
subsumption problem. Section 4 presents our novel probabilistic algorithm with specific
optimizations, and we investigate it’s properties in a distributed setting in Section 5.
Section 6 presents an evaluation of the algorithm using extensive experimentation, and
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in Section 7 we compare it to the related work in the field. We complete the paper with
our conclusions in Section 8.

2 Distributed Publish/Subscribe Communication

The publish/subscribe interaction model enables asynchronous communication between
information publishers and subscribers. Subscribers express interest in receiving pub-
lications that comply to specific criteria by defining subscriptions that change the set of
active subscriptions maintained by the publish/subscribe system. When a publisher de-
fines a new publication, it is compared against all active subscriptions, and the system
notifies subscribers with a matching subscription about the published content. Thus, the
publish/subscribe service performs content filtering and enables push-style group com-
munication, where group members are determined dynamically per each publication.

In a distributed system a set of publishers Pi, 1 ≤ i ≤ n and a set of subscribers
Sj , 1 ≤ j ≤ m interact over a set of nodes, brokers, Bk, 1 ≤ k ≤ N . Brokers are re-
sponsible for matching publications to subscriptions and for disseminating publications
to neighboring brokers with subscribers interested in the published content. A publica-
tion matches a subscription if all publication attributes satisfy constraints defined by the
subscription. The simplest approach to route publications in a broker network is publi-
cation flooding, where end brokers perform publication filtering prior to final delivery
to local subscribers. This approach is an obvious solution for scenarios with a densely
covered subscription space where most brokers have interested subscribers for all pub-
lications; however, it wastes a lot of bandwidth in cases with few or no subscribers
interested in a large fraction of publications.

To decrease the publication traffic, subscriptions are disseminated through the net-
work close to publishers to enable publication filtering ’at the source’. Upon receiving a
new subscription, a broker will forward it to its neighbors that are potential publishers of
content matching the defined subscription. A commonly used technique for subscription
dissemination is flooding: A subscription is sent to all neighbors except to the one from
which it was received. Note that brokers maintain a routing table with a set of active
subscriptions per each neighboring broker, and consider this neighbor to be a subscriber
without knowing the ’real’ end subscribers. Upon receiving a publication, a broker Bi

forwards it to its neighboring broker Bj only if it matches any of Bj’s subscriptions. In
other words, publications follow the reverse direction of subscriptions. The technique
originates from IP muticast and is commonly known as reverse path forwarding [5,6].

To reduce the subscription traffic, subscription covering and merging is applied. In-
formally, a subscription s1 covers subscription s2 if all publications matching s2 will
also match s1, but the opposite does not hold. Since a covered subscription does not
influence the propagation of publications, there is no need to forward it to neighboring
brokers. Therefore, when a broker Bi receives s2 which is covered by s1, it will not
forward s2 to Bj if Bi has previously forwarded s1 to Bj . Nevertheless, s2 has to be
stored in the passive set of subscriptions (s1 would be an element of the active set), be-
cause it must be activated in case s1 expires, i.e. a subscriber unsubscribes from s2. The
process of merging proposes a single merged subscription for similar subscriptions, but
will not be discussed in detail as it is beyond the scope of this paper.
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3 Problem Statement

Scenario. To motivate the need for an efficient subsumption checking mechanism, we
introduce a usage scenario potentially generating a large number of subscriptions. Re-
source discovery in Grids assigns computation requests (jobs) to available services.
Current systems use server-based solutions and recently P2P-based solutions have been
investigated [14] to deal with the scalability problem caused by a large number of
jobs and services. Let us discuss the problem of resource discovery in terms of pub-
lish/subscribe. Services offering computational resources may announce their capabil-
ities and availability through subscriptions to enable efficient matching and scheduling
of jobs searching for available services. Jobs define their requirements from the ser-
vices using publications. An example subscription with two publications are presented
in Table 1.

Table 1. Subscription and publication examples

CPUcycles disk memory service time

s1 [3000, 3500] [40, 50kB] 1GB a.service.org [2006-03-31T16:00:00,
2006-03-31T20:00:00]

p1 3500 45kB 1GB *.service.org 2006-03-31T16:00:00
p2 1035 45kB 0.5GB *.*.org 2006-03-31T12:23:05

The basic characteristic of the presented usage scenario is the potentially large num-
ber of services and jobs that generate huge amounts of both subscriptions and publica-
tions. Dynamic changes of subscriptions are significant because as the context changes,
i.e. services get allocated to new jobs, subscriptions will consequently change. There-
fore, this scenario exemplifies a setting where context changes induce higher subscrip-
tion rate, as it can also be observed in mobile environments. Next, the subscription space
may have high dimensionality: Even in our simple example without detailed job and re-
source descriptions, 5 different attributes have been defined. Thus, we propose a method
for reducing the total number of active subscriptions in the system by means of group
coverage. Due to large numbers and inherently distributed characteristics of Grid ser-
vices, the publish/subscribe service for resource discovery would be distributed. As in
this paper we are focusing on the subsumption process performed within a single node,
we are not assuming neither an underlying network topology nor stability of the broker
network. It can be applied with various routing protocols, and our goal is to point out
potential impact of the proposed algorithm on the performance of a distributed system
regardless of its topology and applied routing strategy.

Let us consider the following example of subscription coverage in a 2-dimensional
subscription space. Table 2 defines two existing subscriptions, s1 and s2, and new sub-
scription s. We want to determine whether s1 and s2 jointly cover s. As it is visible from
the graphical representation of subscriptions in Figure 1, the subsumption relationship
indeed exists. Even though neither s1 nor s2 cover s, their union entirely covers s.
Note that constraints in this example define ranges to simplify the presentation, and can
straightforwardly be extended to finite sets [15].

Table 3 lists the notation used in the paper.
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Table 2. Subsumption example: s � (s1 ∨ s2)

Subscription s
[x1 ≥ 830 ∧ x1 ≤ 870∧
x2 ≥ 1003 ∧ x2 ≤ 1006]

Subscription s1

[x1 ≥ 820 ∧ x1 ≤ 850∧
x2 ≥ 1001 ∧ x2 ≤ 1007]

Subscription s2

[x1 ≥ 840 ∧ x1 ≤ 880∧
x2 ≥ 1002 ∧ x2 ≤ 1009]

800 820 840 860 880 900
1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

x
1

x 2

 

 
s
s

1

s
2

Fig. 1. Graphical representation of subscriptions
in Table 2

Table 3. Notations

Symbol Meaning

s New subscription
p Publication
S Disjunction of existing subscriptions si, 1 ≤ i ≤ k

k |S|
si Existing subscription si ∈ S

sj
i jth predicate in si

xj Attribute j

m number of distinct attributes in S

T Conflict table
T j

i Value in row i, column j of T

ti Number of defined elements in row i of T

fci Number of conflict-free elements in row i of T

δ Error probability
ρw Probability of guessing a point witness

Definition 1. Subscription si is a conjunction of predicates si = s1
i ∧s2

i ∧. . .∧sri

i where
each sj

i is a simple predicate, and ri ≥ 1, where ri is the number of simple predicates
forming subscription si. Let us define m, as the number of distinct attributes in the set
of k subscriptions si, 1 ≤ i ≤ k.

Without restricting the applicability of the algorithm and to simplify the analysis, we
consider that each simple predicate defines a constraint on an attribute xj , 1 ≤ j ≤ m,
where each xj has a lower (xj ≥ lowj) and upper limit (xj ≤ highj). Each attribute
is therefore defined as a range. Furthermore, we assume that all subscriptions define
constraints for the same number of attributes m1 = m2 = . . . = mk = m, and since
there is a lower and upper bound on each xj , r = 2 ·m. In fact, this is not a restriction as
the bounds (−∞, +∞) mean the attribute is not significant for a particular subscription,
and remains undefined.



Efficient Probabilistic Subsumption Checking 127

The general subsumption problem tests whether a subscription s is covered by a
disjunction of subscriptions, s � (s1 ∨ s2 ∨ . . . ∨ sk), where k is the total number of
existing subscriptions.

Definition 2. A conflict table T is a k × (2 · m) table relating a subscription s to all
simple predicates defined by S = {s1 ∨ s2 ∨ . . . ∨ sk}. An element in table T , T j

i is
¬sj

i if s ∧ ¬sj
i is satisfiable or is otherwise undefined.

A conflict table points out conflicting and not covered intervals between a tested sub-
scription and a set of subscriptions. To construct the conflict table, we process each
subscription si ∈ S to verify the satisfiability of the negation of each simple predicate
sj

i against subscription s. If the condition is true, T j
i is assigned the value ¬sj

i , oth-
erwise it is assigned the undefined value. Thus, the decision whether a specific T j

i is
defined is done in O(1) and the construction of the table requires O(m · k).

For the example in Table 2, s∧¬s1
1 is not satisfiable, because the intersection between

s and ¬s1
1 = {x1 < 820} is empty, while s∧¬s2

1 is satisfiable because the intersection
between s and ¬s2

1 = {x1 > 850} is non-empty. Both s ∧ ¬s3
1 and s ∧ ¬s4

1 are not
satisfiable and thus the corresponding table cells are undefined. The same procedure
is performed to compare s to s2.

Table 4. Conflict table for the example in Figure 1

si x1 < low1
i x1 > high1

i x2 < low2
i x2 > high2

i

s1 undefined x1 > 850 undefined undefined

s2 x1 < 840 undefined undefined undefined

The conflict table relating subscription s from Table 2 to the set of subscriptions
s1 and s2 is given in Table 4. The first row represents a template for the content of
the actual conflict table relating s to s1 and s2. The first line corresponding to s1 has
only one defined element, ¬s2

1 = {x1 > 850} because, as it is visible in the graphical
representation, s1 does not cover s for x1 > 850. Analogously, the only defined element
in the second line corresponding to s2 is ¬s1

2 = {x1 < 840}.

Definition 3. A polyhedron witness to non-cover is a set of elements from a conflict

table T ,
{
T j1

1 , . . . , T jk

k

}
, such that s∧¬sj1

1 ∧. . .∧¬sjk

k is satisfiable, defining a convex

polyhedron. In other words, a polyhedron witness is a convex polyhedron contained in
s, but not in S.

Let us consider the example graphically represented in Figure 2, defining two sub-
scriptions s1 and s2 that do not cover subscription s. The polyhedron witness to non-
cover is a rectangle in this case, and is defined by the intersection of s and the element
¬s2

2 = {x1 > 870}. This rectangle is contained in s, but not in s1 nor s2.

Definition 4. A point witness to non-cover is a point that satisfies s, but does not satisfy
S. A point witness is inside a polyhedron witness, but not inside S.
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Table 5. Non cover example: subscriptions

Subscription s
[x1 ≤ 890 ∧ x1 ≥ 830∧
x2 ≤ 1006 ∧ x2 ≥ 1003]

Subscription s1

[x1 ≤ 850 ∧ x1 ≥ 820∧
x2 ≤ 1009 ∧ x2 ≥ 1002]

Subscription s2

[x1 ≤ 870 ∧ x1 ≥ 840∧
x2 ≤ 1007 ∧ x2 ≥ 1001]

800 820 840 860 880 900
1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

P

x
1

x 2

 

 

s
s

1
s

2

polyhedron witness
point witness

Fig. 2. Non-cover example: graphical presenta-
tion of a polyhedron witness and point witness

In the previous example, any point inside the polyhedron witness rectangle defined by
s∧¬s2

2 is a point witness. The following 2 corollaries are based on the properties of the
conflict table, polyhedron witness and point witness.

Corollary 1. If all T j
i for 1 ≤ j ≤ r are undefined, then s is covered by si.

Proof. If all T 1
i , . . . , T r

i are undefined, then (s∧¬s1
i , . . . , s∧¬sr

i ) are all not satisfiable,
and thus (s � s1

i ) ∧ . . . ∧ (s � sr
i ), or alternatively, s � (s1

i ∧ . . . ∧ sr
i ). In effect s is

covered by si. Thus, as a side-effect, the use of the conflict table provides a sufficient
condition, tested in O(m · k), to check whether s is covered by any of the subscriptions
individually. �

Corollary 2. If all T j
i for 1 ≤ j ≤ r are defined, then s covers si.

Proof sketch. If all T 1
i , . . . , T r

i are defined, then (s∧¬s1
i , . . . , s∧¬sr

i ) are all satisfiable,
and thus s includes si on all attributes. �

Corollary 3. Let ti1 , ti2 . . . tik
be the list resulting from sorting t1, t2 . . . tk in ascending

order, where ti represents the number of defined entries in row i of the conflict table T .
If all tij ≥ j for 1 ≤ ij ≤ k, then s is not covered by S.

Proof sketch. If tij ≥ j for 1 ≤ ij ≤ k, then a polyhedron witness exists. It can be

constructed in the following way: Choose any element s
ji1
i1

to be part of a polyhedron
witness, and then eliminate any conflicting entries from other rows. Since each row will
have a maximum of one conflicting element with s

ji1
i1

, then at most one element in each
row will be eliminated. If this step is repeated k times a polyhedron witness will be
derived. Thus, s is not covered by S. �

4 Probabilistic Cover Algorithm

In this section we describe the probabilistic cover algorithm to solve the defined sub-
sumption problem. This algorithm has direct implications on the effectiveness of rout-
ing both publications and subscriptions in a distributed environment, and the efficiency
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to discover matching publications. The probabilistic core of the algorithm is the ‘Monte
Carlo type’ Random Simple Predicates Cover part. It runs in a fixed number of itera-
tions, but may produce an incorrect result with a certain pre-determined probability of
error. The probability of error is problem specific, and we show that an upper bound on
this error is derived in polynomial time prior to the execution of the algorithm. Thus, the
performance of the algorithm can be decided in advance based on particular application
requirements. The Random Simple Predicates Cover can be executed independently or
in conjunction with the minimized cover set algorithm which reduces the original set
of subscriptions S to a non-reducible set against which a new subscription s has to be
checked. We also introduce a number of optimizations used for making fast decisions
under specific conditions that can be detected from the conflict table.

4.1 Random Simple Predicates Cover

The Random Simple Predicates Cover (RSPC) algorithm exploits the property of point
witnesses. If the algorithm guesses a point in s that is a point witness to non-cover for
the set of subscriptions S, then the subsumption problem is solved with a definite NO,
i.e. s 	� S. On the other hand, in case a subsumption relationship exists, the algorithm
would try in vain to find such a witness. To prevent this situation, we define a threshold
d for the number of guesses, and the algorithm may output a probabilistic YES, i.e.
s � S with a predefined probability of error.

Algorithm 1. Random-Simple-Predicates-Cover
1: /* Decide whether a subscription s is covered by the existing subscriptions set S */
2: for i = 1 to d do
3: GUESS a point P inside s
4: if P does not satisfy subscriptions set S then
5: RETURN false
6: end if
7: end for
8: RETURN true

Algorithm 1 defines the RSPC algorithm which executes a number of iterations d
to randomly generate a point satisfying subscription s and checks whether it is a point
witness. To generate a point within s costs O(m), and verifying whether it lies inside
any of s1, s2, . . . sk can be done in O(m · k) steps. Overall, the algorithmic complexity
of RSPC is d(m + m · k), or O(d ·m · k). However, our experiments in Section 6 show
that this upper bound is a pessimistic estimate, since at any iteration, RSPC can output
a definite NO if the guessed point is indeed a point witness. In addition, the complexity
can be greatly reduced using the optimizations presented in Sections 4.2 and 4.3.

Proposition 1. RSPC returns NO when s is definitely not covered by S. It returns YES
with a probability error δ upper bounded by

δ = (1 − ρw)d, (1)

where ρw is the probability that a randomly generated point P inside s is a point witness.
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Proof. If RSPC returns NO then a point witness was found, and thus s is definitely
not subsumed by S. Therefore, the answer is correct. If s is not subsumed then RSPC
returns YES only if none of the guessed points is a point witness. For each trial this
happens with probability less than 1 − ρw, therefore for d trials the probability RSPC
returns YES is less than (1 − ρw)d, since d trials are randomly generated and are thus
assumed to be independent. �

In problems with specific probability of error δ, we can compute the necessary number
of trials, d, to answer the subsumption question with the required δ, using Equation 1
beforehand in polynomial time. The number of trials increases with a decrease of the
error probability. The value of ρw depends on the number of existing point witnesses
for the particular subscription s related to the set of subscriptions S, and the ‘size’
(number of integral solutions) of subscription s. Since the probabilistic algorithm may
produce a wrong answer only if s is not subsumed by S, the worst situation is to as-
sume that s is indeed not subsumed by the set. To compute the upper bound on d,
we need to determine the lower bound on ρw, set by the smallest possible polyhedron
witness.

Algorithm sketch for computing d. In order to compute d, the algorithm needs the
value of ρw, which must be approximated, because knowing an exact value is equiv-
alent to solving the subsumption problem. We approximate the lower bound on ρw as
the product of the minimum distances for each attribute between the new subscription
bounds and the bounds of each subscription in the set (possible minimum non-covered
ranges). Then, the upper bound on d is extracted from Eq. 1, using the computed value
for ρw and the given δ.

4.2 Minimized Cover Set of Subscriptions

To further reduce the number of subscriptions against which s needs to be checked, we
introduce another algorithm, the minimized cover set algorithm (MCS). From the set
of subscriptions S, MCS constructs a non-reducible set of subscriptions, by ignoring
those that are redundant for the covering detection problem and filters out duplicate
subscriptions (those covering the same parts of s), and subscriptions that do not intersect
with s. The remaining subscriptions form the non-reducible set S′ (which may not be
the minimal covering set) against which s is subsequently checked by RSPC.

Definition 5. Two defined entries in the table, T
ji1
i1

and T
ji2
i2

are said to be conflicting

if i1 	= i2, and s ∧ T
ji1
i1

∧ T
ji2
i2

is not satisfiable. A defined entry T
ji1
i1

is said to be

conflict-free if it does not conflict with any other defined element T
ji2
i2

, where i1 	= i2.

Conflict free entries are determined by comparing entries from the conflict table related
to the same attribute, for different subscriptions. If a constraint conflicts with any other
constraint defined by another subscription, the entry is conflicting. It is conflict free
otherwise.

Figure 3 visualizes the set of 3 subscriptions, s1, s2 and s3, as well as subscription
s defined in Table 6, and Table 7 shows the corresponding conflict table. We can observe
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Table 6. Conflict-free example: subscriptions

Subscription s
[x1 ≤ 870 ∧ x1 ≥ 830∧
x2 ≤ 1006 ∧ x2 ≥ 1003]

Subscription s1

[x1 ≤ 850 ∧ x1 ≥ 820∧
x2 ≤ 1007 ∧ x2 ≥ 1001]

Subscription s2

[x1 ≤ 880 ∧ x1 ≥ 840∧
x2 ≤ 1009 ∧ x2 ≥ 1002]

Subscription s3

[x1 ≤ 890 ∧ x1 ≥ 810∧
x2 ≤ 1005 ∧ x2 ≥ 1004]

800 820 840 860 880 900
1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

x
1

x 2

 

 
s
s

1

s
2

s
3

Fig. 3. An example with conflict free entries

Table 7. Conflict table for the example in Figure 3

si x1 < low1
i x1 > high1

i x2 < low2
i x2 > high2

i

s1 undefined x1 > 850 undefined undefined

s2 x1 < 840 undefined undefined undefined

s3 undefined undefined x2 < 1004 x2 > 1005

that the defined entries for s3 are conflict free: they are not conflicting with the entries
from s1 and s2. On the other hand, s1 and s2 have conflicting entries because x1 cannot
simultaneously satisfy both conditions, x1 > 850 and x1 < 840.

Proposition 3. If the number of conflict-free elements in the i-th row of T , fci , is
greater than or equal to 1, or the number of defined elements in row i, ti ≥ k, then si is
redundant. Proof is given in [15].

The MCS algorithm consists of two main steps, as defined in Algorithm 2. First, starting
from the conflict table T , it counts the number of defined elements for each subscription
si in the corresponding row, ti and computes the number of conflict free elements,
fci . Then, it removes from the set all subscriptions for which ti is equal to or greater
than the current number of subscriptions in the set. It also removes subscriptions that
have at least one conflict free element in the corresponding row of the conflict table.
These two steps are repeated until there are no more subscriptions that fulfill any of the
two conditions. The remaining subscriptions form the non-reducible cover set S′ for
answering the union covering problem.

Considering the conflict table from Table 7, in the first step none of the subscrip-
tions has more defined entries than the total number of subscriptions (t1 = t2 = 1 and
t3 = 2 which is smaller than 3), while only s3 has conflict free entries. Based on the
elimination conditions (in this case, fc3 = 2 > 0), MCS can remove subscription s3

in the first iteration. In the second iteration, still no subscription has more defined entries
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Algorithm 2. Minimized Cover Set
1: /* Find the minimized set of subscriptions S′ relevant for subsumption detection */
2: /* Construct and use the conflict table T */
3: repeat
4: S′ = S
5: for every row i in T do
6: compute fci /* number of conflict-free elements in row i in T */
7: compute ti /* number of defined entries in row i in T */
8: if fci ≥ 0 or ti ≥ k then
9: remove row i from T

10: remove subscription si from S′

11: k = k − 1
12: end if
13: end for
14: until no si can be removed
15: RETURN S′

than the total number of subscriptions (t1 = t2 = 1 < 2) and there are no conflict free
entries, thus the algorithm stops. The minimized cover set is S′ = {s1, s2}.

Determining if a table entry is conflict free is O(m · k). Therefore computing each
fci costs O(m2 k), and in turn steps 1 and 2 in each iteration of the MCS algorithm cost
O(m2 k2). Steps 1 and 2 may be repeated k times since each time step 2 is performed
at least one si is filtered out. As a result, the overall cost of the algorithm reduction is
O(m2 k3) in the worst case.

4.3 Fast Decisions Based on Sufficient Conditions

To summarize, in order to answer the subsumption problem, the algorithm first con-
structs the conflict table, runs the MCS algorithm to reduce the subscription set, and
then applies the probabilistic RSPC algorithm which produces either a definite NO or a
probabilistic YES. Nevertheless, for some specific cases, the algorithm can efficiently
give a deterministic answer. Here we briefly present three specific cases.

1. Pairwise subsumption: As stated in Corollary 1, it is possible to detect if a sub-
scription s is entirely covered by another subscription and produce a definite YES
by analyzing the conflict table. If the row in the conflict table corresponding to sub-
scription si contains only undefined values, then si covers the new subscription.

2. The outcome of the MCS algorithm can be an empty set, which means that there
are no candidate subscriptions that could jointly cover s, and the algorithm will
produce a definite NO.

3. Polyhedron witness: Detecting the existence of a polyhedron witness suffices to
detect a non-cover relationship and output a definite NO as stated in Corollary 3.
Based on the definitions of the polyhedron witness and conflict free entries, we can
detect the presence of such a witness, depending on the number of defined entries
in the conflict table without using either RSPC or MCS.
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5 Subscription Propagation in a Distributed System

As in a distributed system subscription propagation affects the overall system perfor-
mance, here we analyze the implications of incorrectly declaring a subscription as cov-
ered. Equation 1 gives the upper bound for the probability of error in incorrectly with-
holding the forwarding of a subscription, and therefore, it represents the likelihood of
not finding a matching publication if it is available at the next broker. In a distributed
publish/subscribe system, data is routed throughout the system, and we need to analyze
the influence of our probabilistic algorithm on subscription propagation. We consider
in Figure 4 a simple and illustrative case, where the new subscription s should be prop-
agated along a chain of brokers B1, B2, . . . , Bn.

s: Subscription s

B1 B2 B3 Bn

s

p p p p

Publication pp:

Bi Broker i

The probability p 
arrives at Bi

:

Fig. 4. New subscription propagation

We assume that the new subscription s is issued at broker B1, while subscriptions
s1, s2, . . . , sk have already been propagated down the path to all brokers. Let ρ be
the probability that a matching publication p (matches s but no si) is issued at any of
the brokers Bi. The overall performance of the probabilistic algorithm is given by the
probability of finding the matching publication, wherever it resides.

Proposition 4. The probability of finding the matching publication p under the con-
dition that s is erroneously found to be covered by S, where s1, s2, . . . , sk have been
propagated to all brokers along the path, and all brokers have equal probability of ρ of
receiving publication p is:

n∑
i=1

ρ[(1 − ρ)(1 − (1 − ρw)d)]i−1, (2)

where ρ is determined by the network density and the communication distance of two
neighboring brokers, and n is the total number of brokers in the path.

Equation 2 gives the lower bound for the overall algorithm performance. However, as
we will show in the next chapter, the actual performance is much better in practice, even
for loose error probabilities. On the other hand, the reduction in the global subscription
traffic is more important for longer broker paths, reflecting the local reduction at each
broker, exponentially amplified in the network diameter.

Note that we do not present in this paper the mechanism for dealing with subscrip-
tions cancelation. This issue can be tackled by explicit forwarding of unsubscriptions
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between brokers or by associating an expiration time with each new subscription. Ac-
cording to our approach, the canceled subscription can either be covered, and then can-
celation has only the effect of removing it from the passive set, either be present in the
(active) subscription set, and then its covered subscription must be promoted to this set,
to replace it.

6 Experimental Evaluation

In this section, we evaluate the performance of the proposed probabilistic approach in
terms of efficiency and effectiveness using a number of subscription generation sce-
narios. Efficiency is measured as the number of actual algorithmic steps performed to
answer the subsumption question, and effectiveness as the ratio of recognized redun-
dant subscriptions to the total number of redundant subscriptions. Especially, we are
interested in potential gains and costs when using the MCS algorithm in specific sub-
scription generation scenarios. Next, we analyze the number of false decisions declaring
a subsumption relationship when there was no subsumption. Finally, we compare our
approach with the existing one for pair-wise coverage detection.

There are two main categories of subscription settings:

(1) Covering: s is covered by the set of subscriptions (with some of si ∈ S being
redundant).

(2) Non-cover: s is not covered by the set S (as such, all subscriptions are redundant).

In particular, we have considered the following subscription generation scenarios:

(1.a) Pairwise covering scenario; s is entirely covered by at least one subscription from
the set of existing subscriptions.

(1.b) Redundant covering scenario; s is not covered by any single subscription, but is
covered by the set, with a lot of subscriptions being redundant.

(2.a) No intersection scenario; s does not intersect with any existing subscription.
(2.b) Non-cover scenario; s is not covered by the set S, but overlaps with existing

subscriptions over many attributes.
(2.c) Extreme non-cover scenario; similar to (2.b), but s has only a very small non

covered gap.
(1-2) Comparison scenario; generate incoming subscriptions randomly.

Scenario (1.a) is straightforward as the covering relationship is determined efficiently
by applying Corollary 1 after the construction of the conflict table, therefore the cost of
detecting pairwise coverage is O(m · k). Scenario (2.a) is also straightforward because
MCS determines non subsumption after the first iteration by removing all subscriptions
from the set S′ because all si ∈ S have conflict-free elements in the conflict table. Sce-
narios (1.b), (2.b), and (2.c) are difficult settings for checking the covering relationship,
as there are no pair-wise subsumptions which could help to reduce the set S′. We inves-
tigated these scenarios using the following subscription generation principle: Existing
subscriptions overlap with a new subscription and each other for many attributes, but
there are no pair-wise subsumptions. The last scenario (1-2) simulates a realistic setting
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Table 8. Parameters used in simulations

(1.b) (2.b) (2.c) (1-2)

no. of subscriptions k 10-310 (30) 10-310 (30) 50 1 to 5000
no. of attributes m 10, 15, 20 10, 15, 20 5 10, 15, 20

error δ 10−10 10−10 10−3, 10−6, 10−10 10−6

no. of trial runs 1000 1000 3000 1
gap size 0 random 0.5-4.5% (0.5%) NA

assuming that user interests are similar, and that the popularity of attributes appearing
in subscriptions is Zipfian.

The parameters used in simulations are listed in Table 8. For the redundant covering
and non-cover scenarios, the setting is similar, while the extreme non-cover scenario
investigates different error probabilities. The comparison scenario is performed in a
single run by generating a sequence of subscriptions. In the figures, each plotted point
is the average of the values obtained over the number of trial runs.

6.1 Redundant Covering Scenario

This simulation scenario investigates algorithm performance when the subscription set
S subsumes s. A high rate of redundant subscriptions is introduced to test the influence
of the MCS algorithm on the overall performance: s is covered by 20% of the generated
subscriptions and the remaining 80% are redundant and partly cover s.

0 50 100 150 200 250 300
0.7

0.75

0.8

0.85

0.9

0.95

1

Existing subscriptions

R
ed

un
da

nt
 s

ub
sc

rip
tio

ns
 r

ed
uc

tio
n

 

 

m=10
m=15
m=20

Fig. 5. Reduction for the redundant covering
scenario
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Fig. 6. Theoretical number of iterations for the
redundant covering scenario

Figure 5 shows the effectiveness of the MCS algorithm: It successfully removed be-
tween 80% and 100% of redundant subscriptions. The performance increases for higher
number of attributes because when increasing m, the probability of group coverage in-
creases due to the specific subscription generation scenario.
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Figure 6 shows the theoretically predicted number of iterations d needed to answer
the subsumption question. The log(d) plot is shown as a function of k, calculated using
Equation 1. The plot is given for the initial set of subscriptions S, and the reduced
set S′ after running MCS. Due to the tight error probability, d is extremely high when
using only the RSPC algorithm. However, MCS significantly reduces the number of
needed iterations and becomes practically feasible: d < 105 for 100 subscriptions with
10 attributes, and decreases significantly for larger number of attributes. Further more,
as the results obtained for non-cover show, we could reduce the number of trials further.

6.2 Non-cover Scenario

For the non-cover scenario, the experiment is constructed by forcing the non-covering
of s by leaving a small range over x1 uncovered. The values over the other attributes
are generated randomly. The whole set of subscriptions S is actually redundant as s
is not covered. In this scenario, the algorithm has always detected the non-coverage
relationship due to optimizations and a low probability of error.
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Fig. 7. Reduction for the non cover scenario
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Fig. 8. Actual iterations for non cover

Figure 7 shows the effectiveness of the MCS algorithm which performs even better
than for the redundant covering scenario because most of the subscriptions are removed
quickly due to the non covering relationship.

Since non-cover can be detected prior to performing all d theoretical iterations, Fig-
ure 8 shows the actual number of iterations performed to discover a witness point. The
average number of performed iterations is extremely low (< 0.5), due to the fact that
in most of the cases, after running MCS, the reduced set is empty, thus d = 0. There
are some evident fluctuations for this scenario caused by the probabilistic nature of the
algorithm.

6.3 Extreme Non-cover Scenario

The extremeness of this scenario consists of covering the new subscription entirely, ex-
cept for a narrow slice over one attribute, where we enforce a gap. We investigate the
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Fig. 10. Number of false negatives

total number of false decisions that result in non forwarding of a non covered subscrip-
tion and the average number of performed trials.

Figure 9 shows that the average number of guesses is similar for all probabilities of
error, even though the theoretical number of guesses increases for tighter error proba-
bilities. This behavior is expected, as the chances of guessing a point witness depend on
the ratio between the gap size and the total range size of the non covered attribute, but
it does not depend on the error probability. This result suggests that we can also reduce
the number of trials after which a subscription is declared covered.

In Figure 10 we can see the total number of false decisions increases with the error
probability and decreases with larger gap sizes. In fact, for probabilities of error lower
than 10−6 and gap sizes of more than 1%, the algorithm always takes the right decision.
Even for a looser probability of error (10−3), the number of false negatives remains
quite low, if the gap is at least 2%. This shows that an error probability of 10−6 is
sufficient for detecting non-coverage in most application scenarios because it has a low
number of false decisions in case of a small non-covered subscription space while at
the same time reducing the theoretical number of iterations d.

6.4 Comparison

Due to the lack of real-world subscription set, we have simulated a setting using power
law distributions that are considered as good approximations of popularity both for
the selection of attributes and attribute ranges. From the set of m attributes popular
ones were chosen using a Zipf distribution (skew = 2.0). Attributes are generated in the
following way: The center of a range is generated with a Pareto distribution (skew = 1.0)
to simulate similar interests, while range sizes are generated with a normal distribution.

The experiment compares the growth of subscription set sizes in case of the pair-
wise ([7,8]) and group subsumption (our approach) reductions.

Figure 11 shows the growth of the total number of active subscriptions when in-
creasing the number of incoming subscriptions. It is interesting to observe the power
of subscription set reduction using subscription coverage both for pair-wise and group
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coverage in case of partly covered subscription space. The group coverage shows
greater reduction compared to the pair-wise algorithm for all values of m. For m = 10
and m = 15 group coverage has reduced the original set of 5000 subscriptions to less
than 10%, and pair-wise coverage to approx. 15% of the entire set, while for m = 20
the reduction is still significant (around 33% for group and less than 50% for pair-wise
coverage). The set reduction is very important for subscriptions with a large number
of attributes which increases complexity because of the absolute subscription set size,
e.g. some brokers have limited resources and may not handle more than 1000 active
subscriptions. When increasing m, the actual number of active subscriptions is also
larger, and this is due to the fact that the probability of subsumption generally decreases
in the applied subscription generation scenario when increasing subscription space di-
mensionality.

Figure 12 quantifies the actual gain of group coverage compared to the pair-wise
coverage by showing the ratio between the subscription set sizes obtained with the
2 reduction mechanisms . The obtained results show the extreme reduction potential
when increasing the number of incoming subscriptions. In case of 1000 received sub-
scriptions, the ratio is between 70 and 80%, and keeps decreasing with new incoming
subscriptions showing a stabilization tendency after 5000 subscriptions. The ratio is
larger for large m, but still significant, and is almost similar for 15 and 20 attributes be-
cause the actual number of defined attributes does not significantly differ. Of course, the
obtained results are highly dependent on subscription generation, but since our distribu-
tions follow a realistic popularity-based setting, it can be concluded that group coverage
can greatly reduce the subscription set compared to the pair-wise approach.

To conclude, the reduction algorithm is both efficient and effective: It can signif-
icantly reduce the size of the subscription set with acceptable error probability and
computational costs. RSPC should be used in combination with MCS because it dra-
matically reduced the number of performed trials. Finally, the comparison shows the
supremacy of the group coverage algorithm over the classical pair-wise approach that
will in general largely decrease the number of subscriptions in different distributed pub-
lish/subscribe systems.
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7 Related Work

Most of the research efforts in publish/subscribe systems have so far focused on the
problem of efficient matching and forwarding of publications [9,7]. Pairwise covering
and merging of subscriptions are typically used to reduce the set of active subscriptions,
and all algorithms rely on some version of the counting algorithm, originally defined
in [16]. The importance of reducing the number of subscriptions in a distributed en-
vironment is stressed in [8]. The authors are dealing with a complementary problem—
merging a set of subscriptions to reduce their number. In [7], modified binary decision
diagrams are employed, to achieve pairwise covering and merging of subscriptions. The
trade-off with merging is that the new subscription might contain parts of the subscrip-
tion space not covered originally by the set, which leads to false positives, delivery of
unrequested publications. A recently proposed solution relies on clustering of subscrip-
tions based on a proximity metric in subscription space [17], and would greatly benefit
from global subscription set reduction for both the total number of subscriptions and
the generated traffic. None of these techniques supports group subsumption, and can
filter out fewer subscriptions than the proposed probabilistic algorithm.

8 Conclusion

The paper presents a novel probabilistic algorithm for determining whether a sub-
scription is covered by a set of subscriptions. Theoretically it solves the problem in
O(k · m · d). The probability of error is problem specific and very small, and an up-
per bound on the threshold d is determined in polynomial time prior to the execution
of the algorithm. Our experiments have shown that the algorithm performs much bet-
ter in practice when combing the probabilistic algorithm with the reduction algorithm
that removes redundant subscriptions against which a new subscription needs to be
checked. Even more, in case of the non covering relationship, it is possible to give a de-
terministic answer without applying the probabilistic tests. Therefore, we can conclude
that the proposed algorithms can efficiently decide whether a subscription is covered
by a group of subscriptions which is important for fast subscription forwarding and
network congestion control in distributed publish/subscribe systems. The experimental
results show that the algorithm performs much better than the pessimistic theoretical
bounds even for settings where group coverage is difficult to detect. Finally, compared
to the reduction based on the classical pair-wise coverage, the subscription set reduction
achieved with our approach is significantly better, which, correlated with its good effi-
ciency and the very tight achievable error probabilities, recommends it for distributed
publish/subscribe systems.
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