

Systematic definition and assent to eContracts for Web Services

David Portabella Clotet, Vincenzo Pallotta, Martin Rajman
EFPL, {david.portabella, vincenzo.pallotta, martin.rajman}@epfl.ch

Abstract

People are increasingly using provider services
through the Internet. While a web site provides
information about the contract terms and conditions
that the clients have to assent to in order to use its
services, in web services there is no such way for taking
legal issues into account. There are some attempts to
build machine readable eContract languages that can
be used to express the contractual terms between the
participants but they are mainly designed to govern the
distribution and use of electronic content. We propose
an architecture for the definition of and assent to
eContracts for Web Services.

1. Introduction

We delegate increasingly sophisticated and complex
tasks to computer programs, and we require them to act
autonomously on our behalf in distributed environments
(e.g. the web, the grid). Personal Assistants (PA) are
computer programs that can be thought of a very natural
metaphor for such systems. Web Services are self-
contained, modular applications that can be semantically
described and published over the Web by service
providers. OWL-S is a Semantic Web Services
description language that enriches Web Service
descriptions with semantic information from OWL
ontologies and the Semantic Web [OWLS]. This makes it
possible for a PA to look for a particular type of service
and invoke it "on the fly" in order to perform a task.

However, there is very little work on the automated

use of a Web Service that requires assent to a contract
(the manifestation by one party that accepts to be bound
by the contract). We propose an extension of the OWL-S
specification to include a Master Contract description
that can be used by the client agent to assent to the
contract and get access to the contracted service.

2. Contract Instantiation

When a party offers a good or service that another
party is looking for, they need to negotiate to reach an
agreement on the contract's terms. In the process of
negotiation, their constraints and preferences are
discussed and may need to be changed (typically
relaxed) in order to successfully reach an agreement.

We are interested in the case where one party is a

service provider offering a type of service to individual
clients (e.g. a car insurance or booking a flight). In this
situation, the terms of the service's contract are fully
defined a-priori and the client is forced to accept all of the
conditions in order to get the service, or reject them and
do without. The client must also communicate a set of
service parameters that the provider may specify (e.g.
identity or departure date).

Contracts are the means by which we recognize and

enforce agreements between parties. We define a
Contract Instantiation (CI) as the information that should
be available in a possible contract in order to reach an
agreement for a service instantiation. A CI can be
accepted by both parties (e.g. by signing it) and then the
service can be executed. We define a Contract
Instantiation Process (CI process) as the process of
defining a CI. It typically requires a communication
between both parties (e.g. a clerk and a consumer).

A provider that needs to run the CI process frequently

(e.g. for a lot of customers) would eventually be
interested in automating it1. The client typically needs to
make the effort of dealing with the provider's CI process,
such as filling in a Web Form or interacting with a
Dialogue System through the phone. An exception to
this practice is when the providers are really motivated in

1 It might not seem cost-beneficial for a provider to
automate the CI process if it needs to be run once or very
few times. In contrast, once a CI has been agreed for a
periodic service, it does make sense to automate its
execution (e.g. sending the weather forecast every day by
email).

selling a service to a particular class of customers so that
they would make the effort to deal with the customers’ CI
process. This is typically the case for government
institutions that make a public call for an expensive
service, where the roles of provider and client are actually
swapped.

While does not make sense for a provider to automate

the CI process for a single, possibly infrequent,
instantiation, from the customer perspective we think that
it can be helpful to rely on a general purpose Personal
Assistant (PA) that can help the user to deal with the CI
process automation in a fairly high number of different
service types. For instance, if a customer needs to book a
flight, he/she can specify the trip requirements and leave
the PA to look for various providers offering flight-
booking services and automate the CI processes on
behalf of the user.

The goal of this paper is to study the different options

for the design of this type of Personal Assistant.

2.1 Information of a CI

In the spirit of keeping things simple, we identify three
types of information that can be part of a service
contract: obligations, rights and facts.

1. An obligation, for either party, is a requirement that

compels the party to follow or avoid a particular course
of action2 (e.g. the customer is not allowed to cancel the
flight or the provider is not allowed to overbook).

2. A right is the entitlement to do or refrain from doing

something, or to obtain or refrain from obtaining an
action, thing or recognition in civil society. The right can
therefore be a faculty of doing something, of omitting or
refusing to do something, or of claiming something (e.g.
the customer is allowed to smoke during the flight).

3. A fact is a piece of genuine information that is

required to be stated in the contract (e.g. the provider's
name and contact information, or the name, address,
nationality and a credit check for the customer)

Generally speaking, for each right pertaining to one

party there exists an obligation for the other party about
the same issue in one contract. In other words, if the
customer has a right on an issue, simultaneously the

2 This and the following definitions come from Wikipedia,
which is now widely recognized as a reliable source of
information.

provider has an obligation to do something (or to abstain
from doing something) in order to respect that right or to
give concrete execution to that right.

Even if related obligations and rights could be stated
as only obligations (or rights), it is still useful to formally
distinguish between them. An important difference
between rights and obligations is that a party can ignore
a right of their own if it is considered non-relevant to
their goals, while an obligation can never be ignored if it
is part of a contract that has been agreed by both parties.
This distinction will be used later for automation
purposes.

2.2 CI Process

A CI is built by providing information from both
parties. Note that only a part of this information is
typically relevant for a specific CI. For example, the
provider may want to enforce a rule stating that in order
to qualify for a "Young discount" the consumer needs to
be younger than 25 and needs to disclose their date of
birth in the CI. In the case that the consumer does not
qualify for the discount, their birthday is not relevant to
this specific CI and does not need to be disclosed. In fact
the rule is also not relevant when the customer simply
states that he does not qualify for this option. We then
define a "NORMALIZED CI" as a CI which only contains
relevant information for a specific instantiation.

2.2.1 Master Contract. From our perspective, the
provider is the main contributor to the CI. A client cannot
modify the OBLIGATIONS and RIGHTS the provider
defines. The provider defines some FACTS (such as their
identity and contact info) and the FACTS TO BE
INSTANTIATED BY THE CUSTOMER (such as their
name and birthday). The provider may also define a set of
PARAMETERS that the consumer needs to instantiate.
For example, a flight-booking service would have, among
others, parameters for stating the departure and arrival
airports, and the date and time of the flight. Once they are
instantiated they are added to the CI in the form of
obligations and rights.

Typically, the provider can define CONSTRAINTS
over the parameters, both unary and n-ary, and a set of
"RELEVANCE RULES" (such as the “Young discount”
one described above) to compute which parameters and
requested facts are relevant in a specific contract.

We define a "MASTER CONTRACT" as the

collection of all the types of information that contribute
to the CI Process, namely: OBLIGATIONS, RIGHTS,
FACTS, REQUESTED FACTS TO THE CONSUMER,

PARAMETERS, PARAMETER CONSTRAINTS and
RELEVANCE RULES.

3. Extending OWL-S for Service Contracting

We would like to automate the CI process within the
framework of Web Services invocation. Essentially this
CI process can be decomposed into three steps:

1. the provider implements a web service and
provides a OWL-S description extended with
the Master Contract information;

2. the client agent retrieves this description and, if

the terms are compatible with the user's goals
and constraints, it assents to the contract by
invoking the web service and passing the
requested information (facts and parameters);

3. finally the provider agent maps the given facts

and parameters to the CI. It can either accept the
CI and execute the service, or refuse it and send
back a refusal notification.

A partial example of an OWL-S extended service

description3 is given in fig 1. Following the Semantic
Web initiative, constraints and relevance rules could be
modeled using SWRL4. From this description the client
agent needs to evaluate whether the service fits the
user’s requirements. This evaluation has four tests that
need to be passed.

First the client agent needs to test that the client's

constraints can be satisfied by the provider. This
information can be found in the provider's obligations,
consumer's rights or the service parameters. In the latter
case, the client could already determine the relevant
parameters.

For instance, let's assume that the customer wishes a

smoking seat. If the Master Contract states that the
customer has the right of smoking then his constraint
(the smoking seat) is validated. Alternatively, it could
happen that the Master Contract defines the possibility
of smoking as a service parameter (which could be
restricted by the availability of smoking seats). In this

3 We do not define in this document the complete CI
ontology used, but we intend that it should be
interoperable with the Business Collaboration Framework
developed by the United Nations Centre for Trade
Facilitation and Electronic Business [(UN/CEFACT].
4 http://www.daml.org/2003/11/swrl/

case the customer agent would select this parameter as
relevant in the contract.

The second test would be that the client had asserted

all his obligations stated in the Master Contract as
commitments. By differentiating between obligations and
rights, we avoid the need for the client to be aware of the
semantics of those rights that are not relevant (i.e. not
stated in the user's constraints).

Figure 1. A partial example of the extended OWL-S
service description

<rdf:RDF
 xmlns:process=… xmlns:profile=…
xmlns:contract="…/TransportContract.owl#>

<profile:Profile rdf:ID="BookingFlightProfile">
 <contract:applyLawOf="Switzerland"/>
 <contract:hasParty rdf:ID="Offeror">
 <hasType rdf:about="#OfferorType"/>
 <hasActor rdf:about="#TheFlightCompany"/>
 </contract:hasParty>
 <contract:hasParty rdf:ID="Offeree">
 <hasType rdf:about="#OffereeType"/>
 <!-- the info about this actor has to be provided
by the customer-->
 </contract:hasParty>

 <contract:hasClause>
 <contract:Obligation>
 <clauseBy rdf:about="#Offeror"/>
 <clauseTo rdf:about="#Offeree"/>
 <contract:FlightTransportation>
 <hasOrigin rdf:about="#Geneva"/>
 <hasDestination rdf:about="#Paris"/>
 <!-- the time has to be provided by the
customer>
 </contract:FlightTransportation>
 </contract:Obligation>
 </contract:hasClause>

 <contract:hasClause>
 <contract:Right>
 <clauseBy rdf:about="#Offeree"/>
 <clauseTo rdf:about="#Offeror"/>
 <contract:SmokingAllowed/>
 </contract:Right>
 </contract:hasClause>
...
 <process:AtomicProcess rdf:ID="#PayAndSendTicket"/>
 <process:hasInput>
 <process:Input rdf:ID="theOfferee">

<process:parameterType>contract:Actor</process:parameter
Type>

<contract:map>contract/hasParty[@type="Offeree"]/hasActo
r</contract:map>
 </process:Input>
 </process:hasInput>

 <process:hasInput>
 <process:Input rdf:ID="flightTime">

<process:parameterType>xsd:timedate</process:parameterTy

Third, that the facts requested in the Master Contract
are present in the facts provided (by both parties). The
last test would be that no service parameters are left
unspecified.

If the tests are successfully passed, the PA can now

invoke the web service, passing the requested facts and
service parameters. By doing so, the PA is providing the
information for the final contract, giving its assent to the
contract (the client wants to be bound by the contract)
and asking the provider to execute the service specified
by this final contract.

The provider agent will consequently use the Master

Contract and the provided information to produce the
final concrete normalized CI. If it accepts this CI (i.e. it
may need to check its resources first), the provider
executes the service. Otherwise it sends a refusal
notification back to the client agent.

4. Related Work

There are some attempts to build machine readable
deontic contract languages, mainly the Business
Contract Language [BCL], the Contract Expression
Language [CEL] compliant to the Business Collaboration
Framework developed by the United Nations Centre for
Trade Facilitation and Electronic Business
[UN/CEFACT], and the OASIS eContracts specification5.
They are XML-based and can be used to express the
contractual terms between the participants, primarily to
govern the distribution and use of electronic content.
While these languages focus on how to describe the
terms of the contract, we focus more on integrating the CI
process with the Web Service framework. By doing so,
we can take advantage of related work in the area of Web
Services (e.g. signature, trust, composition, etc.).

5. Conclusions

This work is currently at an exploratory stage. The
process flow has been now outlined and the next step is
to look further into each stage of the proposed approach,
by implementing the related supporting tools. We also
plan to apply the proposed approach to real world case
studies to identify the main challenges, such as the
semantic interoperability of business terms.

6. Acknowledgments

5 Work in progress:
http://www.oasis -pen.org/apps/org/workgroup/legalxml-
econtracts/documents.php

David Portabella would like to thank Esteban Sánchez
and Michael Schumacher for the stimulating discussions,
as well as the anonymous reviewers and Ian Blacoe for
correcting my English.

7. References

[OWLS] The OWL Services Coalition: Semantic Markup for
Web Services (OWL-S), http://www.daml.org/services/owl-
s/1.0/

[CEL] Contract Expression Language, revision 1, May 2, 2003,
http://www.crforum.org/candidate/CELWG002_celspec.doc

[BCL] S.Neal et al, Identifying requirements for business
contract language: A monitoring perspective,
Proceedings of the seventh International Enterprise Distributed
Object Computng Conference, pages 50-61, Brisbane,
Australia, September 2003. IEEE Computer Society.

[UN/CEFACT] Business Collaboration Framework (BCF), the
Techniques and Methodologies Group (TMG), United Nations
Centre for Trade Facilitation and Electronic Business
(UN/CEFACT), http://www.unbcf.org

