Combining Multiple Inclusion Representations
In Numerical Constraint Propagation

Xuan-Ha Vu, Djamila Sam-Haroud and Boi Faltings
Artificial Intelligence Laboratory,
Swiss Federal Institute of Technology in Lausanne (EPFL),
CH-1015, Lausanne, Switzerland
http://lawww.epfl.ch
{xuan-ha.vu,jamila.sam,boi.faltings t@epfl.ch

Abstract—This paper proposes a novel generic scheme en-combining the strength of different solution techniques is
abling the combination of multiple inclusion representations to the subject of many intensive research efforts (see [4] and
propagate numerical constraints. The scheme allows bringing aferences therein).

into the constraint propagation framework the strength of - . . . —
inclusion techniques coming from different areas such as interval Our contributions will be described in the sectidiis 1V,

arithmetic, affine arithmetic and mathematical programming. V! andVI. At first, in Sectionlll! we generalize inclusion
The scheme is based on the DAG representation of the constraint concepts in order to present different inclusion techniques
system. This enables devising fine-grained combination strategiesin a common framework that makes it possible to insert
involving any factorable constraint system. The paper presents .« of inclusion techniques into the scheme proposed in this
several possible combination strategies for creating practical . e .
instances of the generic scheme. The experiments reported on aP2P€’: Ir_‘ SectioV, We propose some modlflcaFlons to affine
particular instance using interval constraint propagation, interval ~ arithmetic to make it efficient for the computations proposed
arithmetic, affine arithmetic and linear programming illustrate in this paper. In SectioriV, we propose a novel generic
the flexibility and efficiency of the approach. scheme which allows devising new combination strategies for
numerical constraint propagation in a flexible way. The scheme
enables the propagation to be performed using different inclu-
Many real world applications involve solving constraint sakjon representations on directed acyclic graph(DAG) that
isfaction problems witleontinuous domainsalled numerical represents the problem. Consequently, the scheme is virtually
constraint satisfaction problems (NSCPs). In practice, numepjicable to any factorable constraint system. The goal is to
ical constraints can be equalities or inequalities of arbitrabfovide a combination scheme that is efficient and flexible
type, usually expressed iactorableform (that is, they can pyt still general enough to bring the strength of different
be recursively composed of elementary operations such, asso|ution techniques coming from different areas (e.g., con-

I. INTRODUCTION

—, X, =+, log, exp, sin, cos, ...). In other words, such anstraint programming and mathematical programming) into the
NCSP can be expressed as follows framework of constraint propagation. In order to illustrate the
F(z) €b, z €x, 1) flexibility and efficiency of the proposed scheme, in Secidn

we devise from the scheme several new combination strategies

whereF' : R — R™ is a factorable functiony is a vector of which are based on emerging techniques, namely interval
n real variablesx andb are interval vectors of sizes and constraint propagation, interval arithmetic, affine arithmetic,
m respectively. and linear programming. In Sectic¥Il, our experiments

Many solution techniques have been proposedanstraint show that the devised technique is superior to recent interval
programmingto solve numerical constraint systems. Some @bnstraint propagation methods in performance and quality. It
them are based dnterval constraint propagatioandinterval even outperforms some very recent techniques in mathematical
arithmetic (some among them are [1], [2], [3], [4] and referprogramming and constraint programming which are specially
ences therein), while others rely bnear relaxationandlinear designed to solve certain constraint systems. The conclusion
programming [5], [6]. There have also been mathematicak finally given in SectiorVIIl.
techniques [7], [8] that us& interval and affine arithmetic
to solve equation systems. Most of the solution techniques Il. BACKGROUND AND NOTATION
are interleaved with ®isectionsearch to solve the problemsa_ |nterval Arithmetic and Affine Arithmetic
exhaustively. Lately, there have been some advanced searc\I;{/h . int bl C Rt ¢ lvalued
techniques [9], [10] that improve the search performance for enusing an in ervah, b] C R to represent a real-value
problems with non-isolated solutions (e.g., inequalities) Whi%uanutym, we mean that
maintaining the same performance for problems with isolated a<r<b)
solutions (e.g., equalities). In general, different techniquesinterval arithmeticis an extension of real arithmetic defined
have different strengths that are complementary. Therefoos the set of real intervals, rather than the set of real numbers.

http://liawww.epfl.ch�
{xuan-ha.vu, jamila.sam, boi.faltings}@epfl.ch�

Modern interval arithmetic was originated independently in[m]
late 1950s by several researchers; includihgVArRMUS [11],
T. SUNAGA [12] and R. E. MoORE [13]; with MOORE
finally setting the firm foundation for the field in his manty,
publications. We assume that readers are familiar with interva|
arithmetic. Otherwise, we would recommend [14], [15], [4],
[16] for more details on interval arithmetic and basic interval
methods.

Affine arithmetic[17] is an extension of interval arithmetic

. . . Ny S N\, .7
which keeps track of correlations between computed and input éc ém
guantities. In particular, a real-valued quantitys represented
by anaffine formdefined as follows @ ®)

T=2o+ X161+ ... + Tpkn, 3 Fig. 1. The DAG representation (a) before and (b) after interval evaluations

wherex,, ..., z, are real coefficients and, . .., e, arenoise
\[/aalalb}les (originally called noise symbojstaking values in- o e in Theoremd, to represent a system of factorable
~1,1].

! . . .) , , constraints, we therefore call itdirected acyclic grapl{DAG)
Similarly to interval arithmetic, affine arithmetic also allowsTor short. In a DAG, every node represents a variable or an

using rounded floating-point arithme_ztic to constrlu'g_orous elementary operation (e.g-, x, <, log, exp, sqr, sin) used in
Iencl;_suresfg;] the_ ran?f_es of oper_atlons arr:d functions [181he composition of constraints and every edge represents the
n afiine %{'t meug, a |r(1je operlat|ons such @s -+ gy T computational flow associated with a coefficient. The ordering
ga’%7f6")are]? tamle. exactly, except the rounding errorgg edges is needed for non-commutative operations like the
y the following formula: " division, and not really necessary for commutative operations.
oz + By + v = (amo + Byo +) + Z(a% + By;)e; (4) Forconvenience, a virtual ground nod®, is qdded toa DAG.
=1 to be the parent of all the nodes representing the constraints.
However, non-affine operations can only be computed byWe usemultigraphsinstead of simple graphs for the rep-
approximations. In general, the exact result of a non-affinesentation because someary operations can take the same

operation has formyf*(e4,...,&,), Where f* is a nonlinear input more than once. For example can be represented by
function. In practice, this result is then approximated by ahe operationz¥ without introducing a unary operatiort.
affine function f®(eq1,...,e,) = 20 + 2161 + ... + Znen. A Notation 1: In this paper, the real variable representing a
new termzey, is used to represent the difference betwgén node,N, of the DAG representation is denoted By;.
and f¢, hence, the result has the affine form Example 1: The DAG representation of the following con-
Z2=20+ 2161+ ... + ZnEn + ZLEL, (5) straint system is depicted in Figuli

where the maximum absolute errgy satisfies 2% — 20y + V=0

zi > sup{|f*(e) — f¥(e)| : Ve = (e1,...,en) € [-1,1]"}. dr + 32y +2/y <9

An important goal is to keep the maximum absolute error well,3); y e[l

as small as possible. This is a subject @hebyshev ap- |n Figurell, {N, N5, N3, N4, N5, Ng, N;} is an ordering of

proximation theorywhich is a well-developed field with athe nodes that satisfies the condition of TheoiEm
vast literature. Ranges obtained with affine arithmetic may be

substantially more accurate than those obtained with intenfal Fundamental Notations
arithmetic. However, the operations of affine arithmetic are In the rest of the paper, we use the notatiaa’ for
often more expensive than those of interval arithmetic. Sordefinitions. The power set of a set, is denoted by24.
comparisons on interval and affine arithmetic methods can béWe denote by| E| (resp.[E]) some lower approximation
found in [18], [19], [20]. (reps. some upper approximation) fhof the expressiorn®
such that|F| < E (resp.E < [E]). We use the notation
E = (E) £ e to mean thatl E)) is an approximation iff of E,

We assume that readers are already familiar with fundamegid the corresponding bound on the absolute rounding error
tal concepts from graph theory such disected multigraph s ¢, that is(E) — e < E < (E) + ¢. Readers are referred to
with ordered edgesand directed acyclic graph/multigraph [18] for some rounding techniques in floating-point arithmetic

B. Directed Acyclic Graph

OtherWise, readers are referred to [21] on Simp'e e|ementary Operations_

Theorem 1 (Total Order)¥or every directed acyclic multi-
graph(V, E, f) there exists a total ordet on verticesV’ such I1l. GENERALIZATION OF INCLUSION CONCEPTS
thatvv € V : if w is an ancestor of, thenv =< w. We now generalize the concepts relatethtdusion function

Following the approach for representing factorable functioris give a common view of inclusion techniques.
in [21], we use a directed acyclic multigraph, whose edgesDefinition 1 (Inclusion Representationfziven a set4d. A
are totally ordered and whose vertices are ordered by emupleZ = (R, 1), whereR is a set ofrepresentation objects

and p is a function fromR to 24, is called aninclusion Definition 3 (Inclusion Function):Given two setsX, Y
representationof A if there exists asurjectivefunction p : and a functionf : X — Y. Let Zx = (Rx,ux) and
24 — R such thatvS C A : S C u(p(S)). In this casep Ty = (Ry,py) be two inclusion representations &fandY’,
is called therepresenting functiorof Z and p is called the respectively. A functiont’ : Rx — Ry is called aninclusion
evaluating functiorof Z. functionof f if for every S C X and everyl’ € Rx we have

Definition 2 (Real Representationket Z = (R,u) be an S C ux(T) = f(S) = {f(z) | v € S} C uy (F(T)) (10)
inclusion representation oR. We call Z a real inclusion . . .

. : . : : In practice, real-valued functions are often extended in a
representatior(of R) if each representation obje€te R is a .
tuple consisting of real constants, and the evaluating functi(r)]r&}tura.lI way to evaluate the ranges of functions.
! Definition 4 (Natural Extension)Let f : R® — R™ be a

p can be defined as factorable function recursively composed of a finite ggtof
w(T) ={fr(Vr) | Vr € Dr}, (6) elementary operations defined Bn Suppose thaf = (R, 1)
where fr is a real-valued function (with as a tuple of is an inclusion representation & such that there exists a
parameters) and’; is a finite sequence of variables takinget, Er, of elementary operations defined &) and exists a
values in real domain®r. The representatioff) is called a bijectiony : E — Er.? A function f : R* — R™ is called

real representatiorof .. thenatural extensiomf f in Z (using elementary operations in
The domains inDy can be explicitly given by constant Er) if f is constructed from the composition $ty replacing
domains such af, b], or implicitly given by constraints. each real variable (resp. constant) by a variable taking values

Example 2:It is easy to see that the interval for(@) is (resp. constant) iR, and replacing each occurrence of an
equivalent to a real inclusion representatiorRpfwhere each €lementary operation € £ by the corresponding occurrence
representation objed € R is a couple of realga, b), Vo = 0f n(e). If f is also an inclusion function of, we callf the
(z), fr is an identity function, and>r = [a,b]. That is, the natural inclusion functiorof f.
real representation of the evaluating function is defined as Various interval inclusion functions have been described in

_ detail in the book [4]; some among them a@ural, centered
w(T) ={z | @ € [a,bl} ™ mixed-centerecnd Newton inclusion functions

Example 3:The affine form(3) can also be viewed as areal Definition 5 (Inclusion Converter)Let Z; = (R, 1) and

inclusion representation @&; where each representation object, = (R2, u2) be two inclusion representations of the same

is a tupleT = (zg,...,2n,1,...,n),Y Vo = (e1,...,¢,) are set. A functionc : R; — R, is called aninclusion converter
the variables of the linear functiofir(cy,...,e,) = xg + fromZ; to Iy if VS € Ry : p1(S) C pa(c(9)).

Soi . me;, andDyp = [—1,1]™. Hence, the real representation Example 5:Converting the affine forn3 + 2¢; + lez into

of 1 can be defined as interval form, we get [0, 6]. However, converting the interval

n form [0, 6] into affine form we may gei + 3¢s.
w(T) = {xo + ZM& | (61,...,6n) € [-1,1]"} (8) Theorem 2 (Composite Inclusion Functio)et Zy =

i=1 (Rx,ix), Zy = (Ry,uy) andZz = (Rz, uz) be inclusion

Example 4:Linear relaxations and polyhedral enclosuresepresentations of three sebs, Y and Z, respectively. If

can also be viewed as real inclusion representations. Indeedi'if Rx — Ry andG : Ry — Rz are inclusion functions of

they are given by the conjunction of half-spaces (restricted two functionsf : X — Y andg : Y — Z respectively, then

to a domainB which is usually a box) the composite functiotds o F' is an inclusion function of the
n composite functiorny o f.
H; ={(z1,...,2n) | ajo + Zaijmj <0} (t=1,...,m). Proof: The proof directly follows Definition1 and
j=1 Definition[3, and is hence omitted. []
We can definel” = (a10,...,01n, -+, Qmoy -« - 5 Gmn), D7 = Corollary 1: LetZ = (R, 1) be an inclusion representation
BN (N, H;), andu(T) = {z | x € Dz}, hence of R. If elementary operations defined @are inclusion func-

m n tions of their counterparts oR, then all factorable functions
w(T)=BnN (ﬂ {(z1,..,2n) | aio + Z aijz; <0}) (9) built onR using those elementary operations are also inclusion
=1

= functions of their counterparts dr.
Remark 1:For simplicity, we can use the real representa- Proof: CorollaryLis a straightforward consequence of
tion of the evaluating function of an inclusion function to refefheorem2. The proof is therefore omitted. u

to the inclusion representation itself, when not being confused.In implementation, the elementary operations in interval
For example, we will use the affine forin5 + 2.5¢, to refer arithmetic and affine arithmetic are constructed to be inclusion

to the inclusion representation of the interval [-1, 4] insted@nctions of their real-valued counterparts. Therefore, as a con-
of using the tuplel’ = (1.5,2.5,2) as in Examplé3. sequence of Corollaiy, all the factorable operations/functions
We now genera"ze the notion daficlusion functionin the deﬁned in interval arithmetic (OI‘ aﬁine al’ithmetic) USing those
book [4] to accept the notion of inclusion representation. operations are also inclusion functions of their real-valued
counterparts.

1For simplicity, we keep all coefficients and indices here, but in implemen-
tation only non-zero coefficients and their indices should be stored. °We then calle € E the real-valued counterpart gie).

IV. REVISED AFFINE ARITHMETIC performed in interval arithmetic, then the result is converted
A. Revised Affine Form back to affine form. Therefore, in the rest of paper, we only

Lo , . . .need to discuss about the last case/16i).
One of the limitations of the standard affine arithmetic is Notation 2: In this paper, we denote by the set of all

that the number of noise symbols grows gradually during th%. : . .

. : . P éects in revised affine form.
computation and the computation cost heavily depends on thi
number. Inspired by the ideas in [19], [7], [8], we use a revisgsl Unary Operations

affine form similar to(5) but the new terme,, is replaced by))) o
an accumulative errdr-e., e.] which represents the maximum We give the following constructive theorem, which is based

absolute error;, of non-affine operations. In other words, thd"©mM & non-constructive theorem named Theorem 2 in [18],
revised affine fornof a real-valued quantity is defined as @S @ basis for finding affine approximations of elementary
3= 2042161+ o+ Tnen + €x]—1,1] 11) univariate functions in a rigorous manner.
- AR n<n x) })

. . . , heorem 3 (Affine Approximation of Univariate Functions):

which consists of two separated parts: the standard affine parf , . : : .
. ; et f be a differentiable function ofu, b], wherea < b in

of length n, and the interval part. Where the magnitude andd, (z) = f(z) — ax

the accumulative errog, > 0, is represented by the interval ™’ RN '

part. That is, for each value of the quantity: (sayx € &), 1) It Vz €fa,b]: a > f'(x), then
there existe, € [—1,1],&; € [-1,1] (i = 1,...,n) such that Vo € [a,b] : ax 4 do(b) < f(2) < ax + da(a).
T =20+ T1E1+. . .+ Tnen +eser. We then say itis of length 2) If /" is continuous and increasing ¢m, b], we have
n. The affine operatiot = ai + 8¢ + v is now defined as a) Ya € [f'(a), f'(b)],3c € [a,b] : f'(c) = a.

n b) Let g : R — R be a function such thag(a) =
2 = (awo+Byo+7)+y_ (awi+Byi)ei+(lalea+|Ble,)[-1,1] (12) d(c), then for everyz € [a,b] we have

=t az + g(a) < f(z) < azr + max{d,(a),d,(b)}.

Note that during computations the lengths of revised affine

. . .
forms do not exceed the number of noise symbols at the3) If f'is continuous and decreasing fnt], we have

beginning, i.e. the number of variables of the input constraint a) Va € [f'(b), f'(a)],3c € [a, 0] : f'(c) = a.
system. In rigorous computing, will be used to accumulate b) Let g : R — R be a function such thag(a) =
the rounding errors in floating-point arithmetic, namé¢i2) da(c), then for everyz € [a,b] we have
can be interpreted as follows o foéé;+ mri]n{da(af)»cfca_l(_z)} < f(xg)_é [;gfr g(a).
roof: See the proof of Theorem 3 in [22]. [
20 = {azo + Byo +7) ieo’ st = (awit By £en (138) i trate the usefulness of Theorega in Tablell we
ex = [lales + Bley + Y eil. (13p) ive the functionsf’ andg for some elementary functions. In
im0 Figure2, we propose a procedure to findsafe Chebyshev

Similarly to the standard affine form (see ExamBje the a1/‘fir_1e approximation of a functiorf € C'([a,?]) such that
revised affine form(L1) can also be seen as a real inclusiod S Mmonotone, when given the function satisfying the
representation oft; where each representation object is §onditions in Theorer. _ _
tuple T = (z0,.... 20, 1,....0€0), Vi = (€1, EnsEa) Proposition 1: Let ot + 3 4 0[—1, 1] be the revised affine
are the variables of the linear functighy(c1, . ..,en,e,) = oM produced by the procedure in Figi@ewhere[a, b] is the
@ + S wigi + eaq, and Dy = [—1,1]7+L. The real 'ange of . Suppose thaf € C*([u,v]) and f’ is monotone
representation of the evaluating function can be defined ¥ [u v}, wherefu,v] 2 [a,b] such thatf’(v) > [f'(b)] if f’

n is monotone increasing, gf (u) > [f'(a)] if f' is monotone

W(T) = {xo + > wiei + eats | 6i_rme0 € [-1,1]} (14) decreasing. We haver € & : f(z) € ad + 3 +0[-1,1].

i—1 ’ Proof: See the proof of Proposition 1 in [22]. [|

Another limitation of the standard affine form is that it is Readers are referred to Section 2 of [23] for affine approx-
not capable of handling half-lines of the forfa-co,a] and imations of non-differentiable functions.

[a, +00), while this is needed in many computation meth- TABLE |
ods, especially constraint propagation and search techniquesncrions f € ¢! ([a, b]) SATISFYING THE CONDITIONS OFTHEOREM3
Hence, we propose to associate _each qu_atitivyith a data 7 o | 7@ IF 7@
field zo. € {—1,0,+1}. The revised affine form is then vz : [0, +00) : 1/2vV)[1 (1/(4(x) :)a >0
; e” —00, +00 e” 1 a(l —loga) :aa >0
interpreted as follows o7 Ogoo) 17 1T —TTTlosal asSTO
(—oo7 —|—Qo) if ey = +00, ™ :n > 2, even |(—oo,+00) nz" 1 |1 (1 —mn) "7\1/(a/n)”
(—OO T] if ro = —1 z™ :n > 3, odd (—00,0] [nz" 1[I m—1) "V (a/m)":a>0
T = %0 . o ! (15) z™ :n > 3, odd [0,400) | nz™t [1] (1 —n) "7\1/(04/n)" ta>0
[1'07 —|-oo) if Too = +1, 1/z" :n > 2, eveh (—oc,0) |—n/z" 711 (n+1) "/ (—a/nm)"
Ty + Z?:l xi€; + ex[—l, 1} otherwise. 1/2" :n > 2, even (0, +oo) |—n/z" 1|1 (n+ 1) " (—ajn)"
. . . . 1/z™ :n > 1, 0dd| (—00,0) [-n/z"T||-(n+1) "/ (—a/n)" : a <0
Remark 2:In an operation, if the domain of a variablef ;7> 1 odd| (0, to0) |- n/z" |1 (n + 1) "7/ (—a/n)" @ <0
is unbounded, i.e. in the first three cases(t4), the other [z":r ¢[0,1] 0,400) | r&" 1 [1](0 =) (a/r)T7T=D) . ar > 0
variables are converted into interval forms for that operatidf 7€ (0.1 | (0,400) [ra™"* [I[(1 = r)(a/n)"/ "D :a >0

procedure AApprox(in : Z, f € C1([a,d]), f',g;0ut: ai + B + §[—1,1])
fo = LF@]: fo = [FO)]: o= [(fs — fa)/(b— a)];
if £/ is monotone increasing o, b] then
do :=[f(a)] — |aa];
if « > [f'(b)] then
dmin = Lf(b)J - ’—Oéb-‘; dmaz = da;
else
Admin = Lg(a)J, dmaz = max{dlh Jo— LabJ}’
end-if
else-if f/ is monotone decreasing da, b] then
dy = | f(b)] — [ab];
if &> [f'(a)] then
dmin = db; dmaz = [f(aﬂ - Lan;
else
dmin = min{fqs — [aal,dp}; dmaz = [g(a)];
end-if
end-if
ﬁ = midpo’int([dminy dmaz]); 0:= TadiUS([dminz dmaz]);
end
Fig. 2. A safeChebyshev affine approximation of a functigne C*([a, b])
such thatf’ is monotone, when given the functignin Theoreni3

C. Multiplication

Similar to the products of two G intervals in [7], [8] (time
complexities areO(n?) and O(n), respectively), the product
of two revised affine forms: and ¢ of length n is another

revised affine formg of lengthn defined as

n

U:Z\%L v:2|y1|7 (16a)
i=1 i=1
1 & R
Zo = ToYo + 2 Z TilYi, 2z = ToYi + Yoxs (i =1,n), (16b)

i=1

1 n
ex = exey + ey(|zo| +) + ea(|yo] +v) +uv — 5 D |ziyi| (16¢)

=1
This is similar to, but tighter than, the formula for multi-
plication in [8] when exactly porting into revised affine form.
The time complexity of(12) is O(n). In rigorous computing,

we use the following computations:

U=]—Z|$1H7 v = fz |yzH

i=1

(17a)

z0= (xoyo + 0.5 Z z3ys) * eo; 2,17 = (Toys + yors) £ i (17D)

i=1

e:= [exey + ey(Jxo| + u) + ex(Jyo| +v) + uv + Z ei] — (17¢c)

=0

10.5 Z |ziyi |
1=1
Proposition 2: The affine multiplication defined b{6) or
by (17) is an inclusion function of the real multiplication.
Proof: See the proof of Proposition 2 in [22]. []
D. Division
In implementation, we compute the quotieht= i/ by

rewriting it asz x (1/¢). However, it is worth mentioning that
in [8], [24], the authors have proposed better dividing methodf%

V. COMBINING MULTIPLE INCLUSION REPRESENTATIONS

A. Node Evaluations and Pruning Constraint Systems

representation object for each real inclusion representation
T = (R,p) of R and aconstraint range of nodéhereafter
called anode rangefor short) which is often an interval.

Notation 3: Let Z = (R, 1) be a real inclusion representa-
tion of R. We denote by-(N) the node range oN, and by
R(N) the representation object @fthat is stored at nod.

Hereafter, we present a concept that allows evaluating node
ranges based on child nodes, that is generalized from the
forward evaluationin [3].

Definition 6 (Node EvaluatioryEV): Let N be a node of
the DAG representation of a constraint systei@,; }*_, the
children of N, f : R — R the elementary operation repre-
sented byN, andZ = (R, 1) a real inclusion representation.
Also let fz : R¥ — R be an inclusion function off. The
following assignment is called theode evaluatiorat nodeN
in the inclusion representatidh (if N # G):

R(N):=R(N) N 7(N) N fz({R(Ci)}?—l);}
T(N) :=7(N) N u(R(N));

Example 6:Considering Examplel, the nodes of the
DAG representation are naméd andN; (i = 1,...,7) as
depicted in Figurd. At the beginning we have (see Figui&)

NEV(N,Z) = {

7(N1) = I(Ny) = [1,3]; AN1) =2+&a

7(N2) = I(N2) = [1,9]; A(Ng) =5+ 4ey

7(N;) = I(N;) = [—00, +00]; A(N;) = [—o0, +0c] (i = 3,4,5)
7(Ns) = I(Ne) = [0,0]; A(Ng) =0

7(N7) = I(N7) = [~00,9]; A(N7) = [~00,9]

The elementary operation corresponding to nddgis the

square operation, therefore, we have
{H(Ng) = I(N3) N 7(N3) N (H(Nl))Z;}

7(N3) := 7(N3) N I(N3);

A(N3) := A(N3) N 7(N3) N (A(Nl))Q;}
7(N3) := 7(N3) N A(N3);
After the evaluatiorWEV(IN5,T) N NEV(N3, A), we have
I(N3) = [—00, +00] N [—00, +00] N ([1,3])*= [1, 9]; 7(N3)=[1, 9]
A(N3)=[—00,+00] N[1,9]N (2 +¢e1)* = 4.5+ 4e1 +0.5[—1,1]
T7(N3)=1[1,9] N1(4.5 + 4e1 + 0.5[-1,1]) = [1,9]

Similarly, after performing node evaluations at the other
nodes we havé(N,) = 7(N;) for everyi=1,...,7 and
]I(N4) = [1,27]; A(N4) =10 + 5ey + 8ea + 4[*1, 1}
I(N5) = [1,3]; A(Ns) = 2.125 + &2 + 0.125[—1, 1]
I(Ng) = [0,0]; A(Ng) = —13.375 — 61 — 15e2 + 8.625[—1, 1]
I(N7) =[9,9]; A(N7) =42.25+ 19¢1 + 262 + 12.25[—1, 1]

In order to present the concept of pruning constraint systems
concisely, we rely on the following notion.

Definition 7 (Inclusion Constraint Systerrgs): Let
(R, 1) be a real inclusion representation®fdefined by(6),
N a node of the DAG representation. Timelusion constraint
steminduced by a representation objéEt= R(IN) and a
nstraint rangeD C R is defined as

{Yn € Dr N D} (whereVr = 9n) if fr is identity,
{fr(Vr) = 9In; Vr € Dr;9n € D} otherwise;

NEV(N3, I)

NEV(N3,A) = {

ICS(T, D)E{

The input constraint system is represented by a DAG ashere the set of variables of the inclusion constraint system
described in Sectiorll-B. The computational data storedconsists of the variable)n, the variables inVp, and the
at each nodeN, of the DAG representation consist of avariables used to descrilde;.

Example 7:We give some inclusion constraint systems: ;"T{}: +_3§1;4 +20n; = Un-
. 1 - 1
« for the interval form(7)): 10 + 5e1 + 8e2 + 4en, = UNy
_ 2125+ 65 +0.125en, = On,
ICS(T' [c,d]) = {Un € [c,d] N [a, b}, PCS(N7, {A}) = 1 42,95 4 19e, + 2622 + 12.25en, = On,
. : : : 0 1,3];9 1,27);
where the set of variables i$0n}. This system is In g h’%fﬁz“ g {9’9]7]’
conjunctive and has the form of bound constraints. (61,2, 04,0 Eng v Ens) € [—1, 1]

« for the revised affine forng14):

1CS(T, [c, d]) = {xo + inai + egen = IN;UN € [c,d]; B- A Scheme for Combining Inclusion Representations

i=1 In this section, we describe a generic combination scheme
(€1, Enrea) € [-1,1]"1}, that combines the strength of different real inclusion represen-
tations for constraint propagation. In this scheme each input
constraint system, say an NCSP, is represented by a DAG
as described in Sectich-B. The computational data stored
at each node are the representation objects as described in
SectionV-Al In principle, the scheme uses the node evalu-
ations and pruning constraint systems, which are defined in
SectionV-A| and uses relevant pruning techniques to reduce
the node ranges, hence, reduce the variable domains.

where the set of variables i&1,...,ep,¢.,Un}. This
system is conjunctive and linear.
« for the linear relaxations/polyhedral enclosureg9j:

1Cs(T, [C, d]) = {a,‘o + Zaija:j <0(i=1,...,m);
j=1

19N € [Cad}a (1’17...71'”) € B}7

where the set of variables i§zy,...,z,,0n}. This Definition 9 (Pruning Technique)A pruning techniqudor
system is conjunctive and linear. a real constraint system is a technique for reducing some
We now present the construction of constraint systems fépmains of the variables of the constraint system. _
pruning node ranges based on representation objects. Let G be a DAG which represents the input constraint

system. The proposed scheme, calt@®D, uses two waiting
lists. The first waiting list, denoted by., stores the nodes
aiting for evaluation. The second waiting list, denoted®y
tores the nodes waiting for node pruning. Note that each node
can appear once at a time in one waiting list, but may appear in
both waiting lists. The set of real inclusion representations for
use in the scheme is denoted ByWe suppose that each real
{/\f:1 ICS(R(C,),7(C)))} if N =G, inclusion representation i provides elementary operations
PCS(N,S) = fWeys.-,9¢,) =9N A which are inclusion functions of their real-valued counterparts.
{/\(RMGS PCSub(N, R,) In Figure3, we present the main steps of th&RD scheme
) o) with inline detailed descriptions.
wherePCSub(IN, R, 11) is apruning |nckIuS|on subsystem Proposition 3: We define a functior® : 1" x 28" — 1" to

PCSub(N, R, 11) = ICS(R(N),T(N))/\/\ICS(R(Ci),T(Ci)). represent th€IRD algorithm. This function takes as input the
=1

Definition 8 (Pruning Constraint Systerh¢sS): Let N be
a node of the DAG representatiofiC;}%_, the children of
N, f : R* — R the elementary operation represented b
N, and § a finite set of real inclusion representations. Th
following constraint system is called th@uning constraint
systeminduced by the inclusion representationsSat N:

otherwise;

variable domains (in the form of an interval b&) and the

)) . exact solution setS, of the input problem. The functiod’
Notation 4: In the rest, we will abuse the notatiofiand yetyrns an interval box, denoted biy(B, S), that represents

A to denote the real inclusion representatiolsr) and ihe variable domains of the output of th&RD algorithm. The

(A, pia), respectively defined on interval arithmetic and reviseghrp algorithm terminates at a finite number of iterations and
affine arithmetic; where the functiom; is defined by(7) and e following properties hold:

the functiony, is defined by(14). (i) F@B,S) C B (Contractiveness)
Example 8: Considering Exampl&, we have, for instance, (i) F(B,S) 2 BNS (Correctness)
the following inclusion constraint systems: Proof: The proof is trivial due to the finite nature of
os(A(N Ny [10+ 561 + 85 +den, = Onay ﬂoatlng-pomt numbers and the faqt that the node ranges are
(A(Ny),7(Ng)) = Iny € [1,27]; (61,62, en0;) € [-1,1]° never inflated during the computations. []

2.125 + €2 4 0.125en; = Ins;
Ins € [1,3]; (e2,en;) € [—1,1]?
AN No)) = 42.25 + 19¢1 + 26e2 + 12.25eN, = INy; In general, the performance of a propagator following the
TCS(ANT), T(NT) =\ g, € [9,9]; (e1, €2, env,) € [-1, 1] : -
7 ,9]; (1,82, 6Ny) CIRD scheme depends on the design of each step in the
and the following pruning constraint systems scheme. In th|§ section, we propose some smp[e strqtegles
A9, + 30n, + 2. = O for each step in thecIRD scheme using the two inclusion
PCS(N7, {I}) = 19N116 [173];4191\,4 c [i27]; ! representationd, and A. Combining different strategies at all
Ins € [1, 3];9N, €19, 9] the steps makes different strategies for constraint propagation.

ICS(A(Ns)yT(Ns))E{ VI. SPECIFICCOMBINATION STRATEGIES ASINSTANCES

procedure RecursiveNodeEval(in : IN)

1) Initialization Phase. if N is a leafor N has been visitethen return;
a) Initial Node Evaluation. Select an algorithm for visiting for each C € children(N) do RecursiveNodeEval(C);
DAGs in an order described in TheordnWhen visiting for each Z € £ do NEV(N, 7);
a nodeN € G, perform the node evaluatiafEv(N, 7) Mark N as visited;
for eachZ € £. Merging the assignments of multiple if empty is detectethen exit(infeasiblg;
NEV(N,Z) into a single process to avoid repeating th&nd
same computations is encouraged. Fig. 4. The pseudo code for recursive node evaluation

b) Initialize Waiting Lists. SetL. := 0, £, := {the list d in: N: infout : Vi
of all nodes representing the active constraints associaf@¥fcedure NodeLevel(in : N; infout : Vi)
for each C € children(IN) do

with all real inclusion representations 6f.
. . . Viw[C] := max{Viu[C], Viu[N] + 1};
2) Eropagatlon Fhase.Repeat this step until botlf. and £, NodeLevel(C, Viy);

ecome empty. . end-for

a) Get the Next Node. Select a strategy for getting aend
nodeN (and the setS of real inclusion representations))
associated witN in the corresponding list) from the two Fig. 5. The procedure to assign a node level to each node in the DAG
waiting lists £. and £,,. representation.

b) Node Evaluation.Do this step only ifN was taken from . . N .
L. at Step2a. A. Stepl: Initial Node Evaluation and Waiting Lists

For eachZ = (R,u) € S do the following steps:

- . .) In our implementation, we use a recursive evaluation proce-
(combining several inclusion representations for bett

evaluation by using inclusion converters is also an optioer‘f;u_re given in. Fig““?‘ for the visit at Stg[ia. If this Pf‘?cedu_re .

i) Perform the node evaluationEv(N, 7). If this re- exit ywth an |pfea3|t_>le stqtus, the main algorithm invoking it
turns an empty set, the algorithm terminates with aferminates with an infeasible status.
infeasible status. Example 9:We continue to consider Example After the

ii) If the changes ofR(N) and7(N) at Step2(b)i are jnitial node evaluation using interval arithmetic and revised
considered enough to re-evaluate the parentNof e arithmetic, we have the node ranges given in Exaiple

then put each node iparents(N) (associated with .
7) into L., if N is not the gréun)d node, or intd, After perform Steplb with S = {I, A} we havel. = () and

otherwise. L, ={(Ng;LA), (N7 I, A)}.

iii) If the changes ofR(IN) and 7(N) at Step2(b)i are
considered enough to do a node pruning\aggain, B. Step2a Get the Next Node
then put(N,) into £, At first, we assign anode levelto each node in the DAG

¢) Node Pruning. Do this step only ifN was taken from yepresenting the constraint system such that each node has a

f)” gtelitcetpjzﬁbse‘[C S such that for eaclf € T there level smaller than that of their descendants. Hence, an ordering
are efficien;\I p;uﬁing techniques for the constraint :igi?;%néli\fein;;r%lglimpergcee%st:lrizk:g igrrﬂggltlen 2(\)/(::?1&';;/&&
systemPCS .

ii) P)grtitionT(intb s)ubsets such that for each subiget of node levels if this procedure is invoked at all the nodes
of the partition there is a pruning technique that mayepresenting the active constraints. Figlifiustrates the node
efficiently reduce the domains of the variables of thgaye|s for the constraint system given in ExanifléThe node
;ﬁﬁ?{&ﬂ;ﬁ%ﬁ’;@%ﬁﬁ;(tlgéﬁ]%dﬁg?gigﬁngs’t levels are given in brackets next to the node names.

(or a subsystem ofpCS(N, /) in a certain order. 1 he list£, is sorted in the ascending order of node levels.
If this process returns an empty set, the algorithif iS to maintain that each node being taken into pruning
terminates with an infeasible status. processes before its descendants. Similarly, theliss sorted

i) ?uerzc]tcioﬁ: tiquletﬁgt fc(’)fr ;'ég;‘ecgr?g?s ‘é":rgzevea‘ﬂ‘;?eﬁs“% the descending order of node levels to maintain that each

; . node being evaluated before its ancestors.
\;vhsﬁaesedﬂ?(moe:‘lr;é \:‘\:)errixfri:fg guith ?ri(\?)gé;elﬁgée There are two simple strategies to get the next node from
M in H is a descendant a¥. For each real inclusion the two waiting lists{L., £, } as follows: (i) get the next
representatio = (R,) € H such that the repre- node from £, whenever., is not empty, this is called the
sentation ofu(R(M)) in the form(6) contains some «prning first” strategy; andii) get the next node from one
\lj?)rclig?(lgg(vlz/t;;)suesS]%nlﬁg]s?ewr?é\?vlgle?ggﬁge%t gg?:;insof the two waiting lists until it becomes empty, then switch
then update- (M) := (M) N u(R(M)). If empty is to the other list. In our implementation, we use the “pruning
obtained, the algorithm terminates with an infeasibl@irst” strategy. More complicated strategies for choosing the
status. next node can be used as alternatives, for example, based on

A) If the changes ofR(M) and 7(M) are consid- the pruning efficiency of nodes.
ered enough to re-evaluadd’s parents, put each
node inparents(M) associated witlf into L.. C. Step2b: Node Evaluation

B) If the changes ofR(M) and (M) are consid- .
ered enough to dé a) node |(oru21ing M, put For the node evaluation at each nade we can perform

(M, Z) into £,,. NEV(N, A) andNEV(IN, I) in any order, ifN is not the ground
Fig. 3. CIRD — a generic scheme fa@@ombining Inclusion RepresentationsnOde' AL StepZ(b)ii, Step Z(t?)m and StepZ_(C)III, we On.ly
on DAGs count on the changes efIN) in our current implementation.

A change ofr(IN) is often considered enough if the ratio ofof PCS; (N, {A}), to get tighter bounds on the variables.

the new width to the old width is less than a number predefin€dr efficiency, only the domains of the variablésc, }~_,

ry € (0,1) and the difference between the old width and thend/or{e;}?_, are needed to be pruned. We can devise three

new width is greater than a predefined numbBgr> 0 [25]. possible pruning strategies for St@gc)iii. The first strategy

More complicated criteria can also be used as alternativesonly requires to prune the domains ¢fc,}r ,, after that,

D. Step2é Node Pruning considers_the update féf = {Ci}f?l. The ;econd strategy

only requires to prune the domains ¢&;}? ,. The third

The subsef at this step can be chosenfisA}. For node strategy is to prune the domains of bdthc, }+_, and{e;}7,.

pruning, we useCS(N, {I}) and the following subsystem of For the last two strategies, the <&tcan be chosen as any

PCS(N, {A}): FOe,, ... 00,) = O subset of the set oN’s descendants whose noise variables
PCS(N, {I})={ In elr(N); § if N#G: in ua have just peen pruned. In our implgmentation, we use
/\1; (D, € 7(Cy)); the second pruning strategy with two options fdr the set
1761 ' v) of N’s descendants or the set of variables associated with
{Ni—1 ICS(A(Ci), 7(Cy))} i N=G, . (i =1,... n).If for eachi € {1,...,n} the new domain
PCSL(N,{A})= { ICkS(A(N)vT(N»/\ } otherwise: Of noise variables; is [a;, b;] € [—1,1], then the range update
Ni=1 ICS(A(C;), 7(Ci))} " atM e H will be
k? n
where TM0 +)iy TMLiE T+ emEM = U (M) == 7(M)N (fEM,(ﬁZ oailas, b +em[—1,1]) (19)

ICS(AM), D) ={ & € [~1,1] (i = 1,...,n):
em € [-1,1];9m € D;

=1
Remark 3:The cost of linear programming is high, there-
Note that we have in general fore, we should use the affine pruning technique only if the
_ pruning ratio is high. We propose to use the affine pruning
PCS(M, {A}) =PCS(M, {I}) APCSL(M, {A}). (18) technique only if the accumulative erres; of each node
Example 10:We now consider Exampl& Some examples M involving the above linear systems is small enough, that
of pruning constraint systems are also given in Exarible is, the range of the operation &I lies in a thin slot

2+ e = n, between TtLWO hyperplane;sM,o + Z?zlxM,iEi —em e}nd
10 + 5e1 + 8e2 + 4eny, = IN, TM,0+ Y M, +em in the space of the noise variables
PCSL (N, {A}) = { 2125 €2 +0.12%en; = U, (¢1,-..,en). Moreover, this type of pruning should only be
LUNT, = 142.25 + 19¢1 + 26¢2 + 12.25en, = In, used for nodes at low levels.
19Nl € [173};191\]4 € [1727];19N5 € [1,3]7
N, €19,9); (e1,€2,6n,, 6Ny, N7) € [—1,1)° VII. EXPERIMENTS

The node ranges are pruned by using a combination of bagk- comparisons with Linear Relaxation based Techniques

ward propagation and affine pruning techniques as follows. . . .
propag P g q We first compare the proposed technique with a recent

1) Backward Propagation:If N is not the ground, the mathematical solving technique, callad, in [8] which was
domains of the variables of the constraint syseB(N, {I}) gpecially designed to solve nonlinear equation systemsAThe
can be pruned by a pruning technique which is cabegk- 5 qorithm converts an equation system irseparable form
ward propagationin [3], [21]. In brief, let f be the elementary gng then uses affine arithmetic to enclose the system by a
operation represented by a noble we then have the relation“near relaxation syster{L(z,y) = Az + By + b, = €
In = f({Vc, }iiy). For eachiin {1,....k}, the backward ' c v1- \where A and B are real matricesb is a real
propagation computes a cheap evaluation ofiitfeprojection \ector. andx andy are interval vectors. This technique has
of the relationdn = f({dc,}i_y) onto de,. In case there 5 a5sume a posterior-condition thatis invertible in order to
exist a functiong; : R* — R such that we can writdc, = use the reduction rute’ := xN(A~!By—A~'b). No rigorous
9i("N, {Vc; })—1,2,)- Let G; be an inclusion function ofi 1o,nding technique is found in [8]. We take the first problem
in I In this case, the backward propagationMatis defined 4t was used for illustrating the power of the algorithm in
asl(Cy) := I(C) N G(I(N), {I(C))}_y,;.) (i = 1K) A [8] for the comparison:
deeper discussion on the other cases can be found in [25] (43 + 36)s + 205)73 + 24 = 0

After the backward propagation, at S@{)iii we only need | ((4z5 + 3z¢)zs + 225)zs + 24 = 0,
to considerk nodesH = {C; | i =1,...,k} for update and | ((4z1 + 3z6)z1 + 225)z1 + 24 =0, T4 + 35 + 26 + 1 =0
for putting into the waiting lists. (w2 + zo)a + w5)a + za)wat+ (w3 + w6)ws + @5)ws + 2a)ws=0,

}) i)) (@1 +ze)z1 + 25)21 + 24) 21 +(((22 + 26)22 + 25) T2 + 24)T3= 0,
2) Affine Pruning: Each variable of the input constrainf z: € [0.0333,0.2173], xz2 € [0.4000, 0.6000],
i i i i L i x3 € [0.7826,0.9666], z4 € [-0.3071, —0.1071],
system is associated with one noise symboli = 1,n) in e € [11071,1.3071]. a6 € [~2.1000, —1.9000]
A. The systenPCS;, (N, {A}) is a linear constraint system. (20)
Therefore, the domains of the variablesPaf,, (N, {A}) can The systemiZ0) is known to be hard for interval techniques
be pruned by using safelinear programming technique [26].and has a unique solution. To solve it on a 1.7 GHz Pentium
If the operation represented BY is linear, we can apply a PC at the resolution0—5 using a bisection search2 has to

safe linear programming technique ®CS(N, {A}), instead perform 917 iterations in 3.46 seconds to reduce the problem

TABLE I

. o The test cas#} consists of 8 hard problems with isolated
A PRELIMINARY COMPARISON BETWEENQuad AND CIRD[al]

solutions that cause the search usiigd being out

Erogflgatow T'Quadc - CIRDT[éi] 0 Iggg of time without reachingl0® splittings; and that cause

R #5#5 (s";':e GHz| 75 #B (slerznce (GHZ)sraptas] the search using0X either being out of time or being
Gough-Steward (9)] 24 41830 1.0|912 4 2.1 1.7] 39.9 stopped due to running more than® splittings. The
Yamal96(n = 30) [10§ 16 31.42.66] 2§ 2 3.8 1.7 129 search usingIRD[ai] accomplishes the solving for six
zzmgigggzjgé) 2;: 2;2 2;5 8:2 %g g gé;; i; 2;: of eight problems in this test case, and runs more than
Yamal96(n = 200)| n/d n/a n/gd 0.8| 19 2 560.2 1.7| n/a 10° splittings for the other two problems.
Yamal96(n = 300)| n/d n/d n/d 08| 20 21878.] 1.7| nia o The test casel; consists of 7 easy problems with a

continuum of solutions that are solvable at the predefined

to 5 boxes (see [8]); while an instance of theRD scheme, resolution10~2 in short time. _
calledCIRD[ai]® performs 54 iterations in only 0.118 seconds ¢ The test casel; consists of 6 hard problems with a
to reduce the problem to 3 boxes. Henc&RD[ai] is about continuum of solutions that are solvable at the predefined
29.3 times faster tham2 for the system(20), while it is resolution10™" in short time.

more rigorous and accurate thm Another_ technique to The timeout value is set th0 hours for all the test cases.
compare \.N'th IS a very.r_ecent ﬂlte_rlng technique callead The timeout values will be used as the running time for the
in [5], V.Vh'Ch was spemﬁcglly desu_gned to process qu‘"‘dr"’“fgchniques which are out of time in the next result analysis
constraints, and an extension@fad in [6]. Again, we take as ; o \ye are in favor of slow techniques). For the first three
example two problems, calle@ough-Stewardand Yamal96 test cases, the resolutionig—* and the search to be used is

Véh'Ch Were_ uisedG to r|1IIuSstrated_the power Qhad in [g]’ . the bisection search. For the last two test cases, the search to
[6], respeciively. Gough-Stewards a non-sparse qua raliChe ysed is a search technique, callErh6, for inequalities

equa_tion system of 9_variab|§as in R.ObOti_CS' WhiCh has fo ee [9], [10]). The comparison of the interval constraint
solutions [5].Yamal96s a series of high-dimensional spars ropagation techniques is based on the measures of
problems ofn variables and» equations of the form{(n +

D2%z1 —2(n+1)%2; + (n+ 1)%w41 + €% =0, x; € [-10,10] | « The running timeThe relative ratio of the running time of

i=1,...,n}, wherezo = z,4+1 = 0. Similarly to [6], we use each propagator to that 6fRD[ai] is called therelative

the resolution10~® for these problems. Tabl#! presents a time ratio.

preliminary comparison betweelIRD[ai] and Quad. o The number of boxe§:he relative ratio of the number of
Note 1: The results ofjuad in Tablelllare copied from [5], boxes in the output of each propagator to that T#D[ai]

[6], except that the ones in the cells filled with “n/a” are not is called therelative cluster ratio

yet available due to our limited access to the implemenation. The number of splittingsThe number of splittings in

of Quad. In Tablell, #S denotes the number of splittings and search needed to solve the problems. The relative ratio
B denotes the number of boxes in the output. of the number of splittings used by each propagator to

B. Comparisons with Interval Propadation Techniques that of CIRD[ai] is called therelative iteration ratio
' P Pag q The volume of boxes (only fdr, T5,73): We consider

We have carried out experiments on an implementation of the reduction per dimensior/V/D; where d is the
the CIRD[ai] algorithm (newer than the one in [22]) and tWo gimension,V is the total volume of the output boxes,
other well-known state-of-the-art interval constraint processing p is the volume of the initial domains. The relative ratio

techniques. The first one is an implementation of Box Consis- ¢ the reduction gained by each propagator to that of
tency [27], [28] in a well-known commercial product named CIRD[ai] is called therelative reduction ratio
ILOG Solver (v6.0, 11/2003), hereafter denotedEnX. The « The volume of inner boxes (only fak, T5): The ratio

second one is calletiC4 (Revised Hull Consistency) from of the volume of inner boxes to the volume of all output
[3]. The experiments are carried out on 33 problems which are pgyes is called thinner volume ratio

unbiasedlychosen and divided into five test cases for analyzing
the test resulté: The overviews of results in our experiments are given in

« The test cas@) consists of 8 easy problems with isolated@blellll and TablelV.
solutions that are solvable by the search using the threeNote 2: In general, the lower the relative ratio is, the better
propagators in short time. the performance/quality is; and the higher the inner volume
« The test casel, consists of 4 average problems wittratio is, the better the quality is. In the secti@r) of Tablelll,
isolated solutions that are solvable by the search usitite average of the relative time ratios is taken over all the
CIRD[ai] andBOX, and that cause the search usii@gg problems in the test casd$, T3, T3; and the averages of the
being out of time without reaching0® splittings. other relative ratios are taken over the problems in the test
S _ ' . o caseTy, i.e. over the problems which are solvable by all the
_ I this paper, we use a new implementation@Rb[ai], which is an technjgues. In the sectia) of Tablelll|, the averages of the
improvement of the old version used in [22]. . . .
4We have collected a set of problems from diverse sources including relaf&Jative ratios are taken over all the problems in the test cases
papers and the Internet. Ty, Ts.

TABLE Il
THE COMPARISON OF THE THREE CONSTRAINT PROPAGATION
TECHNIQUES IN SOLVINGNCSPs (USING THE NEW VERSION OFCIRD[ai])

(5]

(a) Isolated Solutions [(b) Continuum of Solutions [6]

~ RelativéRelafive [Relative] Relafive] Relafivé Tnner | Relative[Relative

Prop. time [reduction cluster | iteration| time |volume| cluster fiteration

v ratio | ratio ratio ratio ratio | ratio ratio ratio

CIRD[ai] 1.00 1.000{ 1.000{ 1.000] 1.000 0.945 1.000| 1.000
BOX 1429.660 5.323| 30.206] 4.263| 3.414 0.944| 1.102| 1.056 [71
HC4 17283.614 7.722|105.825 5.515/ 60.101 0.941 1.168] 1.118 (8]

TABLE IV

THE AVERAGES OF THE RELATIVE TIME RATIOS FOR EACH TEST CASE

El

Prop. (a) Isolated Solutions (b) Contnm. of Solution

v Casel1 Casely | Casel3s CaseTy CaseTs
CIRD[ai] 1.00 1.00 1.00 1.00 1.00 [10]

BOX 8.33 | 6097.45| 517.10 2.33 4.68

HC4 54.47 | 83009.81| 1649.66 31.42 93.56
(11]

Clearly, CIRD[ai] is superior tharBOX andHC4 in perfor-
mance and quality for the problems with isolated solutions 2
the unbiasedly chosen benchmar&®kD[ai] still outperforms |13
the others for the problems with continuum of solutions while

being a little better than the others in quality of the output. [14]

VIIl. CONCLUSION

In this paper, we propose a novel generic schetngD, for
constraint propagation using different inclusion representatio[ljlg]
on DAG. The scheme is able to incorporate most of known
inclusion representations, including interval arithmetic, affirlé?]
arithmetic, polyhedral/quadratic enclosures and their gengfs
alizations. Modifications and improvements of the rigorous
computations of affine arithmetic are also proposed. As a re-
sult, we give several new combination strategies for constralht!
propagation based on interval arithmetic, affine arithmetic, in-
terval constraint propagation asdfelinear programming. We [20]
then show by experiments that an implementati©@gD|ai],
outperforms recent techniques by 1-4 orders of magnitudeor
more in speed, while still being better in quality measures.
A potential direction for future is to integrate tlgpiadratic
form [19] or linear relaxations [29] into theIRD scheme.

(15]

(22]

ACKNOWLEDGEMENTS

This research is funded through the COCONUT projel:zt?’]
(IST-2000-26063). We would like to thank ILOG for the[24]
licenses of ILOG Solver/CPLEX, and thank the COCONUT
team of the University of Nantes for thBC4 code. We
specially thank Dr. Hermann Schichl and Prof. Arnold Neyzs]
maier for encouraging us to use the DAG representation for
constraint propagation [21] during the COCONUT project.

REFERENCES [26]

[1] F. Benhamou and W. J. Older, “Applying Interval Arithmetic to Real,
Integer and Boolean Constraintsburnal of Logic Programmingpp.

32-81, 1997. (27]

P. Van Hentenryck, “Numerica: A Modeling Language for Global

Optimization,” in Proceedings of IJCAI'971997.

F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget, “Revisir{as]

Hull and Box Consistency,” ifProceedings of the International Confer-

ence on Logic Programming (ICLP'99USA, 1999, pp. 230-244.

L. Jaulin, M. Kieffer, O. Didrit, and E. WalteApplied Interval Analysis

1st ed. Springer, 2001.

(2]
(3]

[4] [29]

Y. Lebbah, M. Rueher, and C. Michel, “A Global Filtering Algorithm
for Handling Systems of Quadratic Equations and Inequations,” in
Proceedings of the 9th International Conference on Principles and
Practice of Constraint Programming (CP’2003)003, pp. 109-123.

Y. Lebbah, C. Michel, and M. Rueher, “Global Filtering Algorithms
Based on Linear Relaxations ,” Motes of the 2nd International Work-
shop on Global Constrained Optimization and Constraint Satisfaction
(COCOS 2003)Switzerland, November 2003.

L. V. Kolev, “Automatic Computation of a Linear Interval Enclosure,”
Realiable Computingvol. 7, pp. 17-18, 2001.

——, “An Improved Interval Linearization for Solving Non-Linear
Problems,” in10th Int'l Symposium on Scientific Computing, Computer
Arithmetic, and Validated Numerics (SCAN2Q08gptember 2002.

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings, “Search Techniques for
Non-linear CSPs with Inequalities,” roceedings of the 14th Canadian
Conference on Artificial Intelligence001.

X.-H. Vu, D. Sam-Haroud, and M.-C. Silaghi, “Numerical Constraint
Satisfaction Problems with Non-isolated Solutions,Global Optimiza-
tion and Constraint Satisfactionol. LNCS 2861. Springer-Verlag,
October 2003, pp. 194-210.

M. Warmus, “Caculus of Approximations,Bulletin de I'Acagmie
Polonaise des Sciencesol. IV(5), pp. 253-259, 1956.

T. Sunaga, “Theory of an Interval Algebra and its Applications to
Numerical Analysis,"/RAAG Memoirsvol. 2, pp. 29-46, 1958.

R. E. Moore, “Automatic Error Analysis in Digital Computation,”
Missiles and Space Division, Lockheed Aircraft Corporation, Sunnyvale,
California, USA, Tech. Rep. LMSD-84821, 1959.

G. Alefeld and J. Herzbergemtroduction to Interval Computations
New York, NY: Academic Press, 1983.

A. Neumaier,Interval Methods for Systems of Equation€ambridge:
Cambridge Univ. Press, 1990.

T. J. Hickey, Q. Ju, and M. H. Van Emden, “Interval Arithmetic: from
Principles to ImplementationJournal of the ACM (JACM)vol. 48(5),

pp. 1038-1068, 2001.

J. L. D. Comba and J. Stolfi, “Affine Arithmetic and its Applications to
Computer Graphics,” ifProceedings of SIBGRAPI'9Brazil, 1993.

] J. Stolfi and L. H. de Figueiredo, “Self-Validated Numerical Methods

and Applications,” inMonograph for 21st Brazilian Mathematics Col-
loquium (IMPA) Brazil, July 1997.

F. Messine, “Extentions of Affine Arithmetic: Application to Uncon-
strained Global OptimizationJournal of Universal Computer Science
vol. 8, no. 11, pp. 992-1015, November 2002.

R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and G. Wang, “Com-
parison of Interval Methods for Plotting Algebraic Curve€bdmputer
Aided Geometric Desigrvol. 19(7), pp. 553-587, 2002.

H. Schichl and A. Neumaier, “Interval Analysis on Directed Acyclic
Graphs for Global Optimization,” 2004, preprint - University of Vienna,
Autria.

X.-H. Vu, D. Sam-Haroud, and B. Faltings, “A Generic Scheme
for Combining Multiple Inclusion Representations in Numerical Con-
straint Propagation,” Swiss Federal Institute of Technology in Lausanne
(EPFL), Switzerland, Tech. Rep. 1C/2004/39, April 2004.

L. V. Kolev, “A New Method for Global Solution of Systems of Non-
Linear Equations,Realiable Computingvol. 4, pp. 125-146, 1998.

S. Miyajima, T. Miyata, and M. Kashiwagi, “A New Dividing Method in
Affine Arithmetic,” IEICE Transaction on Fundamentals of Electronics,
Communications and Computer Sciencas. E86-A(9), pp. 2192-2196,
September 2003.

X.-H. Vu, H. Schichl, and D. Sam-Haroud, “Using Directed Acyclic
Graphs to Coordinate Propagation and Search for Numerical Constraint
Satisfaction Problems,” ifProceedings of the 16th IEEE International
Conference on Tools with Atrtificial Intelligence (ICTAI 2004k lorida,
USA: IEEE Computer Society Press, November 2004.

A. Neumaier and O. Shcherbina, “Safe Bounds in Linear and Mixed-
Integer ProgrammingMathematical Programming ,Aol. 99, pp. 283—
296, 2004.

F. Benhamou, D. McAllester, and P. Van Hentenryck, “CLP(Intervals)
Revisited,” in Proceedings of the International Logic Programming
Symposium1994, pp. 109-123.

P. Van Hentenryck, D. McAllester, and D. Kapur, “Solving Polynomial
Systems Using a Branch and Prune ApproacBlAM Journal of
Numerical Analysisvol. 34(2), 1997.

S. Hongthong and R. B. Kearfott, “Rigorous Linear Overestimators and
Underestimators,Mathematical Programming B004, submitted.

