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Abstract— This paper proposes a novel generic scheme en-
abling the combination of multiple inclusion representations to
propagate numerical constraints. The scheme allows bringing
into the constraint propagation framework the strength of
inclusion techniques coming from different areas such as interval
arithmetic, affine arithmetic and mathematical programming.
The scheme is based on the DAG representation of the constraint
system. This enables devising fine-grained combination strategies
involving any factorable constraint system. The paper presents
several possible combination strategies for creating practical
instances of the generic scheme. The experiments reported on a
particular instance using interval constraint propagation, interval
arithmetic, affine arithmetic and linear programming illustrate
the flexibility and efficiency of the approach.

I. I NTRODUCTION

Many real world applications involve solving constraint sat-
isfaction problems withcontinuous domains, called numerical
constraint satisfaction problems (NSCPs). In practice, numer-
ical constraints can be equalities or inequalities of arbitrary
type, usually expressed infactorable form (that is, they can
be recursively composed of elementary operations such as+,
−, ×, ÷, log, exp, sin, cos, . . . ). In other words, such an
NCSP can be expressed as follows

F (x) ∈ b, x ∈ x, (1)

whereF : Rn → Rm is a factorable function,x is a vector of
n real variables,x andb are interval vectors of sizesn and
m respectively.

Many solution techniques have been proposed inconstraint
programmingto solve numerical constraint systems. Some of
them are based oninterval constraint propagationandinterval
arithmetic (some among them are [1], [2], [3], [4] and refer-
ences therein), while others rely onlinear relaxationandlinear
programming [5], [6]. There have also been mathematical
techniques [7], [8] that useG interval and affine arithmetic
to solve equation systems. Most of the solution techniques
are interleaved with abisectionsearch to solve the problems
exhaustively. Lately, there have been some advanced search
techniques [9], [10] that improve the search performance for
problems with non-isolated solutions (e.g., inequalities) while
maintaining the same performance for problems with isolated
solutions (e.g., equalities). In general, different techniques
have different strengths that are complementary. Therefore,

combining the strength of different solution techniques is
the subject of many intensive research efforts (see [4] and
references therein).

Our contributions will be described in the sectionsIII , IV,
V and VI . At first, in Section III we generalize inclusion
concepts in order to present different inclusion techniques
in a common framework that makes it possible to insert
most of inclusion techniques into the scheme proposed in this
paper. In SectionIV, we propose some modifications to affine
arithmetic to make it efficient for the computations proposed
in this paper. In SectionV, we propose a novel generic
scheme which allows devising new combination strategies for
numerical constraint propagation in a flexible way. The scheme
enables the propagation to be performed using different inclu-
sion representations on adirected acyclic graph(DAG) that
represents the problem. Consequently, the scheme is virtually
applicable to any factorable constraint system. The goal is to
provide a combination scheme that is efficient and flexible
but still general enough to bring the strength of different
solution techniques coming from different areas (e.g., con-
straint programming and mathematical programming) into the
framework of constraint propagation. In order to illustrate the
flexibility and efficiency of the proposed scheme, in SectionVI
we devise from the scheme several new combination strategies
which are based on emerging techniques, namely interval
constraint propagation, interval arithmetic, affine arithmetic,
and linear programming. In SectionVII , our experiments
show that the devised technique is superior to recent interval
constraint propagation methods in performance and quality. It
even outperforms some very recent techniques in mathematical
programming and constraint programming which are specially
designed to solve certain constraint systems. The conclusion
is finally given in SectionVIII .

II. BACKGROUND AND NOTATION

A. Interval Arithmetic and Affine Arithmetic

When using an interval[a, b] ⊆ R to represent a real-valued
quantityx, we mean that

a ≤ x ≤ b (2)

Interval arithmeticis an extension of real arithmetic defined
on the set of real intervals, rather than the set of real numbers.
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Modern interval arithmetic was originated independently in
late 1950s by several researchers; includingM. WARMUS [11],
T. SUNAGA [12] and R. E. MOORE [13]; with MOORE

finally setting the firm foundation for the field in his many
publications. We assume that readers are familiar with interval
arithmetic. Otherwise, we would recommend [14], [15], [4],
[16] for more details on interval arithmetic and basic interval
methods.

Affine arithmetic[17] is an extension of interval arithmetic
which keeps track of correlations between computed and input
quantities. In particular, a real-valued quantityx is represented
by anaffine formdefined as follows

x ≡ x0 + x1ε1 + . . . + xnεn, (3)
wherex0, . . . , xn are real coefficients andε1, . . . , εn arenoise
variables (originally called noise symbols) taking values in
[−1, 1].

Similarly to interval arithmetic, affine arithmetic also allows
using rounded floating-point arithmetic to constructrigorous
enclosuresfor the ranges of operations and functions [18].
In affine arithmetic, affine operations such asαx + βy + γ
(α, β, γ ∈ R) are obtained exactly, except the rounding errors,
by the following formula:

αx + βy + γ ≡ (αx0 + βy0 + γ) +
n∑

i=1

(αxi + βyi)εi (4)

However, non-affine operations can only be computed by
approximations. In general, the exact result of a non-affine
operation has formf∗(ε1, . . . , εn), wheref∗ is a nonlinear
function. In practice, this result is then approximated by an
affine functionfa(ε1, . . . , εn) = z0 + z1ε1 + . . . + znεn. A
new termzkεk is used to represent the difference betweenf∗

andfa, hence, the result has the affine form
z ≡ z0 + z1ε1 + . . . + znεn + zkεk, (5)

where the maximum absolute errorzk satisfies

zk ≥ sup{|f∗(ε)− fa(ε)| : ∀ε = (ε1, . . . , εn) ∈ [−1, 1]n}.
An important goal is to keep the maximum absolute error

as small as possible. This is a subject ofChebyshev ap-
proximation theorywhich is a well-developed field with a
vast literature. Ranges obtained with affine arithmetic may be
substantially more accurate than those obtained with interval
arithmetic. However, the operations of affine arithmetic are
often more expensive than those of interval arithmetic. Some
comparisons on interval and affine arithmetic methods can be
found in [18], [19], [20].

B. Directed Acyclic Graph

We assume that readers are already familiar with fundamen-
tal concepts from graph theory such asdirected multigraph
with ordered edgesand directed acyclic graph/multigraph.
Otherwise, readers are referred to [21].

Theorem 1 (Total Order):For every directed acyclic multi-
graph(V, E, f) there exists a total order¹ on verticesV such
that ∀v ∈ V : if u is an ancestor ofv, thenv ¹ u.

Following the approach for representing factorable functions
in [21], we use a directed acyclic multigraph, whose edges
are totally ordered and whose vertices are ordered by an
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Fig. 1. The DAG representation (a) before and (b) after interval evaluations

order in Theorem1, to represent a system of factorable
constraints, we therefore call it adirected acyclic graph(DAG)
for short. In a DAG, every node represents a variable or an
elementary operation (e.g.+, ×, ÷, log, exp, sqr, sin) used in
the composition of constraints and every edge represents the
computational flow associated with a coefficient. The ordering
of edges is needed for non-commutative operations like the
division, and not really necessary for commutative operations.
For convenience, a virtual ground node,G, is added to a DAG
to be the parent of all the nodes representing the constraints.

We usemultigraphs instead of simple graphs for the rep-
resentation because somen-ary operations can take the same
input more than once. For example,xx can be represented by
the operationxy without introducing a unary operationxx.

Notation 1: In this paper, the real variable representing a
node,N, of the DAG representation is denoted byϑN.

Example 1:The DAG representation of the following con-
straint system is depicted in Figure1:





x2 − 2xy +
√

y = 0
4x + 3xy + 2

√
y ≤ 9

x ∈ [1, 3]; y ∈ [1, 9]

In Figure1, {N1,N2,N3,N4,N5,N6,N7} is an ordering of
the nodes that satisfies the condition of Theorem1.

C. Fundamental Notations

In the rest of the paper, we use the notation ‘≡’ for
definitions. The power set of a set,A, is denoted by2A.

We denote bybEc (resp.dEe) some lower approximation
(reps. some upper approximation) inF of the expressionE
such thatbEc ≤ E (resp.E ≤ dEe). We use the notation
E = 〈E〉±e to mean that〈E〉 is an approximation inF of E,
and the corresponding bound on the absolute rounding error
is e, that is〈E〉 − e ≤ E ≤ 〈E〉+ e. Readers are referred to
[18] for some rounding techniques in floating-point arithmetic
on simple elementary operations.

III. G ENERALIZATION OF INCLUSION CONCEPTS

We now generalize the concepts related toinclusion function
to give a common view of inclusion techniques.

Definition 1 (Inclusion Representation):Given a setA. A
coupleI = (R, µ), whereR is a set ofrepresentation objects



and µ is a function fromR to 2A, is called aninclusion
representationof A if there exists asurjective function ρ :
2A → R such that∀S ⊆ A : S ⊆ µ(ρ(S)). In this case,ρ
is called therepresenting functionof I and µ is called the
evaluating functionof I.

Definition 2 (Real Representation):Let I = (R, µ) be an
inclusion representation ofR. We call I a real inclusion
representation(of R) if each representation objectT ∈ R is a
tuple consisting of real constants, and the evaluating function
µ can be defined as

µ(T ) ≡ {fT (VT ) | VT ∈ DT }, (6)

where fT is a real-valued function (withT as a tuple of
parameters) andVT is a finite sequence of variables taking
values in real domainsDT . The representation(6) is called a
real representationof µ.

The domains inDT can be explicitly given by constant
domains such as[a, b], or implicitly given by constraints.

Example 2: It is easy to see that the interval form(2) is
equivalent to a real inclusion representation ofR; where each
representation objectT ∈ R is a couple of reals(a, b), VT =
(x), fT is an identity function, andDT = [a, b]. That is, the
real representation of the evaluating function is defined as

µ(T ) ≡ {x | x ∈ [a, b]} (7)

Example 3:The affine form(3) can also be viewed as a real
inclusion representation ofR; where each representation object
is a tupleT = (x0, . . . , xn, 1, . . . , n),1 VT = (ε1, . . . , εn) are
the variables of the linear functionfT (ε1, . . . , εn) = x0 +∑n

i=1 xiεi, andDT = [−1, 1]n. Hence, the real representation
of µ can be defined as

µ(T ) ≡ {x0 +
n∑

i=1

xiεi | (ε1, . . . , εn) ∈ [−1, 1]n} (8)

Example 4:Linear relaxations and polyhedral enclosures
can also be viewed as real inclusion representations. Indeed, if
they are given by the conjunction ofm half-spaces (restricted
to a domainB which is usually a box)

Hi ≡ {(x1, . . . , xn) | ai0 +
n∑

j=1

aijxj ≤ 0} (i = 1, . . . , m).

We can defineT = (a10, . . . , a1n, . . . , am0, . . . , amn), DT =
B ∩ (

⋂m
i=1 Hi), andµ(T ) ≡ {x | x ∈ DT }, hence

µ(T ) = B ∩ (
m⋂

i=1

{(x1, . . . , xn) | ai0 +
n∑

j=1

aijxj ≤ 0}) (9)

Remark 1:For simplicity, we can use the real representa-
tion of the evaluating function of an inclusion function to refer
to the inclusion representation itself, when not being confused.
For example, we will use the affine form1.5 + 2.5ε2 to refer
to the inclusion representation of the interval [-1, 4] instead
of using the tupleT = (1.5, 2.5, 2) as in Example3.

We now generalize the notion ofinclusion functionin the
book [4] to accept the notion of inclusion representation.

1For simplicity, we keep all coefficients and indices here, but in implemen-
tation only non-zero coefficients and their indices should be stored.

Definition 3 (Inclusion Function):Given two setsX, Y
and a functionf : X → Y . Let IX = (RX , µX) and
IY = (RY , µY ) be two inclusion representations ofX andY ,
respectively. A functionF : RX → RY is called aninclusion
functionof f if for every S ⊆ X and everyT ∈ RX we have

S ⊆ µX(T ) ⇒ f(S) ≡ {f(x) | x ∈ S} ⊆ µY (F (T )) (10)

In practice, real-valued functions are often extended in a
natural way to evaluate the ranges of functions.

Definition 4 (Natural Extension):Let f : Rn → Rm be a
factorable function recursively composed of a finite set,E, of
elementary operations defined onR. Suppose thatI = (R, µ)
is an inclusion representation ofR such that there exists a
set,ER, of elementary operations defined onR, and exists a
bijection η : E → ER.2 A function f : Rn → Rm is called
thenatural extensionof f in I (using elementary operations in
ER) if f is constructed from the composition off by replacing
each real variable (resp. constant) by a variable taking values
(resp. constant) inR, and replacing each occurrence of an
elementary operatione ∈ E by the corresponding occurrence
of η(e). If f is also an inclusion function off , we call f the
natural inclusion functionof f .

Various interval inclusion functions have been described in
detail in the book [4]; some among them arenatural, centered,
mixed-centeredandNewton inclusion functions.

Definition 5 (Inclusion Converter):Let I1 = (R1, µ1) and
I2 = (R2, µ2) be two inclusion representations of the same
set. A functionc : R1 → R2 is called aninclusion converter
from I1 to I2 if ∀S ∈ R1 : µ1(S) ⊆ µ2(c(S)).

Example 5:Converting the affine form3 + 2ε1 + 1ε2 into
interval form, we get [0, 6]. However, converting the interval
form [0, 6] into affine form we may get3 + 3ε3.

Theorem 2 (Composite Inclusion Function):Let IX =
(RX , µX), IY = (RY , µY ) andIZ = (RZ , µZ) be inclusion
representations of three setsX, Y and Z, respectively. If
F : RX → RY andG : RY →RZ are inclusion functions of
two functionsf : X → Y and g : Y → Z respectively, then
the composite functionG ◦ F is an inclusion function of the
composite functiong ◦ f .

Proof: The proof directly follows Definition1 and
Definition 3, and is hence omitted.

Corollary 1: Let I = (R, µ) be an inclusion representation
of R. If elementary operations defined onR are inclusion func-
tions of their counterparts onR, then all factorable functions
built onR using those elementary operations are also inclusion
functions of their counterparts onR.

Proof: Corollary 1 is a straightforward consequence of
Theorem2. The proof is therefore omitted.

In implementation, the elementary operations in interval
arithmetic and affine arithmetic are constructed to be inclusion
functions of their real-valued counterparts. Therefore, as a con-
sequence of Corollary1, all the factorable operations/functions
defined in interval arithmetic (or affine arithmetic) using those
operations are also inclusion functions of their real-valued
counterparts.

2We then calle ∈ E the real-valued counterpart ofη(e).



IV. REVISED AFFINE ARITHMETIC

A. Revised Affine Form

One of the limitations of the standard affine arithmetic is
that the number of noise symbols grows gradually during the
computation and the computation cost heavily depends on this
number. Inspired by the ideas in [19], [7], [8], we use a revised
affine form similar to(5) but the new termzkεk is replaced by
an accumulative error[−ez, ez] which represents the maximum
absolute errorzk of non-affine operations. In other words, the
revised affine formof a real-valued quantitŷx is defined as

x̂ ≡ x0 + x1ε1 + . . . + xnεn + ex[−1, 1], (11)
which consists of two separated parts: the standard affine part
of length n, and the interval part. Where the magnitude of
the accumulative error,ex ≥ 0, is represented by the interval
part. That is, for each valuex of the quantityx̂ (sayx ∈ x̂),
there existεx ∈ [−1, 1], εi ∈ [−1, 1] (i = 1, . . . , n) such that
x = x0 +x1ε1 + . . .+xnεn +exεx. We then say it is of length
n. The affine operation̂z ≡ αx̂ + βŷ + γ is now defined as

ẑ ≡ (αx0+βy0+γ)+

n∑
i=1

(αxi+βyi)εi+(|α|ex+|β|ey)[−1, 1] (12)

Note that during computations the lengths of revised affine
forms do not exceed the number of noise symbols at the
beginning, i.e. the number of variables of the input constraint
system. In rigorous computing,ez will be used to accumulate
the rounding errors in floating-point arithmetic, namely(12)
can be interpreted as follows

z0 = 〈αx0 + βy0 + γ〉 ± e0, zi=1,n = 〈αxi + βyi〉 ± ei, (13a)

ez = d|α|ex + |β|ey +

n∑
i=0

eie. (13b)

Similarly to the standard affine form (see Example3), the
revised affine form(11) can also be seen as a real inclusion
representation ofR; where each representation object is a
tuple T = (x0, . . . , xn, 1, . . . , n, ex), VT = (ε1, . . . , εn, εx)
are the variables of the linear functionfT (ε1, . . . , εn, εx) =
x0 +

∑n
i=1 xiεi + exεx, and DT = [−1, 1]n+1. The real

representation of the evaluating function can be defined as

µ(T ) ≡ {x0 +
n∑

i=1

xiεi + exεx | εi=1,n, εx ∈ [−1, 1]} (14)

Another limitation of the standard affine form is that it is
not capable of handling half-lines of the form(−∞, a] and
[a,+∞), while this is needed in many computation meth-
ods, especially constraint propagation and search techniques.
Hence, we propose to associate each quantityx̂ with a data
field x∞ ∈ {−1, 0,+1}. The revised affine form is then
interpreted as follows

x̂ ≡





(−∞,+∞) if ex = +∞,
(−∞, x0] if x∞ = −1,
[x0, +∞) if x∞ = +1,
x0 +

∑n
i=1 xiεi + ex[−1, 1] otherwise.

(15)

Remark 2: In an operation, if the domain of a variable
is unbounded, i.e. in the first three cases of(15), the other
variables are converted into interval forms for that operation

performed in interval arithmetic, then the result is converted
back to affine form. Therefore, in the rest of paper, we only
need to discuss about the last case of(15).

Notation 2: In this paper, we denote byA the set of all
objects in revised affine form.

B. Unary Operations

We give the following constructive theorem, which is based
from a non-constructive theorem named Theorem 2 in [18],
as a basis for finding affine approximations of elementary
univariate functions in a rigorous manner.

Theorem 3 (Affine Approximation of Univariate Functions):
Let f be a differentiable function on[a, b], wherea < b in
R, anddα(x) ≡ f(x)− αx.

1) If ∀x ∈ [a, b] : α ≥ f ′(x), then
∀x ∈ [a, b] : αx + dα(b) ≤ f(x) ≤ αx + dα(a).

2) If f ′ is continuous and increasing on[a, b], we have

a) ∀α ∈ [f ′(a), f ′(b)], ∃c ∈ [a, b] : f ′(c) = α.
b) Let g : R → R be a function such thatg(α) =

dα(c), then for everyx ∈ [a, b] we have
αx + g(α) ≤ f(x) ≤ αx + max{dα(a), dα(b)}.

3) If f ′ is continuous and decreasing on[a, b], we have

a) ∀α ∈ [f ′(b), f ′(a)], ∃c ∈ [a, b] : f ′(c) = α.
b) Let g : R → R be a function such thatg(α) =

dα(c), then for everyx ∈ [a, b] we have
αx + min{dα(a), dα(b)} ≤ f(x) ≤ αx + g(α).

Proof: See the proof of Theorem 3 in [22].
To illustrate the usefulness of Theorem3, in Table I we

give the functionsf ′ andg for some elementary functions. In
Figure 2, we propose a procedure to find asafe Chebyshev
affine approximation of a functionf ∈ C1([a, b]) such that
f ′ is monotone, when given the functiong satisfying the
conditions in Theorem3.

Proposition 1: Let αx̂ + β + δ[−1, 1] be the revised affine
form produced by the procedure in Figure2, where[a, b] is the
range ofx̂. Suppose thatf ∈ C1([u, v]) and f ′ is monotone
on [u, v], where[u, v] ⊇ [a, b] such thatf ′(v) ≥ df ′(b)e if f ′

is monotone increasing, orf ′(u) ≥ df ′(a)e if f ′ is monotone
decreasing. We have∀x ∈ x̂ : f(x) ∈ αx̂ + β + δ[−1, 1].

Proof: See the proof of Proposition 1 in [22].
Readers are referred to Section 2 of [23] for affine approx-

imations of non-differentiable functions.

TABLE I

FUNCTIONS f ∈ C1([a, b]) SATISFYING THE CONDITIONS OFTHEOREM 3

f(x) [a, b] in f ′(x) f ′ g(α)√
x [0, +∞) 1/(2

√
x) ↓ 1/(4α) : α > 0

ex (−∞, +∞) ex ↑ α(1− log α) : α > 0
log x (0, +∞) 1/x ↓ −(1 + log α) : α > 0

xn : n ≥ 2, even (−∞, +∞) nxn−1 ↑ (1− n) n−1
√

(α/n)n

xn : n ≥ 3, odd (−∞, 0] nxn−1 ↓ (n− 1) n−1
√

(α/n)n : α ≥ 0

xn : n ≥ 3, odd [0, +∞) nxn−1 ↑ (1− n) n−1
√

(α/n)n : α ≥ 0

1/xn : n ≥ 2, even (−∞, 0) −n/xn+1 ↑ (n + 1) n+1
√

(−α/n)n

1/xn : n ≥ 2, even (0, +∞) −n/xn+1 ↑ (n + 1) n+1
√

(−α/n)n

1/xn : n ≥ 1, odd (−∞, 0) −n/xn+1 ↓ −(n + 1) n+1
√

(−α/n)n : α < 0

1/xn : n ≥ 1, odd (0, +∞) −n/xn+1 ↑ (n + 1) n+1
√

(−α/n)n : α < 0

xr : r /∈ [0, 1] (0, +∞) rxr−1 ↑ (1− r)(α/r)(r/(r−1)) : αr > 0

xr : r ∈ (0, 1) (0, +∞) rxr−1 ↓ (1− r)(α/r)(r/(r−1)) : α > 0



procedure AApprox(in : x̂, f ∈ C1([a, b]), f ′, g; out : αx̂ + β + δ[−1, 1])
fa := bf(a)c; fb := df(b)e; α := d(fb − fa)/(b− a)e;
if f ′ is monotone increasing on[a, b] then

da := df(a)e − bαac;
if α > df ′(b)e then

dmin := bf(b)c − dαbe; dmax := da;
else

dmin := bg(α)c; dmax := max{da, fb − bαbc};
end-if

else-if f ′ is monotone decreasing on[a, b] then
db := bf(b)c − dαbe;
if α > df ′(a)e then

dmin := db; dmax := df(a)e − bαac;
else

dmin := min{fa − dαae, db}; dmax := dg(α)e;
end-if

end-if
β := midpoint([dmin, dmax]); δ := radius([dmin, dmax]);

end
Fig. 2. A safeChebyshev affine approximation of a functionf ∈ C1([a, b])
such thatf ′ is monotone, when given the functiong in Theorem3

C. Multiplication

Similar to the products of two G intervals in [7], [8] (time
complexities areO(n2) and O(n), respectively), the product
of two revised affine formŝx and ŷ of length n is another
revised affine form̂z of lengthn defined as

u =

n∑
i=1

|xi|, v =

n∑
i=1

|yi|, (16a)

z0 = x0y0 +
1

2

n∑
i=1

xiyi, zi = x0yi + y0xi (i = 1, n), (16b)

ez = exey + ey(|x0|+ u) + ex(|y0|+ v) + uv − 1

2

n∑
i=1

|xiyi| (16c)

This is similar to, but tighter than, the formula for multi-
plication in [8] when exactly porting into revised affine form.
The time complexity of(12) is O(n). In rigorous computing,
we use the following computations:

u = d
n∑

i=1

|xi|e, v = d
n∑

i=1

|yi|e (17a)

z0= 〈x0y0 + 0.5

n∑
i=1

xiyi〉 ± e0; zi=1,n = 〈x0yi + y0xi〉 ± ei (17b)

ez= dexey + ey(|x0|+ u) + ex(|y0|+ v) + uv +

n∑
i=0

eie − (17c)

b0.5

n∑
i=1

|xiyi|c

Proposition 2: The affine multiplication defined by(16) or
by (17) is an inclusion function of the real multiplication.

Proof: See the proof of Proposition 2 in [22].

D. Division

In implementation, we compute the quotientẑ = x̂/ŷ by
rewriting it asx̂×(1/ŷ). However, it is worth mentioning that
in [8], [24], the authors have proposed better dividing methods.

V. COMBINING MULTIPLE INCLUSION REPRESENTATIONS

A. Node Evaluations and Pruning Constraint Systems

The input constraint system is represented by a DAG as
described in SectionII-B. The computational data stored
at each node,N, of the DAG representation consist of a

representation object for each real inclusion representation
I = (R, µ) of R and aconstraint range of node(hereafter
called anode rangefor short) which is often an interval.

Notation 3: Let I = (R, µ) be a real inclusion representa-
tion of R. We denote byτ(N) the node range ofN, and by
R(N) the representation object ofI that is stored at nodeN.

Hereafter, we present a concept that allows evaluating node
ranges based on child nodes, that is generalized from the
forward evaluationin [3].

Definition 6 (Node Evaluation,NEV): Let N be a node of
the DAG representation of a constraint system,{Ci}k

i=1 the
children of N, f : Rk → R the elementary operation repre-
sented byN, andI = (R, µ) a real inclusion representation.
Also let fI : Rk → R be an inclusion function off . The
following assignment is called thenode evaluationat nodeN
in the inclusion representationI (if N 6= G):

NEV(N, I) ≡
{R(N) :=R(N) ∩ τ(N) ∩ fI({R(Ci)}k

i=1);
τ(N) := τ(N) ∩ µ(R(N));

}

Example 6:Considering Example1, the nodes of the
DAG representation are namedG and Ni (i = 1, . . . , 7) as
depicted in Figure1. At the beginning we have (see Figure1a)

τ(N1) = I(N1) = [1, 3]; A(N1) = 2 + ε1

τ(N2) = I(N2) = [1, 9]; A(N2) = 5 + 4ε2

τ(Ni) = I(Ni) = [−∞, +∞]; A(Ni) = [−∞, +∞] (i = 3, 4, 5)
τ(N6) = I(N6) = [0, 0]; A(N6) = 0
τ(N7) = I(N7) = [−∞, 9]; A(N7) = [−∞, 9]

The elementary operation corresponding to nodeN3 is the
square operation, therefore, we have

NEV(N3, I) ≡
{
I(N3) := I(N3) ∩ τ(N3) ∩ (I(N1))

2;
τ(N3) := τ(N3) ∩ I(N3);

}

NEV(N3,A) ≡
{
A(N3) := A(N3) ∩ τ(N3) ∩ (A(N1))

2;
τ(N3) := τ(N3) ∩ A(N3);

}

After the evaluationNEV(N3, I) ∩ NEV(N3,A), we have
I(N3)= [−∞, +∞] ∩ [−∞, +∞] ∩ ([1, 3])2= [1, 9]; τ(N3)=[1, 9]

A(N3)= [−∞, +∞] ∩ [1, 9] ∩ (2 + ε1)
2 = 4.5 + 4ε1 + 0.5[−1, 1]

τ(N3)= [1, 9] ∩ I(4.5 + 4ε1 + 0.5[−1, 1]) = [1, 9]

Similarly, after performing node evaluations at the other
nodes we haveI(Ni) = τ(Ni) for every i = 1, . . . , 7 and
I(N4) = [1, 27]; A(N4) = 10 + 5ε1 + 8ε2 + 4[−1, 1]
I(N5) = [1, 3]; A(N5) = 2.125 + ε2 + 0.125[−1, 1]
I(N6) = [0, 0]; A(N6) = −13.375− 6ε1 − 15ε2 + 8.625[−1, 1]
I(N7) = [9, 9]; A(N7) = 42.25 + 19ε1 + 26ε2 + 12.25[−1, 1]

In order to present the concept of pruning constraint systems
concisely, we rely on the following notion.

Definition 7 (Inclusion Constraint System,ICS): Let
(R, µ) be a real inclusion representation ofR defined by(6),
N a node of the DAG representation. Theinclusion constraint
systeminduced by a representation objectT ≡ R(N) and a
constraint rangeD ⊆ R is defined as

ICS(T, D)≡
{{ϑN ∈ DT ∩D} (whereVT ≡ ϑN) if fT is identity,
{fT (VT ) = ϑN; VT ∈ DT ; ϑN ∈ D} otherwise;

where the set of variables of the inclusion constraint system
consists of the variableϑN, the variables inVT , and the
variables used to describeDT .



Example 7:We give some inclusion constraint systems:

• for the interval form(7):

ICS(T, [c, d]) ≡ {ϑN ∈ [c, d] ∩ [a, b]},
where the set of variables is{ϑN}. This system is
conjunctive and has the form of bound constraints.

• for the revised affine form(14):

ICS(T, [c, d])≡{x0 +
n∑

i=1

xiεi + exεx = ϑN;ϑN ∈ [c, d];

(ε1, . . . , εn, εx) ∈ [−1, 1]n+1},
where the set of variables is{ε1, . . . , εn, εx, ϑN}. This
system is conjunctive and linear.

• for the linear relaxations/polyhedral enclosures in(9):

ICS(T, [c, d])≡{ai0 +
n∑

j=1

aijxj ≤ 0 (i = 1, . . . , m);

ϑN ∈ [c, d]; (x1, . . . , xn) ∈ B},
where the set of variables is{x1, . . . , xn, ϑN}. This
system is conjunctive and linear.

We now present the construction of constraint systems for
pruning node ranges based on representation objects.

Definition 8 (Pruning Constraint System,PCS): Let N be
a node of the DAG representation,{Ci}k

i=1 the children of
N, f : Rk → R the elementary operation represented by
N, and S a finite set of real inclusion representations. The
following constraint system is called thepruning constraint
systeminduced by the inclusion representations ofS at N:

PCS(N,S) ≡



{∧k

i=1 ICS(R(Ci), τ(Ci))} if N = G,{
f(ϑC1 , . . . , ϑCk

) = ϑN ∧∧
(R,µ)∈S PCSub(N,R, µ)

}
otherwise;

wherePCSub(N,R, µ) is a pruning inclusion subsystem:

PCSub(N,R, µ)=ICS(R(N), τ(N))∧
k∧

i=1

ICS(R(Ci), τ(Ci)).

Notation 4: In the rest, we will abuse the notationsI and
A to denote the real inclusion representations,(I, µI) and
(A, µA), respectively defined on interval arithmetic and revised
affine arithmetic; where the functionµI is defined by(7) and
the functionµA is defined by(14).

Example 8:Considering Example1, we have, for instance,
the following inclusion constraint systems:

ICS(A(N4), τ(N4))≡
{

10 + 5ε1 + 8ε2 + 4εN4 = ϑN4 ;
ϑN4 ∈ [1, 27]; (ε1, ε2, εN4) ∈ [−1, 1]3

ICS(A(N5), τ(N5))≡
{

2.125 + ε2 + 0.125εN5 = ϑN5 ;
ϑN5 ∈ [1, 3]; (ε2, εN5) ∈ [−1, 1]2

ICS(A(N7), τ(N7))≡
{

42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7 ;
ϑN7 ∈ [9, 9]; (ε1, ε2, εN7) ∈ [−1, 1]3

and the following pruning constraint systems

PCS(N7, {I}) ≡




4ϑN1 + 3ϑN4 + 2ϑN5 = ϑN7

ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27];
ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9]

PCS(N7, {A}) ≡





4ϑN1 + 3ϑN4 + 2ϑN5 = ϑN7

2 + ε1 = ϑN1

10 + 5ε1 + 8ε2 + 4εN4 = ϑN4

2.125 + ε2 + 0.125εN5 = ϑN5

42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7

ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27];
ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9]
(ε1, ε2, εN4 , εN5 , εN7) ∈ [−1, 1]5

B. A Scheme for Combining Inclusion Representations

In this section, we describe a generic combination scheme
that combines the strength of different real inclusion represen-
tations for constraint propagation. In this scheme each input
constraint system, say an NCSP, is represented by a DAG
as described in SectionII-B. The computational data stored
at each node are the representation objects as described in
SectionV-A. In principle, the scheme uses the node evalu-
ations and pruning constraint systems, which are defined in
SectionV-A, and uses relevant pruning techniques to reduce
the node ranges, hence, reduce the variable domains.

Definition 9 (Pruning Technique):A pruning techniquefor
a real constraint system is a technique for reducing some
domains of the variables of the constraint system.

Let G be a DAG which represents the input constraint
system. The proposed scheme, calledCIRD, uses two waiting
lists. The first waiting list, denoted byLe, stores the nodes
waiting for evaluation. The second waiting list, denoted byLp,
stores the nodes waiting for node pruning. Note that each node
can appear once at a time in one waiting list, but may appear in
both waiting lists. The set of real inclusion representations for
use in the scheme is denoted byE . We suppose that each real
inclusion representation inE provides elementary operations
which are inclusion functions of their real-valued counterparts.
In Figure 3, we present the main steps of theCIRD scheme
with inline detailed descriptions.

Proposition 3: We define a functionF : In × 2R
n → In to

represent theCIRD algorithm. This function takes as input the
variable domains (in the form of an interval boxB) and the
exact solution set,S, of the input problem. The functionF
returns an interval box, denoted byF (B, S), that represents
the variable domains of the output of theCIRD algorithm. The
CIRD algorithm terminates at a finite number of iterations and
the following properties hold:

(i) F (B, S) ⊆ B (Contractiveness)
(ii) F (B, S) ⊇ B ∩ S (Correctness)

Proof: The proof is trivial due to the finite nature of
floating-point numbers and the fact that the node ranges are
never inflated during the computations.

VI. SPECIFICCOMBINATION STRATEGIES ASINSTANCES

In general, the performance of a propagator following the
CIRD scheme depends on the design of each step in the
scheme. In this section, we propose some simple strategies
for each step in theCIRD scheme using the two inclusion
representations,I andA. Combining different strategies at all
the steps makes different strategies for constraint propagation.



1) Initialization Phase.
a) Initial Node Evaluation. Select an algorithm for visiting

DAGs in an order described in Theorem1. When visiting
a nodeN ∈ G, perform the node evaluationNEV(N, I)
for eachI ∈ E . Merging the assignments of multiple
NEV(N, I) into a single process to avoid repeating the
same computations is encouraged.

b) Initialize Waiting Lists. SetLe := ∅, Lp := {the list
of all nodes representing the active constraints associated
with all real inclusion representations ofE}.

2) Propagation Phase.Repeat this step until bothLe and Lp

become empty.
a) Get the Next Node. Select a strategy for getting a

nodeN (and the setS of real inclusion representations
associated withN in the corresponding list) from the two
waiting listsLe andLp.

b) Node Evaluation.Do this step only ifN was taken from
Le at Step2a.
For eachI = (R, µ) ∈ S do the following steps:
(combining several inclusion representations for better
evaluation by using inclusion converters is also an option)
i) Perform the node evaluationNEV(N, I). If this re-

turns an empty set, the algorithm terminates with an
infeasible status.

ii) If the changes ofR(N) and τ(N) at Step2(b)i are
considered enough to re-evaluate the parents ofN,
then put each node inparents(N) (associated with
I) into Le, if N is not the ground node, or intoLp

otherwise.
iii) If the changes ofR(N) and τ(N) at Step2(b)i are

considered enough to do a node pruning atN again,
then put(N, I) into Lp.

c) Node Pruning. Do this step only ifN was taken from
Lp at Step2a.
i) Select a subsetT ⊆ S such that for eachI ∈ T there

are efficient pruning techniques for the constraint
systemPCS(N, I).

ii) PartitionT into subsets such that for each subsetU
of the partition there is a pruning technique that may
efficiently reduce the domains of the variables of the
system (or a subsystem of)PCS(N,U). Subsequently,
apply the associated pruning technique to each system
(or a subsystem of)PCS(N,U) in a certain order.
If this process returns an empty set, the algorithm
terminates with an infeasible status.

iii) Let K be the set of all the nodes whose evaluating
functions in the form(6) contain some variables
whose domains were reduced at Step2(c)ii. Select
a subsetH of K, for example, such that each node
M in H is a descendant ofN. For each real inclusion
representationI = (R, µ) ∈ H such that the repre-
sentation ofµ(R(M)) in the form(6) contains some
variables whose domains were reduced at Step2(c)ii,
updateR(M) using those newly reduced domains,
then updateτ(M) := τ(M)∩µ(R(M)). If empty is
obtained, the algorithm terminates with an infeasible
status.
A) If the changes ofR(M) and τ(M) are consid-

ered enough to re-evaluateM’s parents, put each
node inparents(M) associated withI into Le.

B) If the changes ofR(M) and τ(M) are consid-
ered enough to do a node pruning atM, put
(M, I) into Lp.

Fig. 3. CIRD – a generic scheme forCombining Inclusion Representations
on DAGs

procedure RecursiveNodeEval(in : N)
if N is a leafor N has been visitedthen return ;
for each C ∈ children(N) do RecursiveNodeEval(C);
for each I ∈ E do NEV(N, I);
Mark N as visited;
if empty is detectedthen exit(infeasible);

end
Fig. 4. The pseudo code for recursive node evaluation

procedure NodeLevel(in : N; in/out : Vlvl)
for each C ∈ children(N) do

Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
NodeLevel(C, Vlvl);

end-for
end

Fig. 5. The procedure to assign a node level to each node in the DAG
representation.

A. Step1: Initial Node Evaluation and Waiting Lists

In our implementation, we use a recursive evaluation proce-
dure given in Figure4 for the visit at Step1a. If this procedure
exit with an infeasible status, the main algorithm invoking it
terminates with an infeasible status.

Example 9:We continue to consider Example1. After the
initial node evaluation using interval arithmetic and revised
affine arithmetic, we have the node ranges given in Example6.
After perform Step1b with S = {I,A} we haveLe = ∅ and
Lp = {(N6; I,A), (N7; I,A)}.
B. Step2a: Get the Next Node

At first, we assign anode levelto each node in the DAG
representing the constraint system such that each node has a
level smaller than that of their descendants. Hence, an ordering
in Theorem1 can be obtained easily by sorting in node levels.

Figure5 gives a simple procedure to compute a vectorVlvl

of node levels if this procedure is invoked at all the nodes
representing the active constraints. Figure1 illustrates the node
levels for the constraint system given in Example1. The node
levels are given in brackets next to the node names.

The listLp is sorted in the ascending order of node levels.
It is to maintain that each node being taken into pruning
processes before its descendants. Similarly, the listLe is sorted
in the descending order of node levels to maintain that each
node being evaluated before its ancestors.

There are two simple strategies to get the next node from
the two waiting lists{Le,Lp} as follows: (i) get the next
node fromLp wheneverLp is not empty, this is called the
“pruning first” strategy; and(ii) get the next node from one
of the two waiting lists until it becomes empty, then switch
to the other list. In our implementation, we use the “pruning
first” strategy. More complicated strategies for choosing the
next node can be used as alternatives, for example, based on
the pruning efficiency of nodes.

C. Step2b: Node Evaluation

For the node evaluation at each nodeN, we can perform
NEV(N,A) andNEV(N, I) in any order, ifN is not the ground
node. At Step2(b)ii, Step 2(b)iii and Step2(c)iii, we only
count on the changes ofτ(N) in our current implementation.



A change ofτ(N) is often considered enough if the ratio of
the new width to the old width is less than a number predefined
rw ∈ (0, 1) and the difference between the old width and the
new width is greater than a predefined numberdw > 0 [25].
More complicated criteria can also be used as alternatives.

D. Step2c: Node Pruning

The subsetT at this step can be chosen as{I,A}. For node
pruning, we usePCS(N, {I}) and the following subsystem of
PCS(N, {A}):
PCS(N, {I})≡





f(ϑC1 , . . . , ϑCk
) = ϑN;

ϑN ∈ τ(N);∧k
i=1(ϑCi

∈ τ(Ci));



 if N 6= G;

PCSL(N, {A})≡



{∧k

i=1 ICS(A(Ci), τ(Ci))} if N = G,{
ICS(A(N), τ(N))∧∧k

i=1 ICS(A(Ci), τ(Ci))}
}

otherwise;

where
ICS(A(M), D) ≡





xM,0 +
∑k

i=1 xM,iεi + eMεM = ϑM;
εi ∈ [−1, 1] (i = 1, . . . , n);
εM ∈ [−1, 1]; ϑM ∈ D;



.

Note that we have in general

PCS(M, {A}) ≡ PCS(M, {I}) ∧ PCSL(M, {A}). (18)

Example 10:We now consider Example1. Some examples
of pruning constraint systems are also given in Example8.

PCSL(N7, {A})≡





2 + ε1 = ϑN1

10 + 5ε1 + 8ε2 + 4εN4 = ϑN4

2.125 + ε2 + 0.125εN5 = ϑN5

42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7

ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3];
ϑN7 ∈ [9, 9]; (ε1, ε2, εN4 , εN5 , εN7) ∈ [−1, 1]5

The node ranges are pruned by using a combination of back-
ward propagation and affine pruning techniques as follows.

1) Backward Propagation:If N is not the ground, the
domains of the variables of the constraint systemPCS(N, {I})
can be pruned by a pruning technique which is calledback-
ward propagationin [3], [21]. In brief, letf be the elementary
operation represented by a nodeN, we then have the relation
ϑN = f({ϑCi}k

i=1). For eachi in {1, . . . , k}, the backward
propagation computes a cheap evaluation of thei-th projection
of the relationϑN = f({ϑCi}k

i=1) onto ϑCi . In case there
exist a functiongi : Rk → R such that we can writeϑCi =
gi(ϑN, {ϑCj}k

j=1;j 6=i). Let Gi be an inclusion function ofgi

in I. In this case, the backward propagation atN is defined
as I(Ci) := I(Ci) ∩ Gi(I(N), {I(Cj)}k

j=1;j 6=i) (i = 1, k). A
deeper discussion on the other cases can be found in [25].

After the backward propagation, at Step2(c)iii we only need
to considerk nodesH = {Ci | i = 1, . . . , k} for update and
for putting into the waiting lists.

2) Affine Pruning: Each variable of the input constraint
system is associated with one noise symbolεi (i = 1, n) in
A. The systemPCSL(N, {A}) is a linear constraint system.
Therefore, the domains of the variables ofPCSL(N, {A}) can
be pruned by using asafelinear programming technique [26].

If the operation represented byN is linear, we can apply a
safe linear programming technique toPCS(N, {A}), instead

of PCSL(N, {A}), to get tighter bounds on the variables.
For efficiency, only the domains of the variables{ϑCi}k

i=1

and/or{εi}n
i=1 are needed to be pruned. We can devise three

possible pruning strategies for Step2(c)iii. The first strategy
only requires to prune the domains of{ϑCi

}k
i=1, after that,

considers the update forH = {Ci}k
i=1. The second strategy

only requires to prune the domains of{εi}n
i=1. The third

strategy is to prune the domains of both{ϑCi
}k

i=1 and{εi}n
i=1.

For the last two strategies, the setH can be chosen as any
subset of the set ofN’s descendants whose noise variables
in µA have just been pruned. In our implementation, we use
the second pruning strategy with two options forH: the set
of N’s descendants or the set of variables associated with
εi (i = 1, . . . , n). If for each i ∈ {1, . . . , n} the new domain
of noise variableεi is [ai, bi] ⊆ [−1, 1], then the range update
at M ∈ H will be

τ(M) := τ(M)∩(xM,0 +
n∑

i=1

xM,i[ai, bi]+eM[−1, 1]) (19)

Remark 3:The cost of linear programming is high, there-
fore, we should use the affine pruning technique only if the
pruning ratio is high. We propose to use the affine pruning
technique only if the accumulative erroreM of each node
M involving the above linear systems is small enough, that
is, the range of the operation atM lies in a thin slot
between two hyperplanesxM,0 +

∑n
i=1 xM,iεi − eM and

xM,0 +
∑n

i=1 xM,iεi + eM in the space of the noise variables
(ε1, . . . , εn). Moreover, this type of pruning should only be
used for nodes at low levels.

VII. E XPERIMENTS

A. Comparisons with Linear Relaxation based Techniques

We first compare the proposed technique with a recent
mathematical solving technique, calledA2, in [8] which was
specially designed to solve nonlinear equation systems. TheA2
algorithm converts an equation system intoseparable form,
and then uses affine arithmetic to enclose the system by a
linear relaxation system{L(x, y) = Ax + By + b, x ∈
x, y ∈ y}; where A and B are real matrices,b is a real
vector, andx and y are interval vectors. This technique has
to assume a posterior-condition thatA is invertible in order to
use the reduction rulex′ := x∩(A−1By−A−1b). No rigorous
rounding technique is found in [8]. We take the first problem
that was used for illustrating the power of theA2 algorithm in
[8] for the comparison:




((4x3 + 3x6)x3 + 2x5)x3 + x4 = 0,
((4x2 + 3x6)x2 + 2x5)x2 + x4 = 0,
((4x1 + 3x6)x1 + 2x5)x1 + x4 = 0, x4 + x5 + x6 + 1 = 0
(((x2 + x6)x2 + x5)x2 + x4)x2+(((x3 + x6)x3 + x5)x3 + x4)x3= 0,
(((x1 + x6)x1 + x5)x1 + x4)x1+(((x2 + x6)x2 + x5)x2 + x4)x3= 0,
x1 ∈ [0.0333, 0.2173], x2 ∈ [0.4000, 0.6000],
x3 ∈ [0.7826, 0.9666], x4 ∈ [−0.3071,−0.1071],
x5 ∈ [1.1071, 1.3071], x6 ∈ [−2.1000,−1.9000]

(20)
The system (20) is known to be hard for interval techniques
and has a unique solution. To solve it on a 1.7 GHz Pentium
PC at the resolution10−5 using a bisection search;A2 has to
perform 917 iterations in 3.46 seconds to reduce the problem



TABLE II

A PRELIMINARY COMPARISON BETWEENQuad AND CIRD[ai]

PropagatorI Quad CIRD[ai] Time

Problem
H #S #B Time

(sec.)
CPU
(GHz)

#S #B Time
(sec.)

CPU
(GHz)

ratio
Quad

CIRD[ai]

Gough-Steward (9) 24 4 183.0 1.0 912 4 2.7 1.7 39.9
Yama196(n = 30) 108 16 31.4 2.66 25 2 3.8 1.7 12.9
Yama196(n = 60) n/a n/a n/a 0.8 18 2 21.0 1.7 n/a
Yama196(n = 100) n/a n/a n/a 0.8 20 2 85.8 1.7 n/a
Yama196(n = 200) n/a n/a n/a 0.8 19 2 560.2 1.7 n/a
Yama196(n = 300) n/a n/a n/a 0.8 20 2 1878.1 1.7 n/a

to 5 boxes (see [8]); while an instance of theCIRD scheme,
calledCIRD[ai],3 performs 54 iterations in only 0.118 seconds
to reduce the problem to 3 boxes. Hence,CIRD[ai] is about
29.3 times faster thanA2 for the system(20), while it is
more rigorous and accurate thanA2. Another technique to
compare with is a very recent filtering technique calledQuad
in [5], which was specifically designed to process quadratic
constraints, and an extension ofQuad in [6]. Again, we take as
example two problems, calledGough-Stewardand Yama196,
which were used to illustrate the power ofQuad in [5],
[6], respectively.Gough-Stewardis a non-sparse quadratic
equation system of 9 variables in Robotics, which has four
solutions [5].Yama196is a series of high-dimensional sparse
problems ofn variables andn equations of the form{(n +

1)2xi−1− 2(n + 1)2xi + (n + 1)2xi+1 + exi = 0, xi ∈ [−10, 10] |
i = 1, . . . , n}, wherex0 = xn+1 = 0. Similarly to [6], we use
the resolution10−8 for these problems. TableII presents a
preliminary comparison betweenCIRD[ai] andQuad.

Note 1: The results ofQuad in TableII are copied from [5],
[6], except that the ones in the cells filled with “n/a” are not
yet available due to our limited access to the implemenation
of Quad. In TableII , #S denotes the number of splittings and
#B denotes the number of boxes in the output.

B. Comparisons with Interval Propagation Techniques

We have carried out experiments on an implementation of
the CIRD[ai] algorithm (newer than the one in [22]) and two
other well-known state-of-the-art interval constraint processing
techniques. The first one is an implementation of Box Consis-
tency [27], [28] in a well-known commercial product named
ILOG Solver (v6.0, 11/2003), hereafter denoted byBOX. The
second one is calledHC4 (Revised Hull Consistency) from
[3]. The experiments are carried out on 33 problems which are
unbiasedlychosen and divided into five test cases for analyzing
the test results:4

• The test caseT1 consists of 8 easy problems with isolated
solutions that are solvable by the search using the three
propagators in short time.

• The test caseT2 consists of 4 average problems with
isolated solutions that are solvable by the search using
CIRD[ai] and BOX, and that cause the search usingHC4
being out of time without reaching106 splittings.

3In this paper, we use a new implementation ofCIRD[ai], which is an
improvement of the old version used in [22].

4We have collected a set of problems from diverse sources including related
papers and the Internet.

• The test caseT3 consists of 8 hard problems with isolated
solutions that cause the search usingHC4 being out
of time without reaching106 splittings; and that cause
the search usingBOX either being out of time or being
stopped due to running more than106 splittings. The
search usingCIRD[ai] accomplishes the solving for six
of eight problems in this test case, and runs more than
106 splittings for the other two problems.

• The test caseT4 consists of 7 easy problems with a
continuum of solutions that are solvable at the predefined
resolution10−2 in short time.

• The test caseT5 consists of 6 hard problems with a
continuum of solutions that are solvable at the predefined
resolution10−1 in short time.

The timeout value is set to10 hours for all the test cases.
The timeout values will be used as the running time for the
techniques which are out of time in the next result analysis
(i.e. we are in favor of slow techniques). For the first three
test cases, the resolution is10−4 and the search to be used is
the bisection search. For the last two test cases, the search to
be used is a search technique, calledUCA6, for inequalities
(see [9], [10]). The comparison of the interval constraint
propagation techniques is based on the measures of

• The running time:The relative ratio of the running time of
each propagator to that ofCIRD[ai] is called therelative
time ratio.

• The number of boxes:The relative ratio of the number of
boxes in the output of each propagator to that ofCIRD[ai]
is called therelative cluster ratio.

• The number of splittings:The number of splittings in
search needed to solve the problems. The relative ratio
of the number of splittings used by each propagator to
that of CIRD[ai] is called therelative iteration ratio.

• The volume of boxes (only forT1, T2, T3): We consider
the reduction per dimensiond

√
V/D; where d is the

dimension,V is the total volume of the output boxes,
D is the volume of the initial domains. The relative ratio
of the reduction gained by each propagator to that of
CIRD[ai] is called therelative reduction ratio.

• The volume of inner boxes (only forT4, T5): The ratio
of the volume of inner boxes to the volume of all output
boxes is called theinner volume ratio.

The overviews of results in our experiments are given in
Table III and TableIV.

Note 2: In general, the lower the relative ratio is, the better
the performance/quality is; and the higher the inner volume
ratio is, the better the quality is. In the section(a) of TableIII ,
the average of the relative time ratios is taken over all the
problems in the test casesT1, T2, T3; and the averages of the
other relative ratios are taken over the problems in the test
caseT1, i.e. over the problems which are solvable by all the
techniques. In the section(b) of TableIII , the averages of the
relative ratios are taken over all the problems in the test cases
T4, T5.



TABLE III

THE COMPARISON OF THE THREE CONSTRAINT PROPAGATION

TECHNIQUES IN SOLVINGNCSPS (USING THE NEW VERSION OFCIRD[ai])

(a) Isolated Solutions + (b) Continuum of Solutions

Prop.
H

Relative
time
ratio

Relative
reduction

ratio

Relative
cluster
ratio

Relative
iteration

ratio

Relative
time
ratio

Inner
volume

ratio

Relative
cluster
ratio

Relative
iteration

ratio
CIRD[ai] 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.000
BOX 1429.660 5.323 30.206 4.263 3.414 0.944 1.102 1.056
HC4 17283.614 7.722 105.825 5.515 60.101 0.941 1.168 1.118

TABLE IV

THE AVERAGES OF THE RELATIVE TIME RATIOS FOR EACH TEST CASE

Prop. (a) Isolated Solutions (b) Contnm. of Solutions
H CaseT1 CaseT2 CaseT3 CaseT4 CaseT5

CIRD[ai] 1.00 1.00 1.00 1.00 1.00
BOX 8.33 6097.45 517.10 2.33 4.68
HC4 54.47 83009.81 1649.66 31.42 93.56

Clearly, CIRD[ai] is superior thanBOX and HC4 in perfor-
mance and quality for the problems with isolated solutions in
the unbiasedly chosen benchmarks.CIRD[ai] still outperforms
the others for the problems with continuum of solutions while
being a little better than the others in quality of the output.

VIII. C ONCLUSION

In this paper, we propose a novel generic scheme,CIRD, for
constraint propagation using different inclusion representations
on DAG. The scheme is able to incorporate most of known
inclusion representations, including interval arithmetic, affine
arithmetic, polyhedral/quadratic enclosures and their gener-
alizations. Modifications and improvements of the rigorous
computations of affine arithmetic are also proposed. As a re-
sult, we give several new combination strategies for constraint
propagation based on interval arithmetic, affine arithmetic, in-
terval constraint propagation andsafelinear programming. We
then show by experiments that an implementation,CIRD[ai],
outperforms recent techniques by 1–4 orders of magnitude or
more in speed, while still being better in quality measures.
A potential direction for future is to integrate thequadratic
form [19] or linear relaxations [29] into theCIRD scheme.
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