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ABSTRACT
In many practical scenarios, users are faced with the prob-
lem of choosing the most preferred outcome from a large set
of possibilities. As people are unable to sift through them
manually, decisions support systems are often used to auto-
matically find the optimal solution. A crucial requirement
for such a system is to have an accurate model of the user’s
preferences.

Studies have shown that people are usually unable to ac-
curately state their preferences up front, but are greatly
helped by seeing examples of actual solutions. Thus, several
researchers have proposed preference elicitation strategies
based on example critiquing. The essential design question
in example critiquing is what examples to show users in or-
der to best help them locate their most preferred solution.

In this paper, we analyze this question based on two re-
quirements. The first is that it must stimulate the user to
express further preferences by showing the range of alterna-
tives available. The second is that the examples that are
shown must contain the solution that the user would con-
sider optimal if the currently expressed preference model
was complete so that he select it as a final solution.
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1. INTRODUCTION
Many real-world applications require people to select a

most preferred item from a set of choices. For example, in
e-commerce an electronic catalog system might provide ac-
cess to millions of products. The user has to navigate the
catalog to find the most preferred one, which we call the tar-
get. Decision theory ([8]) provides algorithms which guaran-
tee to find this target solution given an accurate numerical
preference model.

Studies have shown that people are usually unable to ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
Copyright 2004 ACM 1-58113-815-6/04/0001 ...$5.00.

curately state their preferences up front, but are greatly
helped by seeing examples of actual solutions. Thus, sev-
eral researchers have proposed preference elicitation strate-
gies based on example critiquing. Example critiquing is a
process where the system shows a set of candidate solutions
generated on the basis of the user’s current preference model,
and the user reacts by either picking one as his choice or
modifying his preference model.

Some of the earliest successful example critiquing systems
are FindMe ([2]) and ATA ([10]). FindMe has been imple-
mented for a variety of domains, such as finding movies or
restaurants, and has been the one of the earliest systems to
use example critiquing in a decision aid tool. [10] describes
a preference elicitation method for a travel planning system,
ATA. The ATA system (automated travel assistant) uses a
constraint solver to obtain a set of optimal solutions. Five of
them are shown to the user, three optimal ones in addition
to two extreme solutions (least expensive and shortest flying
time). A candidate critiquing agent (CCA) constantly ob-
serves user’s modification to the expressed preference, and
refines the elicited model in order to improve solution accu-
racy. A similar approach was taken by Smart Client ([15, 12,
16]) which performs travel planning with a wider range of
criteria and shows a larger set of 30 possible solutions in dif-
ferent visualizations. It has been developed into a commer-
cial system, reality ([17]). Apt Decision ([13]) uses learning
techniques to synthesize a user’s preference model by ob-
serving their critique of example apartment features. Its
main objective is profiling and predicting what a user wants
in searching for an apartment.

As a concrete example of an example-critiquing interac-
tion, Figure 1 shows an screenshot of the SmartClient tool
used for planning a trip from San Francisco to Geneva. It
shows a range of 30 example solutions that can be visu-
ally compared according to to various attributes such as de-
parture and arrival times, travel time, transfer aiports and
time, airlines, aircraft types, etc. Users can critique exam-
ples by posting preferences on attributes or combinations of
attributes. Figure 1 shows an example where the user adds
a preference on the transit time. This preference translates
into a penalty function that assigns a penalty to solutions
proportional to the degree that the preference is violated.
The set of penalty functions obtained in this way is the
model of the user’s preferences maintained by SmartClient
and used to generate the displayed examples. Every change
in the preference model leads to an instantenous update of
the displayed solutions. At any time, the user can choose to

1



Figure 1: An example-critiquing interface based on the
SmartClient architecture.

select one of the examples as the final solution.
A crucial design question in example critiquing is what

examples to show to users in order to best help them locate
their most preferred solution. This is driven by two essential
considerations: (i) the examples must motivate the user to
correctly state his preferences, and (ii) when the user has
completely stated his preferences, the most preferred solu-
tion must be among those displayed by the system so the
user can choose it.

More precisely, we can assume that users are best mo-
tivated to state hidden preferences when they see both an
example that satisfies and one that violates the preference.
Decision support tools can easily mislead users: for example,
the user may be shopping for a notebook computer and the
first preference he states might be price. A list of examples
that simply optimizes his preference model would lead him
to conclude that all notebook computers weigh about 3Kg
and have a 14-inch screen, and probably he would never ask
for lighter or smaller computers. Thus, he would be greatly
helped if the system also showed at least one example of a
very light, but more expensive notebook.

Another issue is that users usually are not able to formu-
late a numerically precise model of their preferences. While
mathematical decision theory ([8, 9]) provides normative
methods for picking the optimal solution, the effort required
for eliciting the parameters of a numerical preference func-
tion ([6, 7]) is often too high. Simplified models such as the
PC selection tool of IBM described in [14], where users can
adjust the weights of different criteria and interactively see
how different PC models rank according to these weights,
do not actually guarantee that a correct preference model is
elicited either, as users are generally not able to state their
preferences as weights.

Instead, most example critiquing systems characterize the
user’s preference qualitatively as the specific combination
of criteria that apply, without eliciting numerical weights.
Such qualitative decision theory has recently become the
subject of increased interest in the research community ([4,
1]). In example critiquing, we can compensate for the in-
accuracies of such a model by displaying a set of solutions
and letting the user choose the optimal one within this set.

The important design question is then how many and what
solutions to show to guarantee that the user is actually able
to choose his most preferred one. In this paper, we show
how under certain assumptions, we can guarantee that the
most prefereed solution will be shown.

2. ASSUMPTIONS AND DEFINITIONS
As a basis for our analysis, we present a formal model

of the example-critiquing process that closely mirrors the
SmartClient technology mentioned earlier, but also applies
to a large extent to other example-critiquing systems.

The goal of example-critiquing interaction is to select a
solution from a large set of possibilities. We assume that so-
lutions are characterized by a fixed (but possibly very large)
set of attributes, and that users formulate preferences in the
form of penalty functions formulated on the attributes. We
thus define:

Definition 1. Every solution s is characterized by a fi-
nite set of n attributes A = {a1, ..., an}. Every attribute
can take values from a fixed domain {d1, ..., dn}. Attributes
may express a composition, such as the difference, of other
attributes.

A preference pi(ak) is a penalty function dk → < from
an attribute ak to a number that gives the penalty of that at-
tribute value to the user. We assume that the smallest values
are the most preferred ones. Considering that a preference
pi always applies to the same attribute aj , we simplify the
notation and write pi(s) for pi(aj(s)).

We assume that the true preferences of the user are given
by a set of penalty functions P ∗ = {p∗1, .., p

∗

d}. We call the
best solution for the user’s true preference model P ∗ the
user’s target solution st.

However, since the user is not aware of this numerically
precise model, he expresses his preferences qualitatively by
choosing penalty functions and parameters as afforded by
the interface. For example, SmartClient provides a prede-
fined numerical penalty function for each attribute. The
user can activate this penalty function by clicking on the at-
tribute. While many penalty functions include parameters
chosen by the user - for example, a preference on arrival time
has to include the most preferred time - the numerical shape
of the function itself is fixed and identical for all users.

Thus, in our analysis we assume that the example-critiquing
system has a fixed set of parameterized penalty functions
that are used to build a numerically precise user preference
model. This model is used to generate the examples dis-
played to the user.

Here is an example of what attributes and actual penalty
functions might look like:

Example 1. Consider the example of planning a trip con-
sisting of two flights f1 and f2 that connect at a transfer
airport.

• A solution could be characterized by the following at-
tributes:
a0 = departure time (f1)
a1 = arrival time (f2)
a2 = departure time (f2) - arrival time (f1) : tran-
sit time
a3 = transfer airport (f1, f2)
a4 = arrival time (f2) - departure time (f1) : travel
time
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• The system could provide the following penalty func-
tions for specifying preferences, where time and length
are user-specified parameters:
latest(time, ai) = max(0, ai − time)
earliest(time, ai) = max(0, time− ai)
min− duration(length, ai) = max(0, length− ai)
max− duration(length, ai) = max(0, ai − length)
rule− out(value, ai) = 1 if ai = value, 0 otherwise

• Suppose that the user states a preference for arriving
by 18:00, for having at least 2 hours transit time and
for not changing planes in London. These qualitative
statements would then be translated into the following
numerically precise penalty functions:
latest(18 : 00, a1) = max(0, a1 − 18 : 00)
min− duration(2 : 00, a2) = max(0, 2 : 00− a2)
rule−out(London, a3) = 1 if a3 = London, 0 otherwise

The system thus approximates the user’s preferences P ∗ =
{p∗1, .., p

∗

d} by a set P = {p1, .., pd} of standard penalty func-
tions. While the standard functions pi may be quite different
from the true ones p∗i , we assume that the total order that a
penalty function pi by itself imposes on the set of solutions
is identical to that of p∗i . Formally, for any two solutions s
and s′, we assume:

pi(s) < pi(s
′) ↔ p∗i (s) < p∗i (s

′)

It follows from this assumption that the preference model
correctly represents the user’s preferences with respect to
dominance and Pareto-optimality, defined as follows:

Definition 2. A solution s is dominated with respect to
P if and only if there is another solution s′ such that for
all pi ∈ P , pi(s) ≥ pi(s

′) and at least one pj ∈ P , pj(s) >
pi(s

′). We write s ≺ s′.
A solution sp is Pareto-optimal if and only if it is not

dominated.

In Figure 2, the Pareto-optimal set is {1, 3, 4, 6}, as solu-
tion 7 is dominated by 4 and 6, 5 is dominated by 3 and 4,
and 2 and 8 are dominated by 1.

In some analyses, we assume furthermore that the user
follows a particular model for combining preferences:

• in the utilitarian model, preferences are combined in a
quasilinear cost function C(s) =

∑

p∗
i
∈P∗ p∗i (s). Solu-

tion s1 is preferred over solution s2 whenever it has a
lower cost, i.e. C(s1) < C(s2).

• in the egalitarian model, user preferences are combined
by considering the maximum penalty, i.e. the function
F (s) = maxp∗

i
∈P∗p∗i (s). Again, solution s1 is pre-

ferred over solution s2 whenever it has a lower maxi-
mum penalty, i.e. F (s1) < F (s2).

In both of these preference models, we assume that the
standardized preference functions are normalized for aver-
age users so that the inaccuracy of pi with respect to p∗i is
bounded by ε:

(1− ε)pi ≤ p∗i ≤ (1 + ε)pi

This inaccuracy reflects different degrees of importance that
different users attach to violations of a preference. Note that
we assume that each normalized penalty function still cor-
rectly represents the qualitative ordering of solutions when
all other criteria are equal.
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Figure 2: Example of solutions with two penalties. The

two coordinates show the values of preferences p1 (hori-

zontal) and p2 (vertical). Rectangles show where domi-

nating solutions must fall. For example, solutions dom-

inating solution 5 must fall into the hatched rectangle,

so 5 is dominated by 3 and 4. Note also that solution 4

is optimal in the utilitarian model, while 3 is optimal in

the egalitarian model.

We assume that the set of solutions displayed to the user,
called the displayed set, is the union of two sets computed
with different purposes. The first, called the elicitation set,
is chosen to make the user aware of the variety of available
solutions and stimulate expression of preferences. We will
present an analysis that results in a criterion that shows
what solutions to show to optimally stimulate expression of
preferences.

The second, called the solution set, is chosen to allow the
user to select a final solution. We present an analysis of
different models for computing the optimal solutions and
thus derive bounds on how many solutions have to be shown
to guarantee that the optimal one is found.

3. STIMULATING EXPRESSION OF PREF-
ERENCES

Behavioral decision theory ([11]) has studied the actual
behavior of human decision makers and has repeatedly pointed
out the adaptive and constructive nature of human decision
making. Studies have shown in particular that user-involved
preference construction is likely to be more effective than us-
ing default or implicit models if a user is to understand and
accept the solution outcomes ([3]). Example critiquing can
best support such an incremental construction process by
providing examples that stimulate the user to express their
hidden preferences.

We assume that users are stimulated for formulate a pref-
erence when either

• they see an example where this preference is violated,
or

• they see a solution that satisfies that preference better
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than others and could be considered their most pre-
ferred choice.

The first case does not require showing any specific exam-
ples; if a currently shown example corresponds to all of the
user’s preferences he will choose it as a solution and termi-
nate the process.

For the second case, the best solutions to show are those
that have a high potential to become Pareto-optimal if an
additional preference is stated. Let solution s1 be domi-
nated by a set Sd of other solutions. In order for s1 to
become Pareto-optimal, the user must add preferences that
will eliminate all the dominance relations with other solu-
tions in Sd. If we assume that the probability of this hap-
pening for a hidden preference is pd for all si ∈ Sd, then the
probability of s1 becoming Pareto-optimal is proportional
to:

∏

si∈Sd

pd

If all we are interested in is an ordering of all dominated so-
lutions according to this criterion, it is sufficient to compare
the logarithms of this probability:

log(
∏

si∈Sd

pd) =
∑

si∈Sd

log(pd) = |Sd|log(pd)

For ranking the solutions, we do not need to know log(pd),
but it is sufficient to order them by the number of dominat-
ing solutions only. We call this a counting filter.

A more precise filter can be obtained by a more detailed
analysis of the differences between solutions. Let Au be
the set of attributes on which no preference has been ex-
pressed yet, and assume that new preferences will only be
expressed on this set. Then solution s1 can only become
Pareto-optimal if there is an attribute ai ∈ Au such that
all currently dominating solutions sd ∈ Sd have a different
value for that attribute:

diff(ai, s1, Sd) =







1 if (∀sd ∈ Sd)ai(s1) 6= ai(sd)

0 otherwise

For an attribute ai which is continuous and ordered, we can
assume that preferences will select intervals of the attribute
values. In this case, s1 can become Pareto-optimal through
ai if and only if it falls outside of the interval of values for
the dominating solutions Sd:

diff(ai, s1, Sd) =







1 if (ai(s1) < minsd∈Sd
ai(sd))∨

(ai(s1) > maxsd∈Sd
ai(sd))

0 otherwise

Letting α be the probability that the user will still place an
additional preference on an attribute in Au, and assuming
that this is equally likely for all attributes, we have for the
probability that s1 could become Pareto-optimal:

p(s1becomes P.-o.) = 1−
∏

ai∈Au

(1− α · diff(ai, s1, Sd))

≈ α
∑

ai∈Au

diff(ai, s1, Sd))

By ordering the solutions according to this probability, we
obtain what we call the attribute filter. As discussed be-
low, this filter works very well for predicting what examples

might become Pareto-optimal when just one extra prefer-
ence is added, but performs more poorly when several extra
preferences might still be posted.

To take into account the effect of a sequence of newly
posted preferences, we can exploit the fact that for a solution
to become Pareto-optimal, it must have lower penalty for
the new preference than any solution that is dominating it.
This is similar to the counting filter, except that we now
estimate a different pd for each dominating s ∈ Sd. This
probability, which we call pd(s1, s), is the probability that s
will no longer dominate s1 after adding a new preference.

For continuous attributes, we assume that penalty func-
tions are monotonic from a certain threshold. Hence, solu-
tions will behave differently with respect to a new prefer-
ence if its threshold falls in the interval between them. The
probability of this happening is proportional to the distance
between them, i.e.:

pd(s1, s) ≈
∑

ai∈Au

β(ai)|ai(s1)− ai(s)|Pai

where β(ai) should be chosen to normalize the range of each
attribute, for example βi = 1/range(ai), where range(ai) is
the maximum range of values that attribute ai takes. The
a-priori probability that user will pose the new preference on
a particular attribute, Pai

, can be estimated through user
studies or simply set equal to 1/|Au|.

For discrete attributes, we do not have an order, so we
introduce a discrete distance:

|ai(s1)− ai(s)| =







0 if ai(s1) = ai(s)

1 otherwise

We can now express the probability that s1 will become
Pareto-optimal as:

p(s1becomes P.-o.) =
∏

s∈Sd

pd(s1, s)

=
∏

s∈Sd

∑

ai∈Au

Pai
β(ai)|ai(s1)− ai(s)|

and should then order solutions so that those with the high-
est probability come first.

Rather than computing products, it is often easier to com-
pute a sum. This can be done by ordering the solutions by
the negative logarithm of this probability, i.e. using the
function:

F (s1) = −log(p(s1becomes P.-o.))

= −log
∏

s∈Sd

∑

ai∈Au

β(ai)|ai(s1)− ai(s)|Pai

= −
∑

s∈Sd

log
∑

ai∈Au

Pai
β(ai)|ai(s1)− ai(s)|

This makes the computation similar to that of the counting
filter, and we can see that the added complexity lies in the
fact that we need to also determine the degree to which a so-
lution is dominated by another. We call this the probabilistic
filter.

To test the performance of the three methods, we have
used a list of actual 44 apartment offers modelled by 11 at-
tributes, of which 4 are continuous. On these attributes, we
randomly generated preference models of 7 user preferences
and a random order of specifying these preferences. We then
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Figure 3: Fraction of top-ranked 5 solutions that actually
become Pareto-optimal as a function of the number of pref-
erences already stated. We compare: counting the number
of dominating solutions, counting the attributes that might
lead to Pareto-optimality, the probabilistic analysis of the at-
tribute differences, and randomly choosing a solution among
those that are not yet Pareto-optimal.

examined how well this filter would predict the solutions
that would eventually become Pareto-optimal. Figure 3
shows what fraction of the 5 top-ranked solutions according
to this criterion actually become Pareto-optimal when all 7
preferences have been stated as a function of how many of
these preferences have already been stated. For comparison,
we also show the probability of a randomly chosen solution
becoming Pareto-optimal. We can see that the filter based
on counting dominating solutions already provides good pre-
dictive accuracy, and that better accuracy can be obtained
by analyzing the differences in the attributes. However, the
best prediction is obtained in the probabilistic analysis of
attribute differences, particularly in the early stages of the
process. This method is also computationally the most com-
plex to implement. In all cases, the accuracy increases sig-
nificantly the more preferences have already been stated.
This is explained by the fact that the more preferences have
been stated, the more dominance relations exist to be used
by the filter.

4. DECISION SUPPORT WITH STANDARD-
IZED PREFERENCE MODELS

The second major design issue we address in this paper
is how to compensate for the inaccuracies caused by using
a standardized and partial model of the user’s preferences.
In example critiquing, we compensate for this shortcoming
by letting the user pick the most preferred solution from
a larger displayed set D of k solutions. Such an approach
has been taken in numerous practical systems, for example
in [10, 12, 16, 2, 13, 17]. The process will be sound, i.e. allow
the user to find the target solution, only if the displayed set
actually contains the solution. We will now show that this
heavily depends on the model used for selecting displayed
solutions as well as on the number of preferences that have
been stated.

For the example critiquing approach to be practical and

successful, the following conditions must be satisfied:

1. it must be possible to limit the computed set D to a
size of at most k displayed solutions so that it can be
displayed in a consistent manner.

2. solutions that are Pareto-optimal within the set D
must also be Pareto-optimal with respect to the set
of all feasible solutions. This is important to keep the
user from unknowingly picking a dominated solution
as the final choice.

3. when the user has specified his preferences, the target
(user’s most preferred) solution must be included in
the displayed solutions. We call this property sound-
ness and it is required so that the user can actually
choose the final solution.

Depending on the characteristics of the application, differ-
ent methods for selecting displayed solutions may be appro-
priate. In our work, we have analyzed three different kinds
of filter:

• dominance filters that display k solutions that are not
dominated by any other one.

• utilitarian filters that keep the k solutions with the
lowest sum of preference violations, and

• egalitarian filters that keep the k solutions with the
smallest maximum preference violation.

In a longer paper ([5]), we have developed a theoretical
model for the behavior of each filter, and validated the model
using experiments with randomly generated data. Here, we
summarize the models and the main results we obtained
from them.

In order to allow a theoretical comparison, we assume that
preferences pi are independent, with real-numbered values
in the interval [0..1], and that m solutions are distributed
uniformly in the |P ∗|-dimensional space of preference com-
binations. While in reality both assumptions are not likely
to hold perfectly, comparing the theoretical results to mea-
surements on real-world configuration problems shows quite
a good match with reality.

4.1 Dominance filter
In the dominance filter, we filter out all dominated solu-

tions and keep only those that are Pareto-optimal. A prob-
abilistic analysis of this filter can be obtained as follows.

As shown in Figure 2, a solution sj with preference val-
ues p1 = c1, ..., pd = cd is dominated by any solution that
falls within the subspace p1 ∈ [0..c1], ..., pd ∈ [0..cd], which
is a hypercube. Given a uniform distribution of solutions,
the average probability that a solution sj is dominated by
another solution sl is thus equal to the probability that sl

falls into that subspace. This probability is given by the
proportion of the subspace with respect to the entire space.
Since we assume all attributes to vary between 0 and 1, the
size of the entire space is 1d = 1, so that the probability is
just the size of the subspace, i.e.:

Pr(sj ≺ sl) =
∏

pi∈P

pi(sj)

and the probability that a solution sj is Pareto-optimal is
the probability that in the m−1 other solutions, not a single
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Figure 4: Probability that the target solution is actually

in the displayed set for different numbers of preferences.

one dominates sj :

Pr(sj is P.-o.) =



1−
∏

pi∈P

pi(sj)





m−1

The expected number of Pareto-optimal solutions is given
by integrating this probability over the possible value combi-
nations of the preferences, thus computing the expected size
of the set Op = {sj |sj is Pareto-optimal} of Pareto-optimal
solutions:

E[|Op|] = (m− 1)

∫ 1

0

· · ·

∫ 1

0



1−
∏

pi∈P

pi





m−1

dp1 · · · dpd

where d = |P | is the number of preferences in the set P .
This expression unfortunately does not have a closed-form

solution, but when evaluated numerically it shows a rapid
rise in the number of Pareto-optimal solutions as the num-
ber of criteria increases; this rise is confirmed by practical
experiments. A consequence of this rapid rise in the num-
ber of Pareto-optimal solutions is that when there are few
preferences, there may not be enough solutions to fill the
displayed set, while with too many preferences, there will
be too many solutions. Thus, in order to satisfy condition
(1), the filter may have to perform random sampling.

Condition (2) is trivially satisfied as only solutions that
are Pareto-optimal in the entire set of feasible solutions are
shown.

For condition (3), we assume that the target solution st

is Pareto-optimal. However, as already mentioned, it will
often be necessary to make a random selection of solutions
to actually display.

Figure 4 shows a plot of the probability of the target so-
lution being included in the displayed set of k randomly
selected Pareto-optimal solutions as a function of the num-
ber of preferences |P | = 3, . . . , 12 for m = 778, k = 30 and
m = 6, 444, k = 60. We can see that the probability of in-
cluding the target solution rapidly decreases as the overall
set of Pareto-optimal solutions becomes too large and the
target often is no longer selected, even for a relatively small
number of preferences. Thus, the method does not satisfy
condition (3) very well.

4.2 Utilitarian filter
This model is tailored to the case where the user’s true

preference model is utilitarian, i.e. by minimzing a quasilin-
ear cost function C∗(s) =

∑

p∗
i
∈P∗ p∗i (s).

In the utilitarian filter, we approximate this by the prede-
fined normalized penalty functions and choose as displayed
solutions the k best solutions according to the unweighted
sum of the penalties:

C(s) =
∑

pi∈P

pi(s)

This set can be generated efficiently using branch-and-bound
or other optimization algorithms (see [8]); in fact it can often
be integrated with the generation of the feasible set itself.

The method obviously satisfies condition (1).
The following Theorem shows that it also satisfies condi-

tion (2):

Theorem 1. Given a set of m solutions S = {s1, . . . , sm}
and a set of d preference penalties {p1, . . . , pd}. Let S ′ =
{si1 , . . . , sik

} ⊆ S be the best k solutions according to the
utilitarian filter: ∀s′ ∈ S ′, ∀s 6∈ S ′ : C(s′) ≤ C(s).

If sx ∈ S ′ and sx is not dominated by any other solution
sy ∈ S

′, then sx is Pareto-optimal in S.

Proof. Assume that sx is not Pareto-optimal in S. Then,
there is a solution sz 6∈ S

′ which dominates solution sx, and
by definition:

∀ pi, pi(sz) ≤ pi(sx) and

∃ pj , pj(sz) < pj(sx)

As a consequence, we also have:

d
∑

i=1

pi(sz) <
d
∑

i=1

pi(sx)

and therefore C(sz) < C(sx). But this contradicts the fact
that sx ∈ S

′ and sz 6∈ S
′.

Thus, the method also satisfies condition (2).
To understand how far the method satisfies condition (3),

we summarize the results of an analysis presented in detail
in [5]. It is based on the observation that the inaccuracies
in the penalty functions:

(1− ε)pi ≤ p∗i ≤ (1 + ε)pi

translate into a corresponding inaccuracy in the sum of these
penalties:

C(st) ≤
1 + ε

1− ε
C(s1)

Through a probabilistic analysis that determines the ex-
pected sum of penalties for the k-th best solution, we can
derive the expected ratio of the penalty sums of the k-th
best to the best solution:

Ck/C1 = k1/d

which somewhat surprisingly is independent of the total
number of solutions m and then derive the expected worst-
case position t of the target solution in a solution list ranked
by the penalty sums:

t =

�

1 + ε

1− ε

�d
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Figure 5: Probability that the target solution is within

the displayed set.

This function can be used to calculate the number of solu-
tions that have to be displayed for a given number of pref-
erences and a given tolerance ε for user diversity, a crucial
design parameter for example-critiquing interfaces.

For a particular design, it can also be used to show the
probability that the target solution will be actually dis-
played. Figure 5 shows a plot of this probability for |P | =
2, . . . , 12 and combinations of ε = 0.2, 0.3 and k = 30, 60.
We can see that with each design, there is a sharp phase
transition where the performance of the decision support
system degrades sharply. This shows the importance of care-
ful analysis and design in order to not mislead the user.

4.3 Egalitarian filter
The egalitarian filter is designed for the case where the

user’s true preference model is the egalitarian model, i.e. he
minimizes the maximum penalty F ∗(s) = maxp∗

i
∈P∗p∗i (s).

The egalitarian filter approximates this by applying the same
criterion on the standardized penalty functions:

F (s) = maxpi∈P pi(s)

where ties among several solutions with the same maximal
value are broken by applying the same criterion to the re-
maining preferences. The method corresponds to the de-
cision criteria used in fuzzy logic, and has the advantage
that it can be efficiently implemented using fuzzy constraint
satisfaction techniques.

Similarly to the utilitarian filter, we assume that the penalty
functions are normalized for a standard user, but that for a
particular user they can deviate by no more than a factor of
ε in either direction.

This method obviously satisfies condition (1), as it gener-
ates exactly k solutions.

It also satisfies condition (2), since we have the following
Theorem:

Theorem 2. Given a set of m solutions S = {s1, . . . , sm}
and a set of d preference penalties {p1, . . . , pd}. Let S ′ =
{si1 , . . . , sik

} ⊆ S be the best k solutions according to the
egalitarian filter.

If sx ∈ S ′ and sx is not dominated by any other solution
sy ∈ S

′, then sx is Pareto-optimal in S.

Proof. Assume that sx is not Pareto-optimal in S. Then,
there is a solution sz 6∈ S

′ which dominates solution sx, and
by definition:

∀ pi, pi(sz) ≤ pi(sx) and

∃ pj , pj(sz) < pj(sx)

Let pm be a preference with the highest penalty in solution
sx:

∀ pi, pi(sx) ≤ pm(sx)

Then since sz dominates sx, pm(sz) ≤ pm(sx) and ∀pi, pi(sz) ≤
pm(sz) and thus F (sz) ≤ F (sx).

When F (sz) < F (sx), this contradicts the fact that sx ∈
S ′ and sz 6∈ S

′.
When F (sz) = F (sx), we have a tie and the same argu-

ment applies to the set of preferences with pm removed. As
sz dominates sx, there must eventually be a preference pe

such that pe(sz) < pe(sx), leading to the contradiction as
above.

As for condition (3), a similar analysis as for the utilitarian
filter gives us the following result:

t ≥

�

1 + ε

1 − ε

�(d−1)

This gives us in fact a similar behavior as for the utilitarian
filter, but the egalitarian filter allows one more preference
with the same number of displayed solutions.

4.4 Robustness against violated assumptions
In our analysis of the utilitarian and egalitarian filters,

we have assumed that the user’s preference model actually
follows this model. However, it may be that this assump-
tion is false, and that the only thing that can be assumed
of a particular user is that he will not prefer a dominated
solution.

The performance of the filter in this case can be character-
ized by the number of solutions that a given Pareto-optimal
solution st will be within the k best solutions found by each
of the filters.

Following an analysis presented in more detail in [5], we
obtain the results shown in Figure 6, which are for a problem
with m = 6′444 solutions when k = 30 and k = 60 solutions
are shown for different numbers of preferences. We can see
that for both the utilitarian and the egalitarian filter, the
probability decreases quite dramatically; however, the utili-
tarian filter is in general slightly better than the egalitarian
filter.

When comparing with Figure 4, we see that in fact the
performance of utilitarian and egalitarian filters is almost
as good as that of a dominance filter. On the other hand,
implementing the dominance filter would use algorithms for
computing all Pareto-optimal solutions, and these are ex-
tremely inefficient. Thus, even when the user’s true pref-
erence model is unknown, it is likely to be better to use a
utilitarian filter instead.

In a similar analysis that we omit for reasons of space, we
can show that the utilitarian filter behaves poorly when the
true preference model is an egalitarian one, and the egal-
itarian filter behaves even worse when the true preference
model is utilitarian.
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5. CONCLUSIONS
Example critiquing has been shown to be a useful paradigm

for user interaction with intelligent decision aids. So far,
work has focussed on systems that demonstrated the use-
fulness of the concept in particular domains. In this paper,
we have started to put example critiquing on firmer ground
by presenting mathematical analyses of how such systems
should be designed.

The ingenuity of example critiquing is that it elegantly
combines an efficient method for eliciting the user’s pref-
erences with a way to compensate for inaccuracies in this
preference model by showing a multitude of best solutions.
We have analyzed the two major design issues that arise in
this context: what examples to show to stimulate expression
of hidden preferences, and what and how many solutions to
show to compensate for the inaccurate preference model.

Mathematical decision theory has so far largely overlooked
the challenges posed by the complex human-computer inter-
action that would be required to apply it correctly. In this
paper, we have shown how decision theory can be adapted
to provide principles of example critiquing systems.

Preliminary user studies and observations on a commer-
cial product validate the principles we obtained through
the mathematical model. For example, users always felt
that showing only 5 solutions as in the ATA travel planning
tool ([10]) was insufficient. Our analysis shows that indeed,
5 solutions are unlikely to be enough on typical instances
of the travel planning task, and 30 is a more appropriate
number. We hope that our analysis will enable more rapid
design of successful example-critiquing systems in other ar-
eas as well.
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