
Large scale testbed for type compatible service composition

Ion Constantinescu and Boi Faltings and Walter Binder
Artificial Intelligence Laboratory

Swiss Federal Institute of Technology
IN (Ecublens), CH–1015 Lausanne (Switzerland)

{ion.constantinescu, boi.faltings, walter.binder}@epfl.ch
http://liawww.epfl.ch

Abstract

In a service-oriented environment services can be composed
such that new value added services are created. The prob-
lem of service composition raises a number of specific issues
like the openness of the environment and the large number
of possible services. As currently such massive service de-
ployments do not exist, the current techniques proposed for
service composition are difficult to test and compare. In this
paper we propose a synthetic testbed that can be used for sim-
ulating large deployments of services and also for generating
service composition problems. The testbed could prove to
be an useful tool for the understanding, characterization and
comparison of different service composition approaches.1

Introduction
Service oriented computing has opened several new research
directions which include service discovery, composition, or-
chestration and execution monitoring. Service composition
seems to be one of the most challenging area which has
received a significant amount of interest in the last period.
One of the major difficulties in solving composition prob-
lems lies in the large number of possible services. But since
to date there are no massive deployments of services, the
approaches currently proposed are difficult to test and com-
pare.

Initial approaches to web service composition (Thakkar et
al. 2002) described the Building Finder application, where a
number of manually defined data-sources like the Microsoft
Terraservice, U.S. Census Bureau information files, geocod-
ing information and different real estate property tax sites
where composed using a forward chaining technique.

There is a good body of work which tries to address the
service composition problem by using planning techniques
based either on theorem proving (e.g., ConGolog (McIlraith,
Son, & Zeng 2001; McIlraith & Son 2002) and SWORD
(Ponnekanti & Fox 2002)) or on hierarchical task planning

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The work presented in this paper was partly carried out in the
framework of the EPFL Center for Global Computing and was sup-
ported by the Swiss National Science Foundation as part of the
project MAGIC (FNRS-68155), as well as by the Swiss National
Funding Agency OFES as part of the European projects Knowl-
edgeWeb (FP6-507482) and DIP (FP6-507483).

(e.g., SHOP-2 (Wu et al. 2003)). In the scenario used in
the ConGolog approach the composition engine would have
to book flight tickets and arrange ground transportation and
hotel reservations. For SWORD the example used was of a
composed service giving driving directions to one’s home.
The composed service was formed from two services, one
that mapped names to addresses and another that was giv-
ing driving directions to a given address. In the motivating
example in the SHOP-2 approach, for handling a medical
emergency, several data sources had to be composed and a
schedule had to be computed.

The above approaches consider application domains with
that have discrete numbers of services. This is more similar
to classic planning approaches that assume small numbers of
operators and where the difficulty is mainly due to the large
space of possible states and to embedded hard resource-
allocation problems. Still for our testbed we are interested
to investigate issues that are specific and unique to the web
services context like:

1. large scale service directories - we assume that our
testbed will contain a large number of available services in
the form of a yellow-page directory. But with what terms
should those services be defined and what kind of rela-
tions should be between different terms ? Moreover what
kind of transformations should services perform between
different sets of terms ?

2. partial type matches - composition engines should be
able to discover and also reason with services with types
that match partially but not completely2. How can we
represent in our testbed these kinds of services and how
should we discover them ?

The main contribution of this paper is a synthetic testbed
which addresses the above issues: large numbers of services
with various relations can be generated and the formalism
used for representing services supports complete and partial
type matches. The testbed is highly parameterizable and al-
lows instantiations to different configurations. The testbed
has a graph structure where each graph node corresponds to

2We consider as partial matches the subsume match type iden-
tified by Paolluci (Paolucci et al. 2002) and the intersection or
overlap match type identified by Li (Li & Horrocks 2003) and
Constantinescu (Constantinescu & Faltings 2003).

an application domain and graph edges correspond to ser-
vices that perform transformations between parameters in
different domains.

This paper is structured as following: in the next sec-
tion we present the formalism used for defining services
as long as a more in-depth view regarding the problem of
type-compatible service composition. Then in the section
“Large scale testbed for type compatible service composi-
tion” we describe in more detail our testbed and the param-
eters trough which different configurations can be instanti-
ated. The “Conclusion” section ends the paper.

Type compatible service composition
We consider service composition approaches that are based
on the idea of chaining services together either in a forward
way, starting from the initial conditions, or in a backward
way, starting from the problem requirements. Forward or
backward chaining techniques are used by different types of
reasoning systems, in particular for planning (Blum & Furst
1997) and more recently for service integration (Thakkar et
al. 2002). We describe next the formalism that we use to
model, match, and chain services.

Formalism and assumptions
We represent services and queries in the standard way (W3C
b) as two sets of parameters (inputs and outputs). Precondi-
tions and effects as in (DAML-S) can also be directly rep-
resented: inputs and outputs can be seen as information pre-
conditions and effects. Negative effects cannot be directly
represented but they are also not explicitly allowed by usual
services decscription formalisms (e.g., (DAML-S)).

A parameter is defined through its name and a type that
can be primitive (W3C d) (e.g., a decimal in the range
[10,12] or [14,16]) or a class/ontological type (W3C a).
Both primitive and class types are represented as sets of nu-
meric intervals. For instance, the generic type Color may
be encoded as the interval [1,3], whereas the specific colors
(subtypes) Red, Green, and Blue may be represented as
the single-point subintervals [1,1], [2,2], and [3,3]. For more
details on the encoding of classes/ontologies as numeric in-
tervals see below the section “Representing types”.

Input and output parameters of service descriptions have
the following semantics:

• In order for the service to be invokable, a value must be
known for each of the service input parameters and it has
to be consistent with the respective parameter type. For
primitive data types the invocation value must be in the
range of allowed values or in the case of classes the invo-
cation value must be subsumed by the parameter type.

• Upon successful invocation the service will provide a
value for each of the output parameters and each of these
values will be consistent with the respective parameter
type.

Service composition queries are represented in a similar
manner but have different semantics:

• The query inputs are the parameters available to the inte-
gration (e.g., provided by the user). Each of these input

parameters may be either a concrete value of a given type,
or just the type information. In the second case the inte-
gration solution has to be able to handle all the possible
values for the given input parameter type.

• The query outputs are the parameters that a successful
integration must provide and the parameter types define
what ranges of values can be handled. The integration
solution must be able to provide a value for each of the
parameters in the problem output and the value must be
in the range defined by the respective problem output pa-
rameter type.

For manipulating service or query descriptions we will
make use of the following helper functions:

• in(X), out(X) – return the set of input or output param-
eter names of a service or query description X .

• type(P, X) – returns the type of a parameter named P in
the frame of a service or query description X as the set
of intervals of all possible values for P . The ⊆ operator
in conjunction with this function will represent a range
inclusion in the case that P has a primitive data type or
subsumption in case P is defined through a class or con-
cept description (W3C a). The operator ∩ in conjunction
with this function will represent a range intersection in
the case that P has a primitive data type or in the case of a
class/concept description it will represent sub-class (pos-
sibly null) common to both the arguments of the operator.

We assume that both service and query descriptions (X)
are well formed in that they cannot have the same param-
eter both as input and output: in(X) ∩ out(X) = ∅. The
rationale behind this assumption is that if a description had
an overlap between input and output parameters this would
only lead to two equally undesirable cases: either the two pa-
rameters would have the same type in which case the output
parameter is redundant or they would have different types in
which case the service description is inconsistent.

Parameter names (properties in the case of DAML-
S (DAML-S) or strings in the case of WSDL (W3C b))
attach also some semantic information to the parameters3.
Thus, in our composition algorithm we not only consider
type compatibility between parameters but also semantic
compatibility.

Composing services
We are considering two kinds of composition approaches:
forward chaining and backward chaining. Informally, the
idea of forward chaining is to iteratively apply a possible
service S to a set of input parameters provided by a query
Q (i.e., all inputs required by S have to be available). If
applying S does not solve the problem (i.e., still not all the
outputs required by the query Q are available) then a new
query Q′ can be computed from Q and S and the whole pro-
cess is iterated. This part of our framework corresponds to
the planning techniques currently used for service composi-
tion (Thakkar et al. 2002). In the case of backward chaining

3For WSDL this is not explicitly specified by the standard, but
we assume that two parameters with the same name are semanti-
cally equivalent.

S1 {
 X: x2 x3
}

S2 {
 X: x2 x3 x4
 Y: y2 y3
}

y1 y2 y3 y4

x1

x2

x3

x4

X

Y

S1 S1 S2 S1 S2

S1 S2 S1 S2S1

S1

S1

S2 S2

S3 S3 S3 S3

S3 {
 X: x1
}

Q1 {
 X: x1 x2
 Y: y2
}

in(Q1)={ X, Y}
type(X,Q1)={x1,x2}
type(Y,Q1)={y2}

in(S1)={ X}
type(X,S1)={x2,x3}

in(S1)={ X, Y}
type(X,S1)={x2,x3,x4}
type(Y,S1)={y2,y3}

in(S3)={ X}
type(X,S3)={x1}

Q1

Figure 1: Composing services with partially matching types.

we start from the set of parameters required by the query Q
and at each step of the process we choose a service S that
will provide at least one of the required parameters. Apply-
ing S might result in new parameters being required which
can be formalized as a new query Q′. Again the process is
iterated until a solution is found.

Now we consider the conditions needed for a service
S to be applied to the inputs available from a query Q
using forward chaining: for all of the inputs required by
the service S, there has to be a compatible parameter in
the inputs provided by the query Q. Compatibility has to
be achieved both for names (that have to be semantically
equivalent) and for types, where the range provided by the
query Q has to be more specific (⊆) than the one accepted
by the service S:

(∀P ∈ in(S)) (P ∈ in(Q) ∧ type(P, Q) ⊆ type(P, S))

This kind of matching between the inputs of query Q and
of service S corresponds to the plugIn match identified by
Paolluci (Paolucci et al. 2002).

Forward complete matching of types is too restrictive and
might not always work, because the types accepted by the
available services may partially overlap the type specified in
the query. For example, a query for restaurant recommen-
dation services across all Switzerland could specify that the
integer parameter zip code could be in the range [1000,9999]
while an existing service providing recommendations for the
french speaking part of Switzerland could accept only inte-
gers in the range [1000-2999] for the zip code parameter.

In order to be able to handle the situations when the types
of services partially match we extend our framework by
introducing a relaxation of the above condition for forward
chaining. We do that by replacing type inclusion with a
weaker overlap:

(∀P ∈ in(S)) (P ∈ in(Q) ∧type(P, Q)∩type(P, S) 6=
∅)

This kind of matching between the inputs of query Q
and of service S corresponds to the overlap or intersection
match identified by Li (Li & Horrocks 2003) and Constanti-
nescu (Constantinescu & Faltings 2003).

We will also consider the condition needed for a back-
ward chaining approach in the case of complete type
matches. The service S has to provide at least one output
which is required by the query Q. This corresponds to the

plugIn match for query and service outputs. Using the
formal notation above this can be specified as:

(∃P ∈ out(S)) (P ∈ out(Q) ∧ type(P, S) ⊆
type(P, Q))

The above condition can be also relaxed for backward
chaining services with partial type matches:

(∃P ∈ out(S)) (P ∈ out(Q) ∧ type(P, Q) ∩
type(P, S) 6= ∅)

Type-compatible service composition versus
planning
As the majority of service composition approaches today
rely on planning we will analyze the correspondence be-
tween our formalism for service descriptions with types and
an hypothetic planning formalism using symbol-free first or-
der logic formulas for preconditions and effects.

As an example let’s consider the service description S
which has two input parameters A and B and two output
parameters C and D. Their types are represented as sets of
accepted and provided values and are a1, a2 for A, respec-
tively b1, b2 for B, c1, c2 for C, and d1, d2 for D. This cor-
responds to an operator S that has disjunctive preconditions
and disjunctive effects. Negation is not required.

Written in this way our formalism has some correspon-
dence with existing planning languages like ADL (Pednault
1989) or more recently PDDL (McDermott 1998) (concern-
ing the disjunctive preconditions) and planning with non-
deterministic actions (Kushmerick, Hanks, & Weld 1995)
(regarding the disjunctive effects), but the combination as a
whole (positive-only disjunctive preconditions and effects)
stands as a novel formalism.

Representing types
In this section we will present the encoding used for nu-
merically representing service descriptions in more detail.
Service descriptions are a key element for service discov-
ery and service composition and should enable automated
interactions between applications. Currently, different over-
lapping formalisms are proposed (e.g., (W3C b), (UDDI),

in(S) = [A, B] :action S
type(A,S) = [a1, a2] :precondition
type(B,S) = [b1, b2] (and

(or a1 a2)
(or b1 b2))

out(S) = [C, D] :effect
type(C,S) = [c1, c2] (and
type(D,S) = [d1, d2] (or c2 c2)

(or d2 d2)

Table 1: Service with types and corresponding planning op-
erator.

Cuisine = Thing
Asian = Cuisine
Mediteraneean = Cuisine
Mediteraneean = French Italian
FrancoAsianFusion = Asian French

T

Cuisine

Asian Mediteraneean

FrancoAsianFusion

Thing

French Italian

RestaurantPortal {
 cuisineType :: input = Cuisine
 areaZip :: input = xsd:decimal in [1000,9999]
 restaurantName :: output = xsd:string
}

French Speaking
Switzerland

[1000,2999]

Asia
n

Fre
nc

h

Ita
lia

n

Fra
nc

oA
sia

n

Fus
ion Fra

nc
oA

sia
n

Fus
ion

M
ed

ite
ra

ne
ea

n

SwissZIP
decimal in
[1000,9999]

Lausanne and
Geneva

[1000,1999]

(a) (b)

Figure 2: An example domain: a restaurant recommendation
portal.

(DAML-S), (FIPA)) and any single choice could be quite
controversial due to the trade-off between expressiveness
and tractability specific to any of the aforementioned for-
malisms.

In this paper, we will partially build on existing devel-
opments, such as (W3C b), (Ankolekar et al. 2002), and
(DAML-S), by considering a simple table-based formal-
ism where each service is described through a set of tuples
mapping service parameters (unique names of inputs or out-
puts) to parameter types (the spaces of possible values for
a given parameter). Parameter types can be expressed ei-
ther as sets of intervals of basic data types (e.g., date/time,
integers, floating-points) or as classes of individuals.

Class parameter types can be defined through a descrip-
tive language like XML Schema (W3C c) or the Ontology
Web Language (W3C a). From the descriptions we can then
derive either directly or by using a description logic clas-
sifier a directed graph (DG) of simple is-a relations (e.g.,
the is-a directed acyclic graph (DAG) for types of cuisine in
Fig. 2 (a) derived from the ontology above).

For efficiency reasons, we represent the DG numerically.
We assume that each class will be represented as a set of in-
tervals. Then we encode each parent-child relation by sub-
dividing each of the intervals of the parent (e.g., in Fig. 2 (b)
Mediteranean is sub-divided for encoding Italian and French
cuisine); in the case of multiple parents the child class will
then be represented by the union of the sub-intervals result-
ing from the encoding of each of the parent-child relations
(e.g., the FrancoAsianFusion in Fig. 2 is represented through
sub-intervals of the Asian and French concepts).

Since for a given domain we can have a number of pa-
rameters represented by intervals, the space of all possible
parameter values can be represented as a rectangular hyper-
space.

Let’s consider as an example (see Fig. 2 (b)) a restaurant
recommendation portal that takes the user preference for a
cuisine type and the Swiss zip-code (four digit numbers be-
tween 1000 and 9999) of the area of interest and will return
a string containing a recommended restaurant located in a
given area.

In this example the service will accept for the cuisineType
parameter any of the keywords Mediteranean, Asian,
French, Italian, or FrancoAsionFusion and for the

areaZip any decimal between 1000 and 9999 representing
the location of the area of interest.

Large scale testbed for type compatible service
composition

We present next the main contribution of this paper, our
testbed for large scale service composition. The testbed is
build on the assumption that the majority of future web ser-
vices will be created by exposing in a machine readable form
applications and systems that are currently accessible via
human-level interfaces.

From the technology perspective there are several kinds
of options for building web sites ranging from static web
pages to more dynamic one developed using languages spe-
cific to server side scripting (e.g., ASP, PHP or JSP). For
generating the content to be presented, the dynamic pages
can access directly a data layer (e.g., a relational database)
or can use and intermediate objectual layer that implements
the business logic and encapsulates data (e.g., an application
server).

At a higher level, different applications are usually orga-
nized accordingly to their domain (e.g., traveling, entertain-
ment, real-estate or medical). Understanding, developing
and using the terminology required for a specific domain re-
quires usually a significant knowledge engineering effort.

Our testbed builds on the previously identified concepts
of data distribution and domain distribution by using appli-
cation domains as the core idea. In our framework an ap-
plication domain represents a collection of terms and their
associated data types. Then services are defined as transfor-
mations between sets of terms in two application domains.
Formally this is captured as a directed graph structure, where
each node represents an application domain and each edge
represents one or more web services. Each web service per-
forms a transformation between two given set of terms from
the two application domains associated with the two ends of
the graph edge.

We will present next in more detail the application domain
nodes and the service graph structure.

Application domain nodes

A, B C, D

A

Input sets:
in max size=3

{A}, {B}, {C}, {D},
{A, B}, {A, C},
{A, D}, {B, C},
{B, D}, {C, D},
{A, B, C},
{A, B, D},
{A, C, D},
{B, C, D}
{A, B, C, D}

{A}, {B}, {C}, {D},
{A, B}, {A, C},
{A, D}, {B, C},
{B, D}, {C, D}

B C D

b1, b2, b3, b4
b1-b2, b1-b3, b1-b4
b2-b3, b2-b4,
b3-b4,
b1-b3, b1-b4, b2-b4

Domain terms
no terms = 4

Parameter types:
no atomic types = 4
max type size=3

Output sets:
out max size=2

Figure 3: The application domain node.

In our framework terms are a first order concept used for
the specification of an application domain. Each term maps
in the frame of a service description specifiying it either to an
input or to an output parameter. For each term an application
domain defines a set of possible data types.

For speeding up the generation process we exhaustively
generate all possible input or output parameter sets by gen-
erating the power set of the domain terms. Since we consider
that the number of terms in a domain will be of an order of
magnitude larger that the number of parameters that a ser-
vice will usually use as input or output, we will establish a
maximum size of the parameter sets and we will we filter the
initial power-set accordingly. For example in the case of a
domain with terms A, B, C, D with the maximum number
of parameters for a service of 2, we will have as possible
parameters the sets A, B, C, D, A, B, A, C, A, D, B, C, B, D
and C, D. We will filter out the sets A, B, C, A, B, D, A, C,
D, B, C, D and A, B, C, D since their cardinality passes 2.

As a given service could use a given set of terms in a do-
main either as input parameters or as outputs parameters, we
make the same differentiation regarding the sets of possible
terms such that by having different maximum sizes for possi-
ble inputs and possible outputs, we will have a different fan-
in and fan-out regarding the number of services that could
make transformation from or to an application domain. For
example the domain previously mentioned could have 2 as
the output maximum size but could have 3 as the input max-
imum size, which would result in a fan-in/fan-out rapport of
3/2.

For each term in a domain we define a number of possi-
ble data types. First, for each term a number of “atomic”
types is specified. We consider that the number of occur-
rences for each of the atomic types obeys a power-law dis-
tribution of the form 1/ia where i the index of the type and
a is close to the unit. Using this we compute occurrence
frequencies for each of the atomic types. We then create an
“zipf atomic set” of a given size in which the atomic types
appear once or more, accordingly to their frequencies. Then
from the “zipf atomic set” we create as above the power set
of the atomic types while keeping a higher bound for the
cardinality of the obtained sets. These sets will represent
“composite types” obtained from the concatenation of one
or more “atomic types”. The “composite types” are normal-
ized such that double occurrences of the same atomic type
are discarded (e.g., {b1, b1, b2} ⇒ {b1, b2}) and that con-
secutive types are merged (e.g., {b1, b2, b3} ⇒ {b1− b3}).

The service graph structure
We generate services in our testbed as transformation be-
tween sets of terms in two application domains. For doing
that for each service we first randomly pick two application
domains. Then we randomly pick a parameter set from the
set of input parameters of the first application domain and a
parameter set from the set of output parameters of the sec-
ond application domain. Then for each of the parameters in
the two sets we randomly pick a parameter data-type from
the respective application domains.

The main constraint that we enforce while making the
choices above is to pick different application domains, as
we are interested mainly in the cross-domain chaining of
services. Another constraint that we enforce is the filtering
of duplicates, services that have exactly the same inputs and
outputs.

For generating test problems we use a similar algorithm

A, B C

G, H, I

D, E, F

J, K, L

M, N, O

P, Q, R

S, T, W

S1

S2

S4

S5

S7

S6

S8

AttributesGraph node S1Service

Figure 4: The service graph structure.

as for creating services, by randomly picking domains, pa-
rameter sets and parameter data-types. The major differ-
ence stands in the different interpretation of input and output
parameters in the case of a query (see the “Type compati-
ble service composition” section). The parameters selected
from the first domain input set are “available inputs” and the
parameters selected from the second domain output set are
“required outputs”.

Conclusions
In this paper we have considered the problem of service
composition and we have presented a synthetic testbed
which addresses issues that are specific to this problem: the
generation of large numbers of services with various rela-
tions, services described using formalism that supports com-
plete and partial type matches. The presented testbed is
highly parameterizable and allows instantiations to different
configurations. We think our contribution could be highly
useful for the developers of service composition algorithms
and the users of composition engines as it will allow a better
understanding and characterization of different techniques
and a more precise comparison of different systems.

References
Ankolekar, D.-S. C. A.; Burstein, M.; Hobbs, J. R.; Las-
sila, O.; Martin, D.; McDermott, D.; McIlraith, S. A.;
Narayanan, S.; Paolucci, M.; Payne, T.; and Sycara, K.
2002. DAML-S: Web service description for the Semantic
Web. Lecture Notes in Computer Science 2342.
Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelligence
90(1–2):281–300.
Constantinescu, I., and Faltings, B. 2003. Efficient match-
making and directory services. In The 2003 IEEE/WIC In-
ternational Conference on Web Intelligence.
DAML-S. DAML Services, http://www.daml.org/services.
FIPA. Foundation for Intelligent Physical Agents Web Site,
http://www.fipa.org/.
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelligence
76(1–2):239–286.

Li, L., and Horrocks, I. 2003. A software framework for
matchmaking based on semantic web technology. In Pro-
ceedings of the 12th International Conference on the World
Wide Web.
McDermott, D. 1998. The planning domain definition lan-
guage manual. Technical Report 1165, Yale Computer Sci-
ence.
McIlraith, S. A., and Son, T. C. 2002. Adapting golog
for composition of semantic web services. In Fensel, D.;
Giunchiglia, F.; McGuinness, D.; and Williams, M.-A.,
eds., Proceedings of the 8th International Conference on
Principles and Knowledge Representation and Reasoning
(KR-02), 482–496. San Francisco, CA: Morgan Kaufmann
Publishers.
McIlraith, S.; Son, T.; and Zeng, H. 2001. Mobiliz-
ing the semantic web with daml-enabled web services. In
Proc. Second International Workshop on the Semantic Web
(SemWeb-2001).
Paolucci, M.; Kawamura, T.; Payne, T. R.; and Sycara, K.
2002. Semantic matching of web services capabilities. In
Proceedings of the 1st International Semantic Web Confer-
ence (ISWC).
Pednault, E. P. D. 1989. Adl: Exploringthe middle ground
between strips and the situation calculus. In Proceedings of
the First International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’89), 324–332.
Ponnekanti, S. R., and Fox, A. 2002. Sword: A developer
toolkit for web service composition. In In 11th World Wide
Web Conference (Web Engineering Track).
Thakkar, S.; Knoblock, C. A.; Ambite, J. L.; and Shahabi,
C. 2002. Dynamically composing web services from on-
line sources. In Proceeding of the AAAI-2002 Workshop on
Intelligent Service Integration, 1–7.
UDDI. Universal Description, Discovery and Integration
Web Site, http://www.uddi.org/.
W3C. OWL web ontology language 1.0 reference,
http://www.w3.org/tr/owl-ref/.
W3C. Web services description language (wsdl) version
1.2, http://www.w3.org/tr/wsdl12.
W3C. XML Schema, http://www.w3.org/xml/schema.
W3C. XML Schema Part 2: Datatypes,
http://www.w3.org/tr/xmlschema-2/.
Wu, D.; Parsia, B.; Sirin, E.; Hendler, J.; and Nau, D.
2003. Automating DAML-S web services composition us-
ing SHOP2. In Proceedings of 2nd International Semantic
Web Conference (ISWC2003).

