
Clustering the Search Tree
for Numerical Constraints

Xuan-Ha Vu, Djamila Sam-Haroud, and Boi Faltings

Artificial Intelligence Laboratory,
Swiss Federal Institute of Technology in Lausanne (EPFL),

CH-1015, Lausanne, Switzerland
{xuan-ha.vu, jamila.sam, boi.faltings}@epfl.ch

http://liawww.epfl.ch

Abstract. During search, most interval-based solvers perform splitting
when no effective reduction can be made. Some connected regions may
be undesirably split into small boxes. This makes the number of branches
growing quickly, then impacts the overall performance. Regrouping con-
nected boxes reduces the number of branches of the search tree, thus im-
proves the overall performance. We propose to use clustering techniques
based on the connectedness of boxes for the regrouping. This paper in-
troduces new clustering algorithms, that fit in the context of search, and
shows experimental results on numerical constraints.

1 Introduction

Many practical applications involve solving numerical constraints. A numerical
constraint is a constraint on variables taking values from connected domains. In
practice, numerical constraints can be equalities or inequalities of arbitrary type,
usually expressed using arithmetic and logical expressions. Such constraints are
often encountered in real-world engineering applications, where a set of solutions
often expresses relevant alternatives that need to be identified as precisely and
completely as possible.

Most interval-based solvers take as input a set of numerical constraints that
need to be satisfied and repeatedly perform two operations: reduce (e.g. bound
or prune) and branch (e.g. split). That usually results into a tree of boxes that
conservatively encloses the feasible set during search. The solvers perform split-
ting when no effective reduction can be made. The side effect of splitting is that
some connected regions may be undesirably split into small boxes. This makes
the number of tree branches growing undesirably and impacts the overall per-
formance of search. Naturally, one may think that regrouping connected boxes
reduces the number of branches of the search tree in case the feasible set is com-
plex and disconnected, thus improves the overall performance. We propose to
use fast clustering techniques based on the connectedness of boxes to regroup a
large number of boxes into a reduced collection of boxes each of which covers
one or several connected subsets.

2 X.-H. Vu, D. Sam-Haroud and B. Faltings

Clustering methods have been studied in statistics, and then expanded to ma-
chine learning/neural networks area and the database community. Developed al-
gorithms are able to scan huge databases and extract knowledge patterns within
the data. It is known that general computation of an optimal set of k clusters is
NP-complete [1]. For this reason, fast clusterings usually can be achieved only
by using heuristic algorithms or by restricting to some approximations. Very
recently, a fast clustering algorithm named ANTCLUST [2] was proposed. This al-
gorithm is close to, but still not suitable for addressing our requirements. Though
successful, the general clustering techniques are not suitable for directly applying
to our case because they are not guaranteed to be convergent and the homo-
geneity information in our problems is not available as they require. Therefore,
new clustering techniques for tree of boxes are needed.

We first propose a basic clustering algorithm called COLONIZATION that takes
O(N2) time to cluster N boxes in fixed-dimensions. The basic method computes
homogeneity (i.e. the connectedness in this case) for each pair of boxes. Moreover,
we observe that most search techniques implemented in interval-based solvers use
branch-and-prune or branch-and-bound schemes, hence they essentially produce
boxes in structure of tree.1 Taking advantages of tree structure, we propose
two more clustering algorithms for trees of boxes. One algorithm, called MCC,
very quickly provides near-optimal clusterings such that no connected subsets
are partitioned. Another algorithm, called SDC, generates adaptive clusterings
in very short time as a further process of MCC. Combinations of the proposed
clustering techniques are also discussed in Section 3.

2 Background and Definitions

2.1 Interval Arithmetic

The finite nature of computers precludes an exact representation of the reals.
The real set, R, is in practice approximated by a finite set F∞ = F∪{−∞, +∞},
where F is a finitely many set of reals usually corresponding to the floating-point
numbers. In this paper, we restrict the notion of interval to refer to real intervals
with bounds in F∞ no matter they are open or closed [4]. The set of intervals
with bounds in F∞, denoted by I, is partially ordered by the relation ’<’ on
reals. Our previous results in [5, 6] can be easily extended to accept this notion.
An interval box, or a box for short, B = I1× . . .× In is a Cartesian product of n
intervals in I. The projection of B on a subset, X, of its axes is denoted by B|X .

2.2 Relations and Approximations

We denotes by pts(S) the set of points represented by object S, e.g. pts(S) =
{x | x ∈ B ∈ S} if S is a collection of boxes. A relation can be approximated by
a computer-representable superset or subset as defined below. The former is a
1 Even if the tree structure is not available, we still can construct a good bounding-box

tree from a list of boxes in O(N log N) time [3].

Clustering the Search Tree for Numerical Constraints 3

complete approximation but may contain points that are not feasible. Conversely,
the latter is a sound approximation but may lose certain feasible points. In
practice, a relation can be approximated coarsely by the smallest box, called the
(interval) hull and denoted by hull(.), containing it. A set of objects representing
points is called disjoint if every two objects have no common points. A set is
called a disconnected set if it can be partitioned into two nonempty subsets such
that each subset has no points in common with the set closure of the other,
otherwise it is called a connected set. Moreover, in this paper we use the word
‘highly disconnected set’ to imply that the distances between its subsets are
long, and use ‘non-highly disconnected set’ otherwise. Approximating a relation
usually requires a decomposition into simple components like convex subsets. In
this paper, we are investigating one of decompositions of particular interest that
is the partition into disjoint boxes.

3 Clustering the Search Tree

During solving a system of numerical constraints with a non-isolated feasible
set, interval-based search techniques following the branch-and-prune or branch-
and-bound schemes produce a large collection of boxes that can be maintained
in a bounding-box tree, where child nodes represent for branchings in search.
Bounding boxes stored at search nodes are results of pruning phase. In literature,
there are some variants of bounding-box tree like bounding-volume tree, interval
tree, box-tree and AABB tree. We call the boxes produced by the solvers the
primitive boxes. In this paper, we use the notion of hull of boxes to refer to
the smallest box that contains all the given boxes, however, for convenience it
also refers to the collection of the involved boxes if not confused. A collection
of primitive boxes is called connected if the union of its boxes is a connected
set. If this is the case, we say that the primitive boxes connect to each other.
A collection of primitive boxes is called max-connected (w.r.t to the set of all
the primitive boxes) if it is connected and there is no other primitive boxes
that connect to the given boxes. In this paper, we will only focus on clusterings
which construct disjoint clusters fully covering all primitive boxes such that each
cluster is a hull of its primitive boxes. A clustering is called max-connected if each
connected collection in a cluster is max-connected. A bounding-box tree is called
orthogonal-separable if every decomposition of each bounding-box into pairwise-
disconnected collections (of primitive boxes) can be performed by sequently using
separating hyper-planes that are orthogonal to axes (see Figure 2).

Goals Of Clustering. The non-isolated feasible set of a system of numerical
constraints usually consists of one or more connected subsets each of which is a
continuum. In many applications, there is a need for enclosing the feasible set
by a collection of disjoint bounding boxes such that each of the connected sub-
sets is contained in only one bounding box. To describe the connected subsets
as well as possible, the number of bounding boxes should be as big as possi-
ble. Interval-based search techniques usually produce approximations that are

4 X.-H. Vu, D. Sam-Haroud and B. Faltings

either very poor (if being stopped at low precision), or prohibitively verbose
(if being stopped at medium/high precision) when solving problems with non-
isolated and disconnected feasible sets. When a certain quality is required, we
obviously need to take the latter setting and then do a clustering on the large
set of boxes. However, the exact feasible set is unknown yet, and only a set of
primitive boxes is known. The above-mentioned need is translated into the need
for a max-connected clustering. If a max-connected clustering has the maximum
number of clusters, we call it an optimal max-connected clustering2. Optimal
max-connected clusterings well characterize highly disconnected feasible sets,
where each hull (i.e. a cluster) is expected to contain only one max-connected
collection of primitive boxes (see Figure 7-a). In case feasible sets are non-highly
disconnected, the optimal max-connected clusterings may not well characterize
the feasible set (see Figure 7-b). In this case we may need a further decomposition
to characterize the feasible set better (see Figure 8-a).

In the next subsections, we propose four algorithms to address different goals.
The first subsection focuses on a basic algorithm that computes the optimal max-
connected clustering. It is however not very efficient in practice, we then incre-
mentally propose three alternative algorithms. Each algorithm has two phases,
but they have the same first phase. The second subsection describes the common
phase. The third subsection describes an algorithm to compute max-connected
clusterings which is near-optimal. The fourth subsection gives an algorithm to
compute an adaptive clusterings. The last subsection gives discussion about com-
binations of the proposed clustering algorithms.

3.1 Optimal Max-Connected Clustering

As far as we know, there not exists any algorithm that are suitable to find the
optimal max-connected clustering. Fortunately, there exists a recent clustering
algorithm named ANTCLUST [2] that exploits the phenomenon known as colonial
closure of ants to create homogeneous groups of individuals. The ANTCLUST al-
gorithm addresses the general clustering problem in the way that we can borrow
a part for addressing our goals. Inspired by Seidel’s invasion algorithm [7] and
some ideas in the ANTCLUST algorithm, we propose a simple deterministic algo-
rithm, called COLONIZATION, which is given in Figure 1 to compute the optimal
max-connected clustering. This basic algorithm tests each pair of boxes to check
if they connect to each other. It is easy to see that in the worst-case the lines
02-12 take d(1 + 2 + . . . + (N − 1)) = dN(N − 1)/2 checks for connectedness of
two intervals, where N is the number of primitive boxes in d-dimensions. As a
result, the time complexity of these lines is O(dN2). At the line 13, each hull
contains exact one max-connected collection, but those hulls are not guaranteed
to be disjoint. The number of hulls at this line is therefore equal to the maximum
number, p, of max-connected collections of primitive boxes. Consequently, the
lines 14-16 have complexity O(dp2). We obviously have p ≤ N , hence the total

2 It is easy to prove that the optimal max-connected clustering exists uniquely.

Clustering the Search Tree for Numerical Constraints 5

01: algorithm COLONIZATION

02: L := ∅;
03: for each box, B, not in any collection in L do
04: C := {B};
05: for each Ci ∈ L do
06: if {B} ∪ Ci is connected then
07: C := C ∪ Ci;
08: L := L \ {Ci};
09: end-if
10: end-for
11: L := L ∪ {C};
12: end-for
13: Replace each collection by the hull of its primitive boxes.
14: while there exist two hulls that have nonempty intersection do
15: Combine the two hulls into a single hull.
16: end-while
17: end

Fig. 1. The COLONIZATION algorithm

time complexity of the COLONIZATION algorithm is O(dN2), or O(N2) if d is
fixed. In practice, we have p ¿ N and p is bounded for fixed problems.

3.2 Separator Computation

In order to cluster the primitive boxes into a number of disjoint hulls, we may
use hyper-planes that are orthogonal to axes to separate the primitive boxes.
We then define new notations for computing such separating hyper-planes as
follows.

Definition 1 (Separator, SPT). Given a hull, H, of primitive boxes, an axis
x ∈ N, and an interval, I ∈ I. The couple (x, I) is called a separator of H if I is
a maximal (w.r.t. the set inclusion) interval that satisfies the following condition
for all primitive box, B, in H: I ⊆ H|x∧I∩B|x = ∅. When this holds, I is called
a separating interval and x is called a separating axis. The set of all separators
of H and the set of all separators on axis x is denoted by SPT(H) and SPT(H, x)
respectively.

Definition 2 (Extension, EXT). Given a hull, H, of primitive boxes, an axis
x ∈ N, and a box B ⊆ H. A couple (x, I) is called an extension of B w.r.t. H (on
axis x) if I is an interval that is maximal (w.r.t. the set inclusion) in H|x \B|x.
When this holds, I is called an extending interval and x is called an extending
axis. We denote by EXT(B, x) the set of extensions of B (w.r.t. H) on axis x.

Figure 2-a gives an illustration of the two notions. It is easy to see that, on
each axis, a hull has at most two extensions w.r.t. its parent hull and that all
separators of the hull lie between the two extensions. In a bounding-box tree of
primitive boxes, we do a process in a bottom-up manner (e.g. in post-order) to

6 X.-H. Vu, D. Sam-Haroud and B. Faltings

I

3

I

1

I

2

H

B

x

(a)
 (b)

Fig. 2. Dark grey boxes are primitive. (a) Orthogonal-separable tree: (x, I2) is a sepa-
rator of H, (x, I1) and (x, I3) are extensions of B to H. (b) The tree is not orthogonal-
separable.

make each bounding box to be the hull of its child bounding boxes. Hence, each
node’s box becomes the hull of primitive boxes contained in it. A bounding-box
tree whose bounding boxes are the hulls of primitive boxes contained in the
bounding boxes is called a fitted tree.

Definition 3 (Separating Set, SE). In a fitted tree, given an axis x ∈ N and a
hull, H, at a node. The union of the intervals of all separators and extensions3 of
H on axis x is called the separating set of H on axis x and denoted by SE(H, x).

For simplicity, we use the same notions SPT, EXT, SE for the tree node corre-
sponding to the hull H. The computation of extensions of a hull w.r.t. its parent
hull is trivial and takes O(d) time. We observe that, in a fitted tree, a couple
(x, I) is a separator of a hull if and only if I is a maximal (w.r.t. the set inclusion)
interval that can be contained in all the separating sets on axis x of all children
of the hull. It means that all the separators of the hull can be computed from
separators and extensions of its children. Moreover, this is true even during the
above-mentioned bottom-up process. The ordering relation among separators
and extensions is given by the following proposition.

Proposition 1. In a fitted tree, given a hull, H, of primitive boxes. All the
separators and extensions of H can be totally ordered by the partial order ’<’
on I and the total order on N. That is, for any two separators/extentions, s1 and
s2, of H, either s1 = s2, s1 < s2 or s2 < s1 holds. Where the ordering relations
are defined as follows.

(i) (x1, I1) = (x2, I2) ⇔ x1 = x2 ∧ I1 = I2

(ii) (x1, I1) < (x2, I2) ⇔ x1 < x2 ∨ (x1 = x2 ∧ I1 < I2)

Proof. By Definition 1 and Definition 2, one can easily see that every two distinct
separators/extensions of H on the same axis have empty intersection, otherwise
either the separators/extensions are not maximal w.r.t to the set inclusion or H

3 If not specified, the extensions of a hull are taken w.r.t. the parent hull in the tree.

Clustering the Search Tree for Numerical Constraints 7

function FittingProcess(in/out : T 0) /* T 0 is a bounding-box tree */
for each node P of T 0 in a post-order visit do

if P is leaf then
for each axis x do SPT(P, x) := ∅;

else
pullSeparators(P);

end-if
end-for

end

function pullSeparators(in/out : P) /* P is a tree node */
if P is leaf then return;
C := children(P);
Set the box at P to hull({B ∈ Id | B is a box at a node in C}).
for each C ∈ C and each axis x do

Compute EXT(C, x) and denote it by {El, Eu}. /* may be empty */
SE(C, x) := {El, SPT(C, x), Eu}; /* ordered set */

end-for
for each axis x do SPT(P, x) := ∩C∈Cpts(SE(C, x)); /* ordered intersection*/
SPT(P) := {SPT(P, 1), ..., SPT(P, d)}; /* ordered set */

end

Fig. 3. The functions for the fitting process

is not the hull of its children. As a result, the set of all separating and extending
intervals on an axis is totally ordered. This results in what we have to prove.

To compute separators of all nodes in a bounding-box tree, we only need to do
a single bottom-up process, called the fitting process. In summary, in the fitting
process, operations at each node consist of (i) making the box at the current node
to be the hull of its children; and (ii) computing the ordered set of separators
by taking the ordered intersection of ordered separating sets of its children. The
details of the fitting process is given in Figure 3. We denote by m the maximum
number of children of a tree node. The operation (i) is trivial and takes O(md)
time. The leaf nodes of the tree have no separators. Each node in the tree has at
most two extensions that straddle the box stored at the node, hence straddle the
set of separators. Moreover, the bottom-up process starts at leaf nodes, therefore
the separating sets can be computed by the intersection in the operation (ii) and
maintained sorted by the total order in Proposition 1. At the current node, we
denote by qi,j the number of elements in the separating set on axis i ∈ N of
the j-th child hull, where 1 ≤ i ≤ d, 1 ≤ j ≤ m. We denote q̄j =

∑
i qi,j and

q̄ = maxj{q̄j}, then q̄ is the maximum number of separators/extensions that
a child of the current node can have. Noting that each separating set on an
axis is totally ordered, we have time complexity of computing the intersection
of at most m sorted separating sets on axis i is O(

∑
j qi,j). As a result, time

complexity of the operation (ii) is O(
∑

i

∑
j qi,j) = O(

∑
j

∑
i qi,j) = O(

∑
j q̄j),

i.e. not greater than O(mq̄). Because the number of nodes in the tree is O(N),

8 X.-H. Vu, D. Sam-Haroud and B. Faltings

the total time complexity of the fitting process is O(mdN + Q), where Q is the
total number of separators/extensions in the tree except in the root. This can not
exceed O((md+q)N), where q is the maximum number of separators/extensions
that each node in the tree has. In most existing solvers, m is not greater than
2d + 1, and it is usually small in comparison with 2d + 1 (e.g. m = 2 if bisection
is used). We conjecture that q is bounded for fixed problems, particularly it is
bounded by O(p) (p in Section 3.1). If this conjecture is true, as our experiments
show, the time complexity of the fitting process is O(N) for fixed problems.

3.3 Max-Connected Clustering

The second phase is called the separating process. We now compute a nearly
optimal max-connected clustering based on next observations. During the sepa-
rating process, we maintain max-connected collections of primitive boxes in form
of fitted trees.

– (Observation 1). Any separator stored at the root of a fitted tree representing
a max-connected collection can be used to partition this tree into two fitted
subtrees each of which represents a max-connected collection.

– (Observation 2). If a set of primitive boxes represented by a fitted tree can be
partitioned by a hyper-plane that is orthogonal to axis x into two collections
whose projections on x are disjoint, then the root of the fitted tree has some
separating interval that contains the projection of the hyper-plane on the
coupled separating axis.

Proof of these observations is trivial due to Definition 1 and the definition of
fitted tree. By these observations, we can compute a max-connected clustering
from the separators computed in Section 3.2. The process can be done in bottom-
up manner, or simply by a recursive call at root. For simplicity, we describe the
process in recursive mode. A recursive call starts from a root node of a fitted

L
 M
 U

P
l

P

u

P

l

M

u

M

M
 U

P
l

P

u

P

l

M

u

M

Shifted

(a)
 (b)

Fig. 4. The separating process: separate the primitive boxes based on separators

Clustering the Search Tree for Numerical Constraints 9

/* Input: P is a node of a fitted tree, separator S ∈ SPT(P) */
function separateSubtree(in : P, S) → out : {lP, uP}

Remove the separator S from SPT(P).
Create two trees, lP and uP, each has a single node copied from P.
for each C ∈ children(P) do

if C lies on lower side of S then
Move the subtree rooted at C to a new subtree of the root of lP.

else if C lies on upper side of S then
Move the subtree rooted at C to a new subtree of the root of uP.

else
Find the separator S′ ∈ SPT(C) : S ⊆ S′.
{lC, uC} := separateSubtree(C, S′);
Attach lC (resp. uC) as a new subtree of the root of lP (uP resp.).

end-if
end-for
If any root in trees lP or uP has only one child, shift this child to the root.
pullSeparators(root(lP)); pullSeparators(root(uP));

end

Fig. 5. The separating process of a node/subtree

/* T 0 is the initial bounding-box tree, L is a list of fitted tree to be return */
algorithm MCC(in : T 0) → out : L

FittingProcess(T0); L := {T0};
while ∃T ∈ L: T has at least one separator, S, at root do

L := (L \ T) ∪ separateSubtree(root(T), S);
end-while

end

Fig. 6. The Max-Connected Clustering (MCC) algorithm

tree created during the separating process. Recursively, for each node, P, and
the current separator, S ∈ SPT(P), we construct two fitted trees from the subtree
rooted at P. One tree is called lower-bound tree (denoted by lP), the other is
upper-bound tree (denoted by uP) with single roots being copied from P at first.
If a child node’s box lies on lower-bound (respectively upper-bound) side of S,
the subtree rooted at the child node is moved to lP (uP, respectively). Otherwise
the child node, called M, is processed similarly to construct its lower-bound and
upper-bound trees, lM and uM respectively. The trees lM and uM are then
attached to lP and uP respectively. If any tree root in this process has only
one child, this child is shifted to the root. Additionally, we make roots of lower-
bound and upper-bound trees to be hulls of their child nodes. The separators
of the root nodes of new lower- and upper-bound trees are updated from its
children. Figure 4 gives an illustration of the process. Figure 5 gives the details
of this process for a subtree rooted at a node in a fitted tree. Figure 6 gives
the Max-Connected Clustering (MCC) algorithm that performs the separating
process to get a max-connected clustering. Without difficult, we can prove that

10 X.-H. Vu, D. Sam-Haroud and B. Faltings

(a)
 (b)

Splitting planes
Separators

Fig. 7. MCC: The set of blue boxes is the optimal max-connected clustering of: (a) highly
disconnected feasible set; (b) non-highly disconnected feasible set

(a)
 (b)

Fig. 8. SDC: Separators are considered as hints for decomposition. The set of blue boxes
is an adaptive clustering of non-highly disconnected feasible set

the obtained max-connected clustering is optimal if the bounding-box tree is
orthogonal-separable. For simplicity, in the MCC algorithm we use only one list,
L, however in implementation it should be maintained as two lists: one list for
the trees that have no separators at root and the other list for the rest. Figure
7 gives illustrations on the clusters obtained by the MCC algorithm. It is easy
to see that the time complexity of the MCC algorithm is O(mdN + Q), that is
practically shown to be linear in N for fixed problems.

3.4 Separator-Driven Clustering

In some applications, the clustering obtained by the MCC algorithm characterize
feasible sets not well enough (see Figure 7-b). A remedy for this problem is given
as an additional process for MCC so that applications can choose to whether to
run it. We observe that the separators that still exist in output fitted trees of
the MCC algorithm (e.g. two separators in the left of Figure 7-b are not at roots
of output trees) can be used as a guide for further separations. If we consider

Clustering the Search Tree for Numerical Constraints 11

/* T 0 is the initial bounding-box tree, L is a list of fitted tree to be return */
algorithm SDC(in : T 0) → out : L

L := ∅; L0 := MCC(T 0); /* call to the MCC algorithm */
for each fitted tree T ∈ L0 do

L := L ∪ separateByAllSeparators(T);
end-for

end

function separateByAllSeparators(in : T) → out : L
Search in post-order, from left to right, for a node N0 such that SPT(N0) 6= ∅.
if not found then return L := {T };
L := ∅; N := N0; P := parent(N); /* P may be null */
while P 6= ∅ do

for each C ∈ children(P) do
if C on the left of N then Move the subtree rooted at C to L;
if C on the right of N then

Detach the subtree rooted at C and make a new tree T C.
L := L ∪ separateByAllSeparators(T C);

end-if
if C = N 6= N0 then Erase the node C;
if C = N = N0 then

Detach the subtree rooted at C and make a new tree T C.
Find a separator S ∈ SPT(C);
L := L ∪ separateSubtree(root(T C), S); /* In Figure 5 */

end-if
end-for
N := P; P := parent(N); /* P may be null */

end-while
end

Fig. 9. The Separator-Driven Clustering (SDC) algorithm

the remaining separators (after performing MCC) as hints for decomposing the
collection of boxes into smaller groups that well characterize the feasible set, we
will need to use all the splits (i.e. the branchings) that exist in the path from the
current node upward to the root for separating the corresponding child boxes,
though they may not make the child boxes disconnected. That is, all siblings
of the nodes from the current node upward to the root are to be separated
into different groups/collections in the clustering. Figure 8-a gives the result of
further process for the problem in Figure 7-b. Six boxes obtained in Figure 8-a
describe the feasible set better than two boxes in Figure 7-b. Figure 8-b gives
another illustration on the SDC algorithm where two close connected subsets are
well covered by 13 boxes each of which is a hull of primitive boxes. Figure 9 gives
the main steps of the algorithm, called Separator-Driven Clustering (SDC), which
performs the above idea as an additional process for the MCC algorithm. The SDC
algorithm quickly provides an adaptive clustering as shown in our experiments.

12 X.-H. Vu, D. Sam-Haroud and B. Faltings

Fig. 10. Three clusters are represented by red slashed lines.

3.5 Combination of Clustering Techniques

We observe that if we apply the COLONIZATION algorithm to each fitted tree
produced by the MCC algorithm we will get the optimal max-connected clus-
tering. Therefore, the algorithm obtained from the MCC algorithm by applying
the COLONIZATION algorithm in this way is called the Optimal Max-Connected
Clustering (OMCC) algorithm. We can see that the time complexity of the OMCC
algorithm is O(mdN +Q+d

∑
i N2

i), where Ni(1 ≤ i ≤ p) is the number of prim-
itive boxes in the fitted trees produced by the MCC algorithm. It is easy to see that
Q does not exceed O(dN2). We also have

∑
i Ni = N and N2/p ≤ ∑

i N2
i ≤ N2,

then O(mdN + Q + d
∑

i N2
i) does not exceed O(dN2). In practice we often see

that Q is much smaller than O(dN2) and the actual running time of OMCC is bet-
ter than of COLONIZATION for problems with disconnected feasible set (p > 1).
Note that we can also do a similar process for the SDC algorithm. Combining SDC
and the first phase of COLONIZATION (lines 01-12) results into a more adaptive
clustering, however, some bounding boxes of the clusters may overlap. Figure 10
gives the result of applying this combination to the problem in Figure 8-a.

4 Experiments

To evaluate the proposed clustering techniques, we now present experimental
results on 18 non-linear constraint satisfaction problems which are selected to
reflect different topologies of feasible set and categorized into three groups: (i)
problems with only one connected subset; (ii) problems with several connected
subsets; and (iii) problems with more than ten connected subsets. Our exper-
iments show the similarity in running time of each algorithm in each group.
Therefore, due to lack of space we only give the average running time for
individual groups in Table 1. Figure 11 shows the graph of average running
time in each group and all groups. The results show that the running time
of COLONIZATION is quadratic in N (the number of boxes) while the running
time of MCC and SDC is very small (the average time of clustering 5000 boxes
is less than 50ms, and the running time is always less than 120ms). The run-
ning time of the selected constraint satisfaction solver is linear in N . The solver

Clustering the Search Tree for Numerical Constraints 13

Table 1. Average running time (ms) for three groups

N = 100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(i) Solver 45 226 461 728 978 1261 1556 1849 2096 2440 2736
(i) COLO. 2 49 194 432 767 1196 1831 2529 3564 4809 6053
(i) MCC 1 2 5 8 10 13 16 18 20 25 27
(i) SDC 1 2 6 9 11 15 17 20 23 28 31

(ii) Solver 69 285 525 774 1024 1263 1538 1788 2002 2288 2601
(ii) COLO. 2 25 78 172 290 447 636 863 1120 1453 1850
(ii) MCC 0 2 4 6 8 10 12 15 16 19 21
(ii) SDC 0 2 4 7 9 11 13 15 17 19 22

(iii) Solver 66 415 860 1253 1683 2112 2557 2935 3371 3883 4271
(iii) COLO. 1 19 46 83 148 229 310 420 579 740 949
(iii) MCC 1 6 12 18 24 31 38 41 42 46 49
(iii) SDC 1 7 12 18 24 32 39 41 43 46 50

(a)
 (b)

3009

2818

31

0

500

1000

1500

2000

2500

3000

3500

10

10
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

of boxes

T
im

e
 (

m
s

)

Solver

COLONIZATION

MCC

SDC

10

1000

2500

4000

S
o

lv
e

r
(i
)

C
O

L
O

N
IZ

A
T

IO
N

 (
i)

M
C

C
 (

i)

S
D

C
 (

i)

S
o

lv
e

r
(i
i)

C
O

L
O

N
IZ

A
T

IO
N

 (
ii)

M
C

C
 (

ii)

S
D

C
 (

ii)

S
o

lv
e

r
(i
ii)

C
O

L
O

N
IZ

A
T

IO
N

 (
iii

)

M
C

C
 (

iii
)

S
D

C
 (

iii
)

2
7

3
6

6
0

5
3

2
7

3
1

2
6

0
1

1
8

5
0

2
1

2
2

4
2

7
1

9
4

9

4
9

5
0

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 (

m
s

)

#
 o

f
b

o
x

e
s

Fig. 11. Average running time in (a) 3 groups; (b) all the problems

is used to generate the tree of boxes that cover the feasible set. For all prob-
lems, the running time of MCC and SDC much less than that of COLONIZATION. In
the first group, COLONIZATION, MCC and SDC provide the same clustering which
consists of a single cluster. COLONIZATION and MCC provide the same clustering
for all the problems. Moreover, for most problems the three algorithms pro-
duce the similar clusterings. They only show significant differences in the fol-
lowing problems: F2.4 = {sin(x sin y) ≥ cos(y cos x);−4 ≤ x, y ≤ 4} (Sinusoid);
G1.4 = {x2

1 + 0.5x2 + 2(x3 − 3) ≥ 0, x2
1 + x2

2 + x2
3 ≤ 25, ∀i : −8 ≤ xi ≤ 8};

H1.1 = {x2
1 + x2

2 + x2
3 ≤ 9, (x1 − 0.5)2 + (x2 − 1)2 + x2

3 ≥ 4, x2
1 + (x2 − 0.2)2 ≥

14 X.-H. Vu, D. Sam-Haroud and B. Faltings

x3,∀i : −4 ≤ xi ≤ 4}. For example, when N = 1000, COLONIZATION and MCC pro-
vide six boxes for the problem F2.4, the volume ratio of the six boxes to the hull
of primitive boxes is 0.761 while the ratio obtained by MCC is 0.385 with 30 boxes.
When N = 1000 for problem G1.4 (and H1.1 respectively), COLONIZATION and
MCC produce no reduction while SDC produces 4 (5, respectively) boxes with the
volume ratio is 0.225 (0.191, respectively). The experiments show that even in
case COLONIZATION and MCC cannot characterize the feasible set well (e.g. the
problems G1.4 and H1.1), SDC still can provide an adaptive clustering that are
more suitable for applications.

5 Conclusion

Four algorithms addressing different goals have been proposed to regroup tree
of boxes into a fewer number of boxes. We have done experiments with three of
them. In our experiments, SDC shows to be the best among the techniques we
proposed and tested. Moreover, MCC and SDC are very cheap (in running time)
postprocessing to get useful information for further process. They also preserve
the tree structure of the input tree. In the COCONUT project, we are investi-
gating a cooperation of optimization and numerical constraint satisfaction where
we could exploit these fast postprocessing to make the interval-based constraint
satisfaction solvers more useful in the context of optimization. Obviously, these
techniques can also be applied to ad-hoc discrete constraints if we translate
each integer into an unit box and use the technique in [3] to construct a good
bounding-box tree from a list of unit boxes.

6 Acknowledgments

This research was funded by the European Commission and the Swiss Federal
Education and Science Office through the COCONUT project (IST-2000-26063).

References

1. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York (1979)

2. Labroche, N., Monmarché, N., Venturini, G.: A New Clustering Algorithm Based
on the Chemical Recognition System of Ants. In: Proceedings of the 15th European
Conference on Artificial Intelligence (ECAI’2002), France, IOS Press (2002) 345–349

3. Agarwal, P., de Berg, M., Gudmundsson, J., Hammar, M., Haverkort, H.: Box-
Trees and R-Trees with Near-Optimal Query Time. In: Proceedings of the 17th
ACM Symposium on Computational Geometry, ACM Press (2001) 124–133

4. Benhamou, F., Goualard, F.: Universally Quantified Interval Constraints. In: Pro-
ceedings of the 6th International Conference on Principles and Practice of Constraint
Programming (CP’2000). (2000) 67–82

Clustering the Search Tree for Numerical Constraints 15

5. Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Approximation Techniques for Non-
linear Problems with Continuum of Solutions. In: Proceedings of the 5th Interna-
tional Symposium on Abstraction, Reformulation and Approximation (SARA’2002),
(Canada) 224–241

6. Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Numerical Constraint Satisfaction Prob-
lems with Non-isolated Solutions. In: Post-Proceedings of the 1st International
Workshop on Global Constrained Optimization and Constraint Satisfaction (CO-
COS’2002), France (2002) To appear.

7. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)

