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Abstract

Algorithms for Distributed Constraint Satisfaction
Problems fall into two categories: distributed complete
search (DisCS) and distributed local search (DisLS).
The advantage of DisCS is that it guarantees to find a
solution or proves problem infeasibility. DisCS is good
at solving tight problems with complex constraints, but
suffers from false commitments early in the search tree,
leading to exhaustive search and redundant communi-
cation when exploring infeasible subproblem spaces.
DisLS in comparison does not commit to assignments
and is excellent at solving large problems with con-
straints of local scope. DisLS however, is incom-
plete and has difficulties to deal with tightly-/ over-
constrained problems and complex constraints, where
the algorithm often gets caught in infinite cycles with-
out finding a solution or proving problem infeasibility.
In this paper we combine a DisLS algorithm with a
DisCS algorithm, and profit from their complementary
advantages. We present a new, hybrid search scheme
and show that it outperforms both methods.

Introduction
Algorithms for Distributed Constraint Satisfaction Prob-
lems fall into two categories: distributed complete search
(DisCS) and distributed local search (DisLS). The advan-
tage of DisCS is that it is complete and guarantees to find
a solution if one exists or can prove problem infeasibility.
DisCS is usually good at solving tightly and overconstrained
problems with complex constraints. Therefore a good strat-
egy is always to start with the hardest part of the problem
first. However, a big disadvantage of DisCS are hard vari-
able value commitments, especially those that are made at
the first nodes in the search tree. If these early commit-
ments are dead ends, it invariably leads to exhaustive search
and communication traffic when exploring infeasible sub-
problem spaces. DisLS in comparison, does not commit
to assignments and is excellent at solving large scale prob-
lems with constraints of local scope. The disadvantage of
DisLS however, is incompleteness and difficulties to deal
with tightly and overconstrained problems as well as com-
plex constraints. Under these conditions, the DisLS can eas-
ily get caught in infinite cycles without finding a solution
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or proving problem failure. As both search methods have
complementary properties they lend themselves to be used
in combination.

The breakout algorithm (BO) is a very successful, local
search technique. Its origins go back to the work of (Minton
et al. 1992) and (Morris 1993). Minton et. al. developed
in 1992 a min-conflict heuristic, which iteratively repairs a
given complete value assignment with the goal to minimize
the conflicts (constraint violations). Minton et. al demon-
strated the success of this technique by solving large scale
scheduling problems and showed that it could outperform a
traditional backtracking technique by several orders of mag-
nitude. However, one major drawback of this method re-
mained. The method could get stuck in local, non-solution
minima, requiring expensive restarts with new initial assign-
ments. However, Morris could eliminate this drawback and
extended the heuristic by a breakout method. This method
allowed the algorithm to escape from local non solution min-
ima by assigning a weight to each constraint and when the
algorithm is in a local non solution minimum to increase the
weights of violated constraints. When the weights increased,
the constraint conflicts also increased, and the algorithm can
break out of the local minimum. Besides using the weights
for escaping from local minima they can also be useful for
localizing hard and unsolvable sub problems. Constraints
with a relatively high weight, belong most likely to a hard or
unsolvable subproblem. Hence, the constraint weights are
also useful for establishing a fail first variable order and can
therefore guide a systematic search method, such as back-
tracking.

In this paper we will present a new, hybrid search scheme
for solving DisCSPs, where we combine the distributed
breakout algorithm (DisBO), with the distributed backtrack-
ing algorithm (DisBT). We couple the two algorithms by a
fail first variable order, which we extract from the DisBO al-
gorithm and feed to DisBT. In this variable order, we sort the
variables of potentially unsolvable subproblems at the top of
the list.

By solving a large set of scheduling problems, we show
that the proposed hybrid scheme works extremely well and
outperforms the two individual methods by several orders of
magnitude.

The rest of the paper is organized as follows. In section 2,
we give definitions, discuss the properties of unsolvable sub-



problems and briefly recall the execution of the distributed
breakout and distributed backtracking algorithm. In Section
3 we will present a solving scheme and propose a new hybrid
algorithm:

• DisBOBT (Breakout with Backtracking) as a complete
mixed algorithm for solving CSPs and identifying an un-
solvable subproblem if it exists

In Section 4, we show the results of the experiments where
we applied the DisBOBT algorithm to solve randomly gen-
erated scheduling problems. In Section 5, we briefly discuss
algorithm improvements and variants. In section 6 we draw
our conclusions.

Properties of the Breakout Algorithm
Definition 1 (Constraint Satisfaction Problem (CSP)P ).
A finite, binary constraint satisfaction problem is a tuple
P =< X,D,C > where:

• X = {x1, .., xn} is a set of n variables,
• D = {d1(x1), .., dn(xn)} is a set of n domains, and
• C = {c1, .., cp} is a set ofp constraints, where each con-

straint cl(xi, xj) involves two variablesxi and xj and
is a function from the Cartesian productdi(xi) × dj(xj)
to {0, 1} that returns 0 whenever the value combination
for xi andxj is allowed, and 1 otherwise (note that this
is opposite from the classical formulation to simplify our
formulas). We call the set{xi, xj} vars(c) and there is
at most one constraint with the same set of variables.

Definition 2 (SubproblemPk). A subproblemPk of a prob-
lemP with k variables is defined as a tuplePk =< XPk

⊆
X, DPk

⊆ D,CPk
⊆ C > with the additional property that

CPk
contains all and only constraints between variables in

XPk
. We define thesizeof a subproblem as the number of

constraints|CPk
|.

Definition 3 (Unsolvable Subproblemsusp). A subprob-
lemPk is unsolvableif there is no value assignment to vari-
ables inXPk

that satisfies all constraints inCPk
.

An unsolvable subproblemPk is minimal if it becomes
solvable by removing any one of its variables.

A minimal unsolvable subproblemPk is a smallestun-
solvable subproblem ofP , if there is not another minimal
unsolvable subproblemP ′

l such thatsize(P ′
l ) < size(Pk).

Definition 4 (Distributed Constraint Satisfaction Prob-
lem (DisCSP)Pdis). A distributed constraint satisfaction
problemPdis is a Constraint Satisfaction Problem where the
variables, domains and constraints are distributed amongst
a set of s agents.A = {a1, .., as}.

Solving a CSP and DisCSP is equivalent to finding a value
assignment for all variables, that simultaneously satisfies all
the constraints inC.

In our model each agent owns multiple variables, and dis-
tinguishes between private and public variables.

Definition 5 (Private and Public Variables).

• Private variables are only visible to the owner agent
and are not part of any public constraint.∀xi ∈
Xpriv(¬∃cj(xk, xl) ∈ Cpub ∧ (xi = xk ∨ xi = xl)).

• Public variables are visible to all agents and are
part of one or more public constraints. ∀xi ∈
Xpub(∃ci(xj , xk) ∈ Cpub ∧ (xi = xj ∨ xi = xk)).
In this context we also define the functionOwner(xi),

which returns the owner agent ofxi.
Note that we assume for the CSP problem graphs that they

are at least connected and do not contain independent sub-
problems.
Definition 6 (Public and Private Constraints).
• The private constraint setCpriv ⊆ C includes all

agent internal constraints, constraints that exclusively
refer to variables that are owned by the same agent.
∀ci(xj , xk) ∈ Cpriv(Owner(xj) = Owner(xk)).

• The public constraint setCpub ⊆ C includes all inter agent
constraints. Inter agent constraints refer to variables
that are owned by two or more agents.∀ci(xj , xk) ∈
Cpub(Owner(xj) 6= Owner(xk)).

Identifying Unsolvable Subproblems with the
Breakout Algorithm
The breakout algorithm (Morris 1993) is a further develop-
ment of the min-conflict algorithm (Minton et al. 1992) and
is the basis for our work.

1: function breakout(CSP, cycle− limit, breakout− limit)
2: S ← random initial state
3: W ← vector of all 1
4: while S is not a solution∧(cycle− limit > 0)∧(breakout−

limit > 0) do
5: if S is not a local minimumthen
6: make local change to minimize conflicts
7: cycle− limit← cycle− limit− 1
8: else
9: increase the weight of all currently violated constraints

10: breakout− limit← breakout− limit− 1
11: return(S, W )

Algorithm 1: Breakout algorithm.

Algorithm 1 shows the basic breakout algorithm. The
stateS =< x1 = v(x1, S), ..., xn = v(xn, S) > is an as-
signment of values to all variables of the problem. It can
be a solution when no constraint is violated, otherwise it
has a number of conflicts with constraints. The breakout al-
gorithm contains two essential steps: determining the local
change that minimizes conflicts, and increasing the weights
(called the breakout).

With every constraint, we associate a weight:
Definition 7 (Constraint weight w). Each constraint is as-
signed a weightw(c(xi, xj)) or in short wi,j . All weights
are positive integer numbers and are set to 1 initially. The
breakout algorithm uses the weights in order to escape from
local non- solution minima.

In Algorithm 1, the weights are grouped together in the
weight vectorW .

Conflict minimization consists of choosing a variable and
a new value that reduces as much as possible the conflicts in
the current state. For this, we compute for every variable its
conflict value, defined as follows:



Definition 8 (Variable conflict value ω). The conflict value
ω(xi, va, S) of variable xi assigned the valueva in state
S, is the sum of weights of the constraints involvingxi that
would be violated in a stateS′ that differs fromS only in
thatxi = va:

ω(xi, va, S) =
∑

cl(xi,xj)

w(cl) · cl(xi = va, xj = v(xj , S))

wherev(xj , S) is the value assigned to variablexj in state
S.

The best improvement is to the variable/value combi-
nationxi, va such thatω(xi, v(xi, S), S) − ω(xi, va, S) is
largest. If there is such a combination with an improvement
greater than 0, the variable/value combination with the best
improvement is chosen as the local improvement.

If no improvement is possible, the algorithm is in a local
minimum. In this case, the algorithm increases the weight of
each violated constraint by 1, and again attempts to compute
the possible improvements. Increasing the weights of each
violated constraint is what we term abreakout step. Since
the current violations will gain more weight, eventually an
improvement in the conflict value will be possible.

In general, one imposes a runtime limit on the algorithm:
there can be a limit on the number ofiterations (cycles), i.e.
the number of times variables are revised, or, on the number
of breakout steps.

For the breakout algorithm, we can observe the following:

Lemma 1. Afterm breakout steps, the sum of the constraint
weightswsum =

∑
c(xi,xj)∈CPk

wi,j of an unsolvable sub-

problemPk with |CPk
| = q constraints must be greater than

or equal tom + q.

Proof. If a subproblem is unsolvable, then in every breakout
step, one or more of the subproblem constraints must be vi-
olated and the corresponding constraint weight is increased.
The lower bound forwsum can be derived by assuming that
in every iteration only one constraint is violated, in this case
the weight sum must be equal tom + q.

Based on Lemma 1, we define:

Definition 9 (Weight sum condition for subproblem Pk).
We say that a subproblemPk satisfies the weight sum con-
dition if and only if afterm iterations of the breakout algo-
rithm, the condition of Lemma 1:

q∑
i=1

w(ci) ≥ m + q

is satisfied, whereci = c(xs, xt) are all the constraints of
the constraint setCPk

of the subproblemPk, andq = |CPk
|.

The weight sum condition is a powerful tool for searching
unsolvable subproblems since by Lemma 1, any unsolvable
subproblem must satisfy it:

Lemma 2. After m breakout steps, an unsolvable subprob-
lem withq constraints must satisfy the weight sum condition.

Proof. The condition is ensured by Lemma 1.

Figure 1: The constraint weight graph of an unsolvable
problem containing three unsolvable sub-problems of size
3 (x1, x2, x9), 4 (x3, x4, x5, x6) and 5 (x1, x2, x7, x8, x9),
after 0 and 100 breakout steps.

Thus, if afterm iterations the breakout algorithm has not
found a solution, and we suspect that the problem contains
an unsolvable subproblem with3 constraints, then we only
have to consider subproblems whose weight sum is at least
m + 3. If we apply this constraint in the problem of Figure
1, we find that the constraints of w1, w9, w10, whose sum
is 103, are the only three constraints that satisfy the sum
constraint and indeed describe an unsolvable subproblem of
size 3: colouring a graph of 3 nodes with only 2 colours.

When applying the breakout algorithm to small problems
that are entirely unsolvable, the condition can be already ap-
plied after a small number of breakout iterations. When un-
solvable subproblems are embedded in a larger structure, as
shown in Figure 1, there will also be many subproblems that
satisfy the weight sum condition by accident. In this case,
we may need to run the breakout algorithm for a certain min-
imum number of cycles before the unsolvable subproblem
can be reliably identified.

Considering a randomly chosen individual constraintc,
we can measure the probability that after m breakout stepsc
is violated in a breakout step as:

p(c = violated) =

∑
cl∈C w(cl)− 1

m|C|
(1)

When solving the problem, this probability will decrease
during the first BO steps, since BO progressively eliminates
conflicts. If the problem is solvable for the BO, then the
probability eventually becomes 0. Otherwise, it will stabi-
lize and converge towards a constant value. If this is the case
and BO cannot solve the problem due to a hard or unsolvable
subproblemP of sizeq, the constraints that belong to the
unsolvable subproblem are identified by the fact that their
probability of being violated is at least equal to1/q. Thus,
the expected difference in weight between a constraint that
is in the unsolvable subproblem and one that is not is1:

δ = (1/q − p(c = violated)) ·m (2)

1This ignores the fact that the constraints in the unsolvable sub-
problem itself increase the probability of constraint violations, so
it is overly pessimistic.



As constraints belonging to the unsolvable subproblem
can be identified only when their weights differ from the
others by at least 1, we propose as a reasonable heuristic for
choosing the number of breakout iterations for identifying
subproblems of sizeq as:

m(q) ≥ 1
1/q − p(c = violated)

(3)

which means that the expected difference in weight is at
least 1. When higher accuracy is desired, we can of course
choose a higher expected weight difference and thus a larger
number of iterations.

For example, in Figure 1, the total weight of the 14 con-
straints afterm = 100 breakout iterations is 245, so that the
probability:

p(c = violated) = 231/1400 ' 0.165

Thus, in this problem we could identify a subproblem of size
3 after approximately1/(1/3 − 0.165) = 1/0.16833 ≤ 6
iterations, while for a subproblem of size5 we would need
about 30 iterations, and a subproblem of size7 could not be
identified with this reliability at all sincep(c = violated) is
larger than1/7.

Note that due to equation 3 this method will work very
well when p(c=violated) and q are small. In this case, the
minimum number of required iterations m becomes small.
This means that it is always easier to identify an unsolv-
able subproblem of sizeq than a larger one of sizeq′ > q.
Also, it is always easier to identify an unsolvable subprob-
lem when the average number of constraint violations in a
breakout step is small. These conditions are not unrealistic.
In practice, problems are usually not excessively overcon-
strained and often contain only a few flaws of small size.
With our method such flaws are easily identified and help
to repair the problem. This method is therefore particularly
well suited to deal with situations where there are small un-
solvable subproblems. We now concentrate on developing a
fail first variable order from the constraint weights for guid-
ing a systematic search process such as backtracking.
Since high constraint weights indicate unsolvable or hard
subproblems of small size, variables that are connected by
these constraints, must be sorted at the top of the variable
list so that a systematic search algorithm either fails early, or
solves the hardest subproblem first. Besides the constraint
weights the graph structure must be also considered. It is
possible, that the highest constraint weights belong to dif-
ferent hard or unsolvable subproblems. We therefore order
the variables in such a way that the next variable is always
the variable, where the sum of the constraint weights of the
constraints that connect this variable with the variable in the
sorted variable list is the highest. This constraint weight di-
rected, fail-first variable ordering heuristic is given in the
following greedy algorithm:

Functionweight-ordering(X, C) first assigns the empty
set to the sorted variable setXs. The function argmax in line
3 then takes as input the set of constraints and returns from
these the one with highest weight. Then the two variables
that are connected by this constraint are added toXs. Then
the function enters the main loop where, variable by variable

1: Functionweight-ordering(X, C)
2: Xs ← {};
3: cmax(xi, xj)← argmaxc∈C(w(c(xi, xj)));
4: Xs ← {xi, xj};
5: while |Xs| < |X| do
6: Xp ← X \Xs; max sum← 0;
7: for all xi ∈ Xp do
8: sum← 0;
9: for all c(xi, xj) ∈ C ∧ xj ∈ Xs do

10: sum← sum + w(c(xi, xj));
11: if sum > max sum then
12: xnext ← xi; max sum← sum;
13: Xs ← Xs ∪ {xnext}
14: return Xs

Algorithm 2: Constraint weight variable order heuristic
weight-ordering: orders the variables with respect to the
highest constraint weight sum and the graph structure.

is selected and added toXs. It selects the next variable from
the variables that are not yet selected and where the con-
straint weight sum of the constraints between that particular
variable and variables inXs, is the highest.

The Distributed Solving Scheme
The observed properties are not only useful for develop-
ing new central search methods, but equally for distributed
methods. We are now going to implement a distributed ver-
sion of the simple hybrid algorithm that we described in the
last chapter.
The architecture of the distributed hybrid algorithm is as fol-
lows. We first try to solve the problem with the Distributed
Breakout Algorithm (DisBO) and abort if no solution is
available after exceeding the maximum number of cycles.
Then, the agent, who is the owner of the constraint with the
highest constraint weight starts a synchronous distributed
backtracking (DisBT) process. The variable order of the
DisBT process is equivalent to the one that we described in
the central variable ordering function (Algorithm 2). How-
ever, in order to save messages when the problem fails al-
ready after the first few variables, the entire variable order
is not determined beforehand, but incrementally, during the
DisBT execution; every time the partial solution needs to be
extended by a new variable, only then the next variable is se-
lected. The DisBT process continues until it proves that the
problem is infeasible or until a solution is found; therefore
the distributed hybrid algorithm is complete.

Distributed Breakout Algorithm (DisBO)
The basis of our distributed hybrid algorithm is the dis-
tributed breakout algorithm (DisBO), see Yokoo et. al. and
also Zhang et. al. (Yokoo 2001), (Yokoo et. al. 1996),
(Zhang et. al. 2002). DisBO is described in two versions.
The first version operates with quasi local minima, where
an agent increases its constraint weights already, when one
or more of its constraints are violated, and the possible im-
provements of all its variables as well as of the neighbour
variables is 0. However, as Yokoo et. al. already point
out, quasi local minima cannot guarantee a global minimum



and lead to the situation where agents increase their con-
straint weights too ’early’ and therefore add ’noise’ to the
constraint weight system.

In the second version, called distributed breakout algo-
rithm with broadcasting, the agents broadcast to all agents
when they are in a quasi local minimum, and increase their
weights only when all agents are in a quasi local minimum,
which is then a real local minimum.

Since our variable ordering scheme is sensitive to ’noise’
imposed upon the constraint weights, and also because
’noise’ adversely affects the performance for solving dense
problems, we implement a DisBO version, where we allow
an increase in weights only in real minimum states. How-
ever, in order to reduce the message traffic caused by expen-
sive broadcasting of quasi local minima states, we suggest to
use instead a general synchronisation mechanism (see termi-
nation detection mechanism in (Yokoo 2001)). This mech-
anism we can then use for detecting a solution, a real local
minima, and also the highest constraint weight of the prob-
lem.

We now briefly describe the DisBO algorithm in terms of
the steps executed in every cycle:

Step 0: (Initialization). The agent assigns to each variable
that he owns,xi ∈ Xmy ∧ Xmy ← {xi|xi ∈ X ∧
owner(xi) = self} a value that is randomly chosen
from its domaind(xi). Then he updates all neighbours
that have a constraint with any of his public variables
xi ∈ Xpub on the corresponding assignmentd(xi). Then
all constraint weightsw(c(xi, xj)) are set to 1 and the cy-
cle counter is initialised to 1.

Step 1: (Local Variable Revision). The agent revises all
private variablesxi ∈ Xpriv that violate a constraint and
assigns to them the first domain value that minimizes the
conflict. If no such value exists, the assignment remains
unchanged. The revision process continues until no more
improvement is possible.

Step 2: (Determination of Variable Proposals).The
agent considers its public variables that violate a con-
straint xi ∈ Xpub and determines for each the domain
value that minimize the conflict value. The new as-
signment proposal together with the conflict reduction
value, is then sent as a proposal to every neighbour
agent (remark: two agents are neighbours if they share a
constraint).

Step 3: (Evaluation of Variable Proposals).When the
agent has received the proposals of all his neighbour
agents, it compares all proposals and determine the win-
ner proposal(s). The winner proposal(s) is the one with
the greatest conflict reduction value. If two proposals that
refer to neighbouring variables win, then the proposal,
belonging to the lexicographic smaller agent, wins.

Step 4: (Variable Update). If the agent is the owner of a
winner proposal, it updates the associated variable and up-
dates the corresponding neighbours that have a constraint
with the updated variable.

Step 5: (State Detection).At the end of each cycle the
agent must detect the assignment state with its neighbours

in order to proceed. This state detection method is de-
scribed in the section ’Global State Detection Method’.
Based on the detected state the agent will then either
terminate, continue with the next cycle or increase the
weights of violated constraints.The following states and
consequent execution steps occur:

• Solution. The variable assignment is asolutionand the
agents terminate the algorithm and return the solution.
• Local minimum. When the variable assignment is

in a local minimum, the agents increase all constraint
weights by 1.
• Maximal number of cycles. If mcyc > 0, the agent

counts down the cycle countermcyc by 1 and contin-
ues with DisBO by branching back to step 1. When
mcyc is equal to 1, the agent aborts the execution of
DisBO and, if he is the owner of the constraint with
the highest weight (see variable ordering scheme), he
starts the DisBT process. In order to avoid an additional
search process for this constraint, the agent includes
during the last cycle, whenmcyc = 1, his maximum
constraint weightmw in the state detection messages.
This ensures that the global highest constraint weight
propagates, and hence determines the agent that starts
DisBT.

Global State Detection Method
The global state detection method is used in the DisBO algo-
rithm in order to detect two assignment states, a solution or
a local minimum. This method is described by Yokoo et.al.
see (Yokoo 2001) where it is used for detecting algorithm
termination. In their example, an agent keeps a termination
counter and updates it according to the following two rules:

1. If a constraint is violated the termination counter is set to
0, otherwise to 1. Then the counter value is sent to all
neighbours.

2. When termination counter values are received from all
neighbours, the termination counter is updated by the low-
est termination counter value. If the new termination
counter is greater than 0, the counter is increased by 1.
Then the termination counter value is sent to all neigh-
bour agents.

By inductive proof, one can show that when an agent’s
termination counter becomesdmax, which is equal to the
shortest link distance between two agents that are furthest
apart within the network (see Figure 2), that the termination
counter value has fully propagated and that no agent within
the distancedmax can have a termination counter equal to
0, or in other words, a constraint violation. Note that we
assume that all agents know the value ofdmax.

Besides detecting the algorithm termination, the state de-
tection method is also used for detecting a real local min-
imum, where the value 0 represents the state in which the
agent is not in a local minimum.

For the procedureStateDetection(mcyc), which also
starts theSyncDisBTfunction, an agent keeps the following
information:mcyc - cycle counter,tc - termination counter,
lc - local minimum counter,sdc - state detection counter,



Figure 2: The distanced between two agents is defined as
the shortest link distance between them. In a finite network
of agentsdmax is then defined as the greatest link distance
d of two agents within the network. In the above agent net-
work dmax is equal to 4, which is for example the shortest
path betweena1 anda8.

dmax - the shortest distance between the two agents that
are furthest apart,cmax - the local constraint with the high-
est weight,mw - the maximum weight value andmwref -
the reference to the owner ofmw (e.g. agent name) as sec-
ond selection criteria when two constraints have the highest
weight. The function myvar(c(xi, xj)) returns to the agent
the variable he owns, eitherxi or xj . The state messages
contain the two counter valuestc, lc and the tuple (mw,
mwref ) referring to the maximum weight and reference to
the owner of that weight.

1: ProcedureStateDetection(mcyc)
2: sdc← 1;my lc← 1;my tc← 1;
3: if mcyc = 0 ∧my mwref = self then
4: x1 ← myvar(cmax(xi, xj));
5: callSyncDisBT(x1, {}) andexit procedure;
6: if anyci ∈ C is violatedthen my tc← 0;
7: if improvement during cyclethen my lc← 0
8: cmax ← argmaxci∈{Cpub∪Cpriv}(w(ci));
9: my mw ← w(cmax); my mwref ← self ;

10: sendstateto all neighbours
11: waitForState← TRUE;
12: while waitForState do
13: if received (state, tc, lc, (mw, mwref)) then
14: my tc← min(tc, my tc); my lc← min(lc, my lc);
15: (my mw, my mwref)←

max((mw, mwref), (my mw, my mwref))
16: if my tc = 0 and my lc = 0 and mcyc > 1 then
17: sendstateto all neighbours
18: waitForState← FALSE;
19: else
20: if received astatemessage from all neighboursthen
21: if my tc = dmax then
22: terminate with solution
23: if my lc = dmax then
24: increase weights of violated constraints
25: if sdc = dmax then
26: waitForState← FALSE;
27: else
28: sendstatemessage to all neighbours
29: my tc← my tc + 1; my lc← my lc + 1;
30: sdc← sdc + 1

Distributed Backtrack Algorithm (DisBT) with
constraint weight based variable ordering

The distributed systematic search algorithm is based on the
synchronous distributed backtrack search algorithm (DisBT)
from Yokoo et.al. (Yokoo 2001) and extended by a dis-
tributed constraint weight based variable ordering heuris-
tic. For this algorithm we assume the same procedures,
functions and messages as they are described for DisBT in
(Yokoo 2001) and (Yokoo et. al. 1998).

The standard DisBT algorithm starts with a fixed variable
order that the agents agree on before starting the backtrack
process. However, for saving messages, we do not deter-
mine the entire variable order in advance, but order vari-
ables incrementally, every time a partial solution needs to
be extended by a new variable. We select the new variable
according to the same order rule used in the variable order
functionweight− ordering(X, C) (Algorithm 2).

FunctionSyncDisBTcarries out synchronous backtrack-
ing with an incremental addition of the variable, such that
the sum of the weights of constraints leading back to earlier
variables is the highest.

The partial assignmentP to variablesx1..xk−1 is passed
to the agent responsible forxk. It first gathers all values
that are compatible with this partial assignment, and tests
whether it has solved the entire problem. If it is the last vari-
able and has found a consistent solution so far, then it calls
function FindV ar to add the next variable; if there is no
next variable it returns success. It then carries out a back-
track search with either the new or the next variable. If val-
ues are exhausted without success, the algorithm backtracks
by returning failure. If backtracking reaches the first node,
then the problem has been shown unsolvable.

For each variablexi in the search, the owner agent keeps
the following information:

• Pred(xi): predecessor variable in search order

• Succ(xi): successor variable in search order

• mw: value of the maximum sum of weights of a neigh-
bour variable back into the problem

1: FunctionSyncDisBT(xi, P )
2: vals ← {v|v ∈ di(xi) such that no constraints with assign-

ments inP are violated}
3: if (Succ(xi) = NIL and vals 6= {}) then
4: xnext ← FindV ar(xi, 0, NIL)
5: if xnext = NIL then
6: xi ← next(vals);
7: returnsuccess to Owner(Pred(xi)) and terminate
8: else
9: AddV ar(xi, xnext)

10: while vals has nextdo
11: xi ← next(vals);
12: invokeOwner(Succ(xi)):

r ← SyncDisBT (Succ(xi), P ∪ xi)
13: if r = success then
14: returnsuccess to Owner(Pred(xi)) and terminate
15: if Pred(xi) = NIL then
16: inform all agents problem is unsolvable
17: else
18: returnfailure



Additionally, for every variablexj not in the search pro-
cess, its agent keeps the list of its neighbours that are part of
the search process.

FindVar is a function that finds the neighbour with
maximum weight sum and chains further back in the search
tree. When the first node is reached, the maximum is found
and the corresponding variable is handed back down to the
last one.

1: FunctionFindVar (xi,mw,xnext)
2: for xn ∈ neighbours(xi) do
3: invokeOwner(xn): ws← SumWeights(xn)
4: if ws > mw then
5: xnext ← xn ; mw ← ws
6: if Pred(xi) = NIL then
7: returnxnext

8: else
9: invokeOwner(Pred(xi)):

xnext ← FindV ar(Pred(xi), mw, xnext)
10: returnxnext

AddVar is a procedure that adds variablexnext as the
last one followingxlast in the search process. It includes
setting certain variables by the owner ofxlast and others by
the owner ofxnext by message passing.

1: ProcedureAddVar (xlast, xnext)
2: for xn ∈ neighbours(x) do
3: informOwner(xn) thatxnext is now part of the search;
4: Succ(xlast)← xnext; Pred(xnext)← xlast

5: Succ(xnext)← NIL;

SumWeights sums up the weights of the constraints
going from variablexi back to variables already in the
search process:

1: FunctionSumWeights(xi)
2: if Owner(xi) is not part of the search processthen
3: return sum of weights of constraints with neighbours in

search process
4: else
5: return 0

Experiments and Results
For evaluating the hybrid algorithm DisBOBT we solve a
large set of 1000 randomly generated scheduling problems
and compare its performance in terms of exchanged mes-
sages with that of DisBO. We do not compare DisBOBT to
DisBT, as DisBT requires unacceptable long execution times
for solving the problems.

The scheduling problems are generated according to the
KRFP (kernel resource feasibility problem) model, see (El
Sakkout 2000), and are described by the following items:

• a schedule horizon: a project start and end date

• a set of tasks: each task has a variable start/ finish date
and a fixed duration

• a set of precedence constraints: each precedence con-
straint links two tasks and determines their execution se-
quence.

Solving Scheduling Problems 
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Figure 3: 1000 randomly generated scheduling problems
solved with DisBO and DisBOBT.

• set of deadlines.

• a set of resource constraints: each project has a set of
unary and discrete resources.

For the experiments, we generate schedules of different
tightness. The tightness is controlled by randomly vary-
ing the number of deadlines, precedence and resource con-
straints. The generated problems have a connectivity be-
tween 4-22. The ratio of solvable to unsolvable problems
(within the execution bounds) is 1:1. In all experiments
the project start and finish date is fixed, and the number of
tasks is always 25. The schedules are distributed amongst
5 agents. We limit the number of messages to 25,000 for
both algorithms and start with systematic search (DisBT)
after a fixed number of breakout steps when BO does not
find a solution. By experimenting with different breakout
bounds we find that the best compromise between system-
atic search and local search in terms of total number of con-
straint checks (DisBO+DisBT) is to start systematic search
after 40 breakout steps. If we start systematic search after
less breakouts, the number of constraint checks for DisBT
goes up and for DisBO down. If we start systematic search
after more breakouts the result is the opposite. However, in
both cases the total number of constraint checks is always
higher.

In the graph we draw the number of messages over the
graph connectivity. The phase transition occurs approxi-
mately at a connectivity of 18.

The graph shows that DisBOBT clearly outperforms
DisBO for all connectivity values by a factor of 10-30.

Algorithm Variants and Future Work
Dynamic Cycle Termination Control
The ability to identify hard and unsolvable subproblems
is not dependent on the absolute weight values, but on
the weight differences. As soon as constraint weights of
an unsolvable subproblem differ from neighbour constraint
weights, the unsolvable subproblem can be reliably identi-
fied. For the moment we are using a static cycle termination



control, that is optimal for the entire scheduling problem set,
but not for each individual scheduling problem. In many
cases aborting the algorithm earlier or later, is beneficial and
saves a great deal of messages. We have implemented such
a dynamic cycle termination control centrally, and improved
the algorithm performance by a factor of 30. We are cur-
rently working on developing such a dynamic cycle control
for the distributed hybrid algorithm.

Parallel Backtrack Search
In the presented algorithm the agents execute a single dis-
tributed backtracking process, where the hardest or unsolv-
able subproblem is sorted to the top of the variable list.
However, a problem can contain several unsolvable subprob-
lems, which are distributed within the problem and are quasi
independent from each other by not sharing any constraint.
For example, think of a project schedule, where indepen-
dent resource constrained tasks are constrained by different
tight deadlines and each representing a hard subproblem. In
this case, only one of the hard sub problems is sorted to the
top of the variable list, and if it is solvable, it will take a
long time, due to ordering heuristic, before the backtrack
search reaches the other hard sub problems. For balancing
the search and tackling the solving of such quasi indepen-
dent hard subproblems, we propose the execution of paral-
lel backtracking processes, where each agent can decide to
solve the problem from a different end as soon as he identi-
fies a hard or unsolvable subproblem.

When we run parallel backtracking processes, we have
to ensure that two partial solutions do not start to overlap
and we solve them redundantly. To prevent this, the agent
must monitor the set of labelled variables of the different
search processes and terminate a processes, for example,
when more than50% of the variables overlap. Then par-
tial solutions must be merged so as to not waste the search
effort.

The idea of implementing parallel backtrack search as dis-
tributed constraint satisfaction algorithm is not new. Re-
cently a parallel backtrack search for solving random dis-
tributed CSPs was presented by (Meisels et. al. 2002). This
algorithm however performs parallel search on interleaving
subtrees (see (Meseguer et. al. 1995)), where the search tree
is divided into separate subtrees using the possible assign-
ments of the first variable. This parallel search technique
unfortunately is not suited to integrate the search of overlap-
ping search spaces, i.e. it does not accommodate the merg-
ing of partial solutions.

Distributed Spanning Tree
A great deal of communication messages from the break-
out algorithm originates from the state detection method in
each cycle. As this method is based on a kind of ’flood-
ing’ mechanism, where an agent sends the same message to
all his neighbours, the method produces a lot of redundant
messages. We propose to replace this method by introducing
a fixed max spanning tree communication structure, where
each agent has one root agent and can have many sub agents.
With such a max spanning tree, redundant messages can be
eliminated.

Conclusions
In the first part of the paper we have presented a powerful
identification scheme where the constraint weights assigned
by the breakout algorithm are used to identify hard or un-
solvable subproblems of a CSP. We have shown how this
information can be used to identify a very efficient fail-first
variable ordering, and thus to combine the breakout algo-
rithm with backtrack search for a highly efficient overall
CSP search algorithm.

In the second part of the paper we used the fail-first vari-
able ordering heuristic for developing a hybrid distributed
constraint satisfaction algorithm, DisBOBT. This algorithm
combines the distributed breakout algorithm DisBO and the
synchronous distributed backtracking algorithm DisBT and
is complete. In order to couple the two algorithms, we ex-
tended DisBT by an incremental variable order function that
selects the next variable according to the fail-first variable
ordering heuristic.

We compared the performance of DisBOBT with that of
DisBO by solving a large set of scheduling problems. Due to
the termination guarantee and the efficient fail first variable
order heuristic, DisBOBT outperforms DisBO and DisBT
for all connectivity regions.

We are convinced that the presented hybrid algorithm and
variable order scheme represent a platform for developing
more powerful DisCSP algorithms in the future.
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