
Open Constraint Satisfaction

Boi Faltings and Santiago Macho-Gonzalez

Artificial Intelligence Laboratory (LIA),
Swiss Federal Institute of Technology (EPFL),
IN-Ecublens, CH-1015 Ecublens, Switzerland,

boi.faltings|santi.macho@epfl.ch,
http://liawww.epfl.ch/

Abstract. Traditionally, constraint satisfaction has been applied in closed-
world scenarios, where all choices and constraints are known from the
beginning and fixed. With the Internet, many of the traditional CSP
applications in resource allocation, scheduling and planning pose them-
selves in open-world settings, where choices and constraints are to be
discovered from different servers in a network.
We examine how such a distributed setting affects changes the assump-
tions underlying most CSP algorithms, and show how solvers can be
augmented with an information gathering component that allows open-
world constraint satisfaction. We report on experiments that show strong
performance of such methods over others where gathering information
and solving the CSP are separated.

1 Constraint Satisfaction in Distributed Information

Systems

Constraint satisfaction has been applied with great success to resource allocation,
scheduling, planning and configuration. Traditionally, these problems are solved
in a closed-world setting: first all variables, domains, constraints and relations
are defined, then the CSP is solved by a search algorithm.

With the increasing use of the Internet, many of the problems that CSP
techniques are good at now pose themselves in a distributed setting. For example,
in personnel allocation, it is possible to obtain additional staff on short notice.
In configuration, it is possible to locate additional suppliers of parts through the
internet.

This change in setting makes a fundamental difference to the underlying
constraint satisfaction problem. Most successful CSP methods, in particular con-
straint propagation, are based on the closed-world assumption that the domains
of variables are completely known and fixed. In an open setting, this assumption
no longer holds, making completeness and termination of search algorithms are
more complex issue.

In an open world, there are also fundamental questions about the semantics
of a CSP. When we combine options for a CSP from different sources, one might
suspect that the right way to form the combination would be to form a CSP



whose solutions are the union of the solutions of the CSPs being combined.
However, this would not make sense if we are trying to add options to make an
unsolvable problem solvable.

Finally, the criteria for performance shift as each information gathering step
is orders of magnitude more expensive than searching for solutions themselves.
Consequently, good heuristics for information gathering are more important than
efficient search heuristics.

In this paper, we define Open Constraint Satisfaction Problems (OCSP). We
examine relevant related work in the CSP and database communities, and then
propose solutions for two major issues: the semantics of combining CSP, and
integrating information gathering and solving of OCSP. Finally, we report on
some initial experiments that show the strong performance gains that OCSP
bring over carrying out information gathering and CSP solving sequentially.

2 Open Constraint Satisfaction Problems

In this section, we define a formal framework for open constraint satisfaction
problems.

CSP
Solver

V1 V2

V3 V4

V5

...

...

Mediator
(Yellow
Pages)

options(v2,{...})
options((v2,v4),{...})

more(v2,v4,(v2,v4))

IS1

IS2

ISk

Fig. 1. Elements of an open constraint satisfaction problem

We consider the setting shown in Figure 1 which reflects the important ele-
ments that occur in an open setting. The CSP solver can access an unbounded
set of information servers through a mediator. The mediator is a directory that
indexes the information that can be found on the information servers. Such di-
rectories already exist in unstructured form (Yahoo), and industry is working
towards formal models based for example on the UDDI standard. For the pur-
poses of our research, we consider that this technology implements a functionality
whereby the CSP solver can obtain additional domain values:

– using the more(vi,...,(vi,vj),...) message, it can request the mediator
to gather more values for these variables. The mediator will then contact
randomly selected information servers. While servers are selected randomly,
any server on the network will eventually be contacted.



– using options(vi,...) and options((vi,vj),...) messages, the media-
tor informs the CSP solver of additional domain values or constraint tuples
found in the network. This response will return what was found on the
servers, so it may be empty or not contain any new values.

– when there are no more values to be found, the mediator returns nomore(vi,...)
to inform the problem solver of this.

Note that as we assume an unbounded number of information sources, it
is not even possible to gather all information in a single database and then
start the problem-solving process, as has been implemented in many distributed
information systems ([1, 2, 4]).

We now define:

Definition 1. An open constraint satisfaction problem (OCSP) is a possibly
unbounded, partially ordered set {CSP (0), CSP (1), ...} of constraint satisfaction
problems, where CSP(i) is defined by a tuple < X, C, D(i), R(i) > where

– X = {x1, x2, ..., xn} is a set of n variables,
– C = {(xi, xj , ...), (xk , xl, ...), ...} is a set of m constraints, given by the or-

dered sets of variables they involve,
– D(i) = {d1(i), d2(i), ..., dn(i)} is the set of domains for CSP(i), with dk(0) =
{} for all k.

– R(i) = {r1(i), r2(i), ..., rm(i)} is the set of relations for CSP(i), each giv-
ing the list of allowed tuples for the variables involved in the corresponding
constraints, and satisfying rk(0) = {} for all k.

The set is ordered by the relation ≺ where CSP (i) ≺ CSP (j) if and only if (∀k ∈
[1..n])dk(i) ⊆ dk(j), (∀k ∈ [1..m])rk(i) ⊆ rk(j), and either (∃k ∈ [1..n])dk(i) ⊂
dk(j) or (∃k ∈ [1..m])rk(i) ⊂ rk(j).

A solution of an OCSP is a combination of value assignments to all variables
such that for some i, each value belongs to the corresponding domain and all value
combinations corresponding to constraints belong to the corresponding relations
of CSP (i).

3 Related work

Within the CSP community, the work that is closest to ours is interactive con-
straint satisfaction (ICSP), introduced in [5]. Similarly to our work, in ICSP
domains are acquired incrementally from external agents. The forward checking
algorithm is modified so that when domains become empty, it launches a specific
request for additional values that would satisfy the constraints on that variable.
In earlier work ([6]), the same authors also show how arc consistency algorithms
can be adapted with the right dependency structures so that consistency can be
adapted to values that might be added later. However, ICSP has a strong focus
on the efficiency of the CSP search algorithm rather than on minimzing informa-
tion gathering; it typically gathers significantly more values than necessary. It
also does not address the problems of an open environment, in particular it limits



itself to finite domains and assumes that variable domains can be exhaustively
retrieved from the information agents.

Open constraint satisfaction bears some ressemblance to the dynamic con-
straint satisfaction problem (DCSP), where constraints are added and removed
over time. Bessiere ([7]) has shown methods for dynamically adapting consis-
tency computations to such changes. However, dynamic CSP methods require
that the set of all possible domain values is known beforehand, and thus do
not apply to the OCSP problem. Another major difference is that OCSPs are
restricted to a monotonic ordering of domains and values, while DCSP allow
adding and removing variables in any order.

Another related area is distributed CSP(DisCSP), investigated in particular
by Yokoo ([9]) and more recently also other researchers. DisCSP does not require
agents to announce the complete variable domains beforehand, so by its formula-
tion it would also allow them to be open. However, all known search algorithms
for solving DisCSP rely on closed-world assumptions over variable domains for
initiating backtracks. As DisCSP also require each variable to be controlled by
a single agent, they also assume that all domain values are known and fixed by
a single agent during the search, and so they do not address the context posed
by OCSP either.

There has been some research into using constraints as a formalism for rep-
resenting and integrating information, in particular the KRAFT project ([10])
and the FIPA CCL content language ([11]). These address in particular issues
of how to represent constraints in languages such as XML so that it is easy to
carry out composition. They will be important for practical implementations of
OCSP.

Research in the database community has addressed issues of information
gathering and information retrieval, starting with federated databases ([12]),
then dynamic information integration ([13, 1]), and finally multi-agent informa-
tion systems such as InfoSleuth ([2, 3]). Significant work has gone into matchmak-
ing between queries and information sources. In our research, we use an ontology-
based classification similar to that of [14]. There are significantly more complex
matchmaking techniques such as the Information Manifold ([4]). Decker and
Sycara ([15]) investigate the efficiency of middle-agent systems, and Sycara ([16])
elaborates on their use as information agents. Techniques such as LARKS ([17])
show that much more complex classification than simply ontologies are possi-
ble. Thus, there is a sufficient technology base for implementing the mediator
functionality we assume in this paper.

Recently, researchers in information retrieval have paid more attention to
driving information retrieval from the task that users are trying to solve. Sys-
tems such as Watson and I2I ([18]) and just-in-time information retrieval ([19])
automatically retrieve information from databases, mail archives and other infor-
mation sources by matching it with keywords that occur in the current activity
of the user - for example, a document being prepared.



4 Using CSP for Information Integration

Solving OCSP implies that CSPs from different sources must be integrated.
We assume that the mediator performs the necessary translations so that it
returns additional options as domains and relations of a CSP whose variables
and constraints are compatible with those of the problem being solved.

There are two different ways that the new domains and relations might be
integrated:

– conjunctive combination, meaning that the new information represents ad-
ditional constraints that any solution must satisfy. This occurs for example
when we want to schedule a meeting between many participants and need
to integrate all their time constraints.

– disjunctive combination, meaning that the new information represents addi-
tional options and thus enables additional solutions. This occurs for example
when a problem-solver obtains schedule information for the same route from
different airlines.

Conjunctive combination is a common case in constraint satisfaction algorithms
and handled simply by having all relations present simultaneously. Dynamically
adding and removing constraints using conjunctive combination has been ad-
dressed for example in dynamic constraint satisfaction ([8, 7]). For solving OCSP,
we particularly need disjunctive combination, which so far has not received much
attention in the CSP community (but see [10, 11]).

CSP formulations have commonly been compared through the solutions they
admit ([20]). This works well for conjunctive combination, where the solutions of
the combined problem is the intersection of the solutions of the components, but
is too restrictive for disjunctive combination: when we are looking for additional
options to make a scheduling or configuration problem solvable, we are often
combining subproblems that have no solutions to obtain a problem that has
solutions.

Thus, in accordance with the definition of OCSP, we define the disjunctive
combination of two CSP as follows:

Definition 2. The disjunctive combination of CSP1 = < X1, D
1, C1, R

1 > and
CSP2 = < X2, D

2, C2, R
2 > is CSP3 = < X3, D

3, C3, R
3 > where

– X3 = X1 ∪X2

– D3 = {d1

j |xj ∈ X1 ∧ xj 6∈ X2} ∪ {d
2

j |xj ∈ X2 ∧ xj 6∈ X1} ∪ {d
1

j ∪ d2

j |xj ∈
X1 ∩X2}

– C3 = C1 ∪ C2

– R3 = {r1

j |cj ∈ C1∧ cj 6∈ C2}∪{r
2

j |cj ∈ C2∧ cj 6∈ C1}∪{r
1

j ∪r2

j |cj ∈ C1∩C2}

The difficulty with disjunctive combination is that it is incompatible with the
pruning and constraint propagation techniques that have been fundamental to
most constraint satisfaction algorithms, and requires additional restrictions on
the model in order to give the desired results. The example in Figure 2 illustrates
the difficulties.



v1=a,b

v2=a,b,c

(b,c)C1’:

v1=a,b v3=a,b

(a,b)
(b,a)

v2=a,b,c

(a,b)
(b,a)
(c,a)

(a,a)
(b,b)

C1: C2:

C3:

v1=a,b v3=a,b

v2=a,b,c (a,b)
(b,a)
(c,a)

(a,a)
(b,b)

C2:

C3:

(a,b)
(b,a)
(b,c)

C1’’:

CSP1 CSP2

CSP3

Fig. 2. Possible problems with disjunctive combination of two CSP.

In CSP1, we can use constraint propagation to prune values c from variable
x2 and then tuple (c, a) from constraint c2. When we later combine with CSP2,
we do not obtain any additional solutions. But if we had combined with CSP1
without pruning, we would have also obtained the solution x1 = b, v2 = c, v3 = a.
The problem here is that pruning relies on a closed-world assumption: it does not
eliminate valid solutions, but only under the condition no additional options are
added. While it is easy to recognize this situation when solving a CSP, we have
to avoid cases where pruning has already been incorporated in the constraint
model. In order to characterize this property, we define:

Definition 3. A CSP is redundantly expressed if it contains a relation or do-
main whose validity depends on other relations or domains in the CSP.

A constraint model can also pose problems in the other direction. Consider
that CSP1 might have originally had an additional constraint C3. In the database
model, this constraint could have been removed as being redundant: it already
follows from C1 and C2. When we now combine with CSP2, we would also
obtain the new solution x1 = b, v2 = c, v3 = a, which would violate the original
constraint C3. To avoid this situation, we define:

Definition 4. : A CSP is completely expressed if and only if for any pair of
variables x and y and any pair of values x = a and y = b allowed by the constraint
(if any) between them, there is a way to change the rest of the CSP so that they
become part of a valid solution.

In order to be composable, CSP models have to be exactly expressed:



Definition 5. A CSP is exactly expressed if and only if it is completely but not
redundantly expressed.

as is shown by the following Theorem:

Theorem 1. The disjunctive combination of two exactly expressed CSPs is itself
exactly expressed.

Proof. Disjunctive combination does not involve constraint propagation nor elim-
ination of redundancies, so it does not affect the property of being correctly
expressed.

This defines a restriction that the CSPs provided by the mediator as well as
the CSP representations maintained while solving an OCSP must satisfy. Unfor-
tunately, it turns out that this condition rules out the use of many interesting
constraint propagation and preprocessing techniques. However, we will now see
that there are other techniques that can be applied.

5 Algorithms for solving OCSP

We now consider algorithms for actually solving OCSP. The simplest algorithm
is the brute-force algorithm: first collect all values from all information sources,
and then run an efficient CSP solver to generate a solution to the problem.
However, this can be very costly: imagine contacting all PC part manufacturers
to figure out how to fix your video card!

It is clearly preferable to only gather information as needed, as shown by
function o-search(Algorithm 1). If there is a solution within the values available

Function o-search(CSP)
s← solve(CSP )
if s 6= {} then

return s as a solution
CSPincr ← more(X ∪ C)
if nomore(X ∪ C) then

return failure
CSPnew ← disjunctive combination of CSP and CSPincr

o-search(CSPnew)

Algorithm 1: o-search: an incremental algorithm for solving OCSP.

from the servers, this algorithm will eventually find it, since the mediator will
eventually return every value or value combination that the servers can provide.
However, it is not very efficient, since it blindly gathers values for any part of
the CSP without focussing on those parts that caused the failure.

To reduce the amount of useless server accesses, information gathering must
focus on finding additional options for the minimal unsolvable subproblems of the



current instantiation of the CSP. Thus, we now show how to improve Algorithm 1
by identifying variables that participate in minimal unsolvable subproblems and
gathering values for these individual variables. We then show that the resulting
algorithm is complete, and how it can be generalized to the case where values
for entire subproblems can be obtained from the information servers.

5.1 Integrating search and information gathering

In order to simplify the algorithms, we make the assumption that all domains
of the OCSP are discrete, and that furthermore all constraints (including bi-
nary ones) have been encoded using the hidden variable encoding ([20, 21]). In
this encoding, all constraints are represented as additional variables with tuple-
valued domains representing the corresponding relations. The only remaining
constraints are then equality constraints that ensure consistency between assign-
ments to the original variables and the corresponding elements of the constraint
tuples. Besides the fact that the hidden variable encoding has been shown to
have desirable computational properties ([22]), it simplifies the OCSP formula-
tion since now all constraints are fixed, and information gathering only concerns
variable domains.

When a CSP has no solution, it is often the case that it contains a smaller
subproblem that already has no solution. It will not be possible to create a solu-
tion by information gathering unless values are added to variables and relations
of that subproblem. This fact can be used to more effectively drive information
gathering. The idea is to find a variable that must be part of an unsolvable
subproblem as a promising candidate for adding extra values. To develop this
into a general and complete algorithm, we need to address two issues: how to
identify unsolvable subproblems, and how to select all variables in turn to avoid
unbounded information accesses while missing a feasible solution.

The following lemma provides the basis for identifying variables that are part
of unsolvable subproblems:

Lemma 1. Let a CSP be explored by a failed backtrack search algorithm with
static variable ordering (x1, ..., xn), and let xk be the deepest node reached in
the search with inconsistency detected at xk. Then xk, called the failed variable,
is part of every unsolvable subproblem of the CSP involving variables in the set
{x1..xk}.

Proof. In order to reach xk, the search algorithm has constructed at least one
valid assignment to x1, ..., xk−1, so this set of variables does not contain any
unsolvable subproblem. However, there is no consistent assignment to x1, ..., xk,
so this set does contain unsolvable subproblem(s). Since the only difference is
xk, xk must be part of all of these unsolvable subproblems. ut

On the basis of this proposition, we can use the results of a failed CSP search pro-
cess to determine for which variable additional values should be collected. These
are then passed to the mediator, which will search for relevant information on
the network. When there are no additional values for this variable, the mediator



returns a nomore message, and other variables are then considered. The resulting
algorithm fo-search (failure-driven open search) is shown in Algorithm 2.

1: Function fo-search(X,D,C,R,E)
2: i← 1, k← 1
3: repeat {backtrack search}
4: if exhausted(di) then {backtrack}
5: i← i− 1, reset− values(di)
6: else

7: k ← max(k, i), xi ← nextvalue(di)
8: if consistent({x1, ..., xi}) then {extend assignment}
9: i← i + 1

10: if i > n then

11: return {x1, ..., xn} as a solution
12: until i = 0
13: if ek = closed then

14: if (∀i ∈ 1..k − 1)ek = closed then

15: return failure

16: else

17: nv ←more(xk)
18: if nv = nomore(xk) then

19: ek ← closed

20: dk ← nv ∪ dk

21: reorder variables so that xk becomes x1

22: fo-search(X,D,C,R,E) {search again}

Algorithm 2: Function fo-search for solving OCSP.

Algorithm 2 makes the assumption that variables are ordered by the index
i. It assumes that no consistency techniques are used in the search, although
the chronological backtracking can be replaced with backjumping techniques to
make it more efficient.

We are now going to show that fo-search is a complete algorithm for solving
OCSP. We start by defining:

Definition 6. An unsolvable subproblem of size k of an instance CSP (i) of
an OCSP is a set of variables S = {xs1, xs2, ..., xsk} such that there is no value
assignment (xs1 ∈ ds1, ..., xsk ∈ dsk) that satisfies all constraints between these
variables.

and showing the following property:

Lemma 2. Let S = {S1, ..., Sm} bet the set of unsolvable subproblems of instance
CSP (i) of an OCSP. Then for any instance CSP (j), CSP (j) � CSP (i), the
set of unsolvable subproblems S

′ it contains is a subset of S.

Proof. Suppose that CSP (j) contains a subproblem S ′ 6∈ S, and let S′ =
{xt1, ..., xtk}. By Definition 1, the domains dt1(i) ⊆ dt1(j), ..., dtk(i) ⊆ dtk(j).



S′ is solvable in CSP (i), and the values used in its solution must also be part
of the corresponding domains for CSP (j). Thus, S ′ cannot be unsolvable in
CSP (j). ut

This Lemma shows that the set of unsolvable subproblems in successive instances
of an OCSP is monotonically non-increasing.

We now consider more closely Algorithm 2, and in particular the sequence
of instances it solves in subsequent iterations. We have the following lemma:

Lemma 3. Assume that the last k + 1 calls to Algorithm 2 have been with in-
stances CSP (i0, ..., CSP (ik), that the algorithm has last searched variables in
the order xj1, ..., xjk and identified the k-th variable xjk as the failed variable,
and that the each of the instances CSP (i0), ..., CSP (ik) has identical unsolvable
subproblems. Then:

– in the last k calls, Algorithm 2 has called the mediator (function more)
exactly once for each of the variables xj1, ..., xjk;

– S = {xj1, ..., xjk} is a minimal unsolvable subproblem of CSP (ik);
– the algorithm will continue to call more on each of the variables in S in

turn until S becomes solvable.

Proof. As the algorithm always puts the variable for which it has called more
values as the first in the search, the first claim follows directly from the function
of the algorithm.

Furthermore, S is unsolvable as no solution could be found by complete
search. Suppose that it was not minimal, i.e. that there was a variable xil such
that S′ = S − xil was also unsolvable. xil was the failed variable when fo-

search was run on CSP (il), and that search must have included variable xk.
By Lemma 1, xil was part of every unsolvable subproblem of CSP (il) that also
involves xik . But as xik is the failed variable of subproblem S, by Lemma 1, it
is part of every unsolvable subproblem involving variables in S. Consequently,
every unsolvable subproblem within S must also involve xil.

The third claim follows from the fact that as long as S is unsolvable, running
fo-search on CSP (ik) gives an identical result as running it on CSP (i0). ut

We can now show completeness of Algorithm 2:

Theorem 2. Supposed that OCSP is solvable, i.e. by calling more on every
variable a sufficient number of times we eventually reach an instance CSP (j)
such that for all CSP (m) � CSP (j), CSP (m) contains no unsolvable subprob-
lems. Then Algorithm 2 will eventually terminate with a solution. Thus, the
algorithm is complete.

Proof. CSP (1) has finitely many variables and thus finitely many unsolvable
subproblems of size at most n. Assume that the algorithm never finds a solution;
then since by Lemma 2, the set of unsolvable subproblems is monotonically non-
increasing, there must exist an infinite sequence of calls to fo-search such that



the unsolvable subproblems are always identical. By Lemma 3, in such a sequence
the algorithm will eventually call for additional values for each variable of the
same unsolvable subproblem S. But since the OCSP is solvable, these calls must
eventually return values that will make S solvable. Thus, the sequence of calls
where subproblems remain unsolvable cannot be infinite. ut

An interesting consequence of Theorem 2 is that if a problem is unsolvable and
the set of available values is finite, the algorithm will stop while identifying a
minimal unsolvable subproblem. This can be useful when it is possible to obtain
information for several variables in parallel.

For efficiency reasons, it may be advantageous for the mediator to obtain
values not only for single variables, but entire subproblems with a single query.
Algorithm 2 can be modified for this case in two ways:

– it can not gather additional values until a minimal unsolvable subproblem
is completely identified, and then call the mediator on that subproblem or
subproblems that have a maximal overlap with that subproblem. However,
it is important that every variable in the subproblem is eventually queried,
for otherwise completeness is no longer ensured.

– it can gather additional values for all subproblems that include the last failed
variable. This would preserve completeness of the algorithm, but may be less
efficient than focussing search on the minimal unsolvable subproblem itself.

In all cases, it is important that the problem formulation used by the infor-
mation servers is by CSP that are exactly expressed so that composition will
produce correct results.

5.2 Efficiently integrating new values

Once additional values have been obtained, the search algorithm can be restarted
to see if the problem now has a solution. We would of course like this search to
avoid reexploring the search space that had already been explored unsuccessfully
earlier. The most obvious solution, reusing the nogoods observed from the earlier
search, is not practical since these nogoods may be invalidated by the new values.

The technique of decomposing a CSP into subproblems proposed by Freuder
and Hubbe in [24] turns out to be useful here. They proposed to decompose a
CSP to factor out unsolvable subproblems, thus limiting search effort to a smaller
and solvable part. This idea applies well to OCSP: the new, combined problem
can be decomposed into the old problem just searched (which is known to be
unsolvable) and a new one based on the values just obtained. However, if we limit
subsequent searches only to the newly found values for xi, we loose the benefit
of Lemma 1 and the algorithm is no longer complete. We can nevertheless use
the subproblem decomposition to make algorithms more efficient by ordering the
values so that the new values are explored first. In this way, the algorithm starts
search with the new subproblem, and only revisits earlier assignments when this
subproblem has been found to have no solution.



6 Experimental results

We tested the performance of the techniques we described on synthetic, randomly
generated constraint satisfaction problems. As an example, we used resource al-
location (equivalent to list coloring), which can be modelled as a CSP whose
variable domains are resources and whose constraints are all inequalities (ex-
pressing the fact that the same resources cannot be used for different tasks at
the same time).

Comparison metrics We compare the algorithms on two aspects. The first is
the number of accesses to information sources required to find a solution to the
OCSP, and measure the network traffic generated. Several metrics have been
developed in the field of database selection ([25]). Since each variable must have
at least one value, solving the CSP requires at least one information source access
per variable, and this is the theoretical optimum. We measure performance by
the ratio:

R =
Number of variables of the CSP

Number of access to IS until a solution is found

Since each variable must have at least one value, solving the CSP requires at
least one information source access per variable, so that the ideal value for R
is 1. Smaller values of R mean low efficiency. We consider R a good measure of
the relative amount of information gathering effort generated by the different
methods, but it does not take into account possible parallization or buffering.

Experiments and results The experiments followed the following steps:

1. Generate a random coloring problem, with between 3 to 10 variables, 3 to
13 values per variable, and random inequality constraints so that the graph
is at least connected and at most complete.

2. Distribute the values of the variables in a fixed set of n information sources.
The results reported here are for 12 information sources, but do not change
substantially when the number of sources is increased or decreased.

3. Use different algorithms to find the first solution to the problem, and measure
the efficiency ratio described above.

We compare the performance of different combinations of algorithms in the
mediator and the problem solver. For the mediator, we consider the following
algorithms:

– Brute Force: gather all values from all relevant information sources into a
single database, then search for a solution with these values.

– Random: The mediator considers only information sources indexed under
the given property and concept, and treats them in random order.

– Size: The mediator considers the same information sources as above, but in
decreasing order of the number of values they carry for the different proper-
ties.



For the problem solver, we consider the two algorithms given earlier, namely
OS for o-search, obtaining new values for variables randomly, and FO for
fo-search, where search for new values is driven by the failures of backtrack
search. Furthermore, we also compare the algorithms with interactive CSP ([5]).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10

R

Average Number of Values

RandomOS
SizeOS

RandomFO
SizeFO

ICSP

Fig. 3. Efficiency ratio against number of values for several combination of
search/mediator algorithms.

Figure 3 plots the efficiency ratio against the average number of values avail-
able for each variable for a setting in which there are a total of 12 information
servers. The more values there are for each variable, the easier the problem is
to solve, and we can see that the average efficiency in general increases with the
number of available values. On the other hand, efficiency can be observed to de-
crease slightly with the size of the problem. We have not observed any significant
dependency of information server accesses on constraint density.

When problem-solving and information gathering are not coupled at all,
problem-solving would require accessing all the servers, resulting in an efficiency
ratio of 12; this curve is not shown in the graph in Figure 3. Thus, the idea of
coupling the two processes definitely provides very large efficiency improvements.

We can also observe a significant improvement over interactive constraint
satisfaction as described in [5], which is natural as this algorithm does not provide
a method for choosing a variable and preselecting values by constraints is not
feasible in an open environment.

The best method is, as expected, a combination of failure-driven open search
combined with an indexing of the database on size; this gives an efficiency ap-



proaching the theoretical optimum. It appears furthermore that information
about the size of information servers plays a bigger role than directing the search
for the right variable, as the next runner-up is the algorithm combining size with
open-search (OS). In practice, this information is very difficult to provide, so that
the improvements obtained by the CSP search algorithm are of great pratical
interest.

7 Conclusions

Many new and exciting applications in open information systems, in particular
the WWW, address problems which CSP techniques are very good at solving.
Such applications will appear increasingly with the emergence of web services
and the semantic web. We have defined Open Constraint Satisfaction Problems
(OCSP) as a formulation that addresses this open setting.

The first contribution of this paper is the definition of semantic properties
that allow incrementally combining values in an OCSP while maintaining a cor-
rect solution set. These result in conditions that the problem formulations must
satisfy in order to be combinable.

The second contribution is to have shown an effective method for identify-
ing minimal unsolvable subproblems and thus focussing information gathering.
Based on this, we have given an algorithm that is provably complete even for
unbounded variable domains, and demonstrated that on random coloring prob-
lems, it achieves a performance very close to the theoretical minimum as far as
accesses to information servers is concerned.

In particular, the gains tend to increase with both the number of information
servers and the number of values they provide. Thus, the technique is likely to be
particularly useful to improve the scalability of intelligent information systems
based on constraint satisfaction techniques.

References

1. Genesereth, M. R., Keller, A. M., Duschka, O.: “Infomaster: An Information Inte-
gration System”, Proceedings of 1997 ACM SIGMOD Conference, May 1997.

2. Marian Nodine, Jerry Fowler, Tomasz Ksiezyk, Brad Perry, Malcolm Taylor and
Amy Unruh: Active Information Gathering in InfoSleuth In International Journal of
Cooperative Information Systems 9:1/2, 2000, pp. 3-28.

3. Jerry Fowler, Brad Perry, Marian Nodine, and Bruce Bargmeyer: Agent-Based Se-
mantic Interoperability in InfoSleuth SIGMOD Record 28:1, March, 1999, pp. 60-67.

4. Alon Y. Levy , Anand Rajaraman , Joann J. Ordille: ”Querying Heterogeneous In-
formation Sources Using Source Descriptions,” Proceedings of the 22nd VLDB Con-
ference, Bombay, India, 1996

5. Rita Cucchiara, Marco Gavanelli, Evelina Lamma, Paola Mello, Michela Milano, and
Massimo Piccardi: “Constraint propagation and value acquisition: why we should do
it interactively,” Proceedings of the 16th IJCAI, Morgan Kaufmann, pp.468-477, 1999

6. R. Cucchiara, E. Lamma, P. Mello, M. Milano: “Interactive Constraint Satisfac-
tion,”, Technical Report DEIS-LIA-97-00, University of Bologna, 1997



7. Christian Bessière: ”Arc-Consistency in Dynamic Constraint Satisfaction Prob-
lems,” Proceedings of the 9th National Conference of the AAAI, pp. 221-226, 1991

8. Sanjay Mittal and Brian Falkenhainer: “Dynamic constraint satisfaction problems,”
Proceedings of the 8th National Conference of the AAAI, pp. 25-32, 1990

9. Makoto Yokoo: ”Asynchronous Weak-commitment Search for Solving Large-Scale
Distributed Constraint Satisfaction Problems,” Proceedings of the First International
Conference on Multi–Agent Systems, p. 467, MIT Press, 1995.

10. Peter M.D. Gray, Suzanne M. Embury, Kit Y. Hui, Graham J.L. Kemp: ”The
Evolving Role of Constraints in the Functional Data Model”, Journal of Intelligent
Information Systems 12, pp. 113-137, 1999.

11. Monique Calisti, Boi Faltings, Santiago Macho-Gonzalez, Omar Belakhdar and
Marc Torrens: “CCL: Expressions of Choice in Agent Communication,” Fourth In-
ternational Conference on MultiAgent Systems (ICMAS-2000), Boston MA, USA.,
July, 2000

12. A. Sheth and J.A. Larson: ”Federated Database Systems,” ACM Computing Sur-
veys 22(3), 1990

13. S. Chawathe, H. Garcia Molina, J. Hammer, K.Ireland, Y. Papakostantinou, J. Ull-
man and J. Widom: The TSIMMIS project: Integration of heterogeneous information
sources. In IPSJ Conference, Tokyo, Japan, 1994

14. José Luis Ambite and Craig Knoblock: ”Flexible and scalable cost-based query
planning in mediators: A transformational approach,” Artificial Intelligence 118, pp.
115-161, 2000

15. Keith Decker, Katia Sycara and Mike Williamson: ”Middle-Agents for the Inter-
net,” Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI-97), Morgan Kaufmann, 1997, pp. 578-583

16. Sycara, K. ”In-Context Information Management Through Adaptive Collaboration
of Intelligent Agents.” In Intelligent Information Agents: Cooperative, Rational and
Adaptive Information Gathering on the Internet. Matthias Klusch (Ed.), Springer
Verlag, 1999.

17. Katia Sycara, Seth Widoff, Matthias Klusch and Jianguo Lu: ”LARKS: Dynamic
Matchmaking Among Heterogeneous Software Agents in Cyberspace.” Autonomous
Agents and Multi-Agent Systems, 5, 173-203, 2002.

18. J. Budzik, S. Bradshaw, X. Fu, and K. Hammond: “Supporting Online Resource
Discovery in the Context of Ongoing Tasks with Proactive Assistants,” International
Journal of Human-Computer Studies 56(1) Jan 2002, pp. 47-74

19. B.J. Rhodes and P. Maes: ”Just-in-time information retrieval agents,” IBM Sys-
tems Journal 39, pp. 685-704, 2000

20. F. Rossi, C. Petrie and V. Dhar: “On the equivalence of constraint satisfaction
problems,” Proceedings of ECAI-90, pp. 550-556, 1990

21. K. Stergiou and T. Walsh: “Encodings of Non-binary Constraint Satisfaction Prob-
lems,” Proceedings of AAAI-99, ppp. 163-168, AAAI Press, 1999

22. N. Mamoulis and K. Stergiou: “Solving Non-binary CSPs Using the Hidden Vari-
able Encoding,” Proccedings of CP 2001, LNCS 2239, Springer-Verlag, pp. 168-182,
2001

23. P. Prosser: “Hybrid Algorithms for Constraint Satisfaction Problems,” Computa-
tional Intellligence 9(3), pp. 268-299, 1993

24. Eugene Freuder and Paul Hubbe: ”Extracting Constraint Satisfaction Subprob-
lems,” Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence, pp. 548-555, 1995

25. James C. Freanch and Allison L. Powell :Metrics for Evaluating Database Selection
Techniques. 2000


