
A Multi-Agent Recommender System for Planning Meetings

Santiago Macho, Marc Torrens and Boi Faltings

Artificial Intelligence Laboratory (LIA)
Swiss Federal Institute of Technology (EPFL)

IN-Ecublens, CH-1015, Lausanne
Switzerland

akira@lia.di.epfl.ch, torrens@lia.di.epfl.ch, faltings@lia.di.epfl.ch

Abstract

In this work we address the problem of arranging
meetings for several participants taking into con-
sideration constraints for personal agendas and
transportation schedules. We have implemented
a multi-agent recommender system that solves the
problem.

Building such applications implies to consider
two main issues: collecting information from dif-
ferent sources on the Internet, and solving the
problem itself. We show that multi-agent systems
that use constraint satisfaction for modelling and
solving problems can be very suitable for this kind
of systems.

1 Introduction

In this paper we address the problem of arranging meet-
ings among several people. The problem involves combin-
ing personal agendas with transportation schedules in order
to find appropriate meeting places, dates and times.

The traditional way of arranging meetings for several
participants implies a negotiation by hand of dates and
sometimes also places. Every participant has an agenda
with some available dates for the meeting. The task of tak-
ing a decision for a meeting is not an easy problem, spe-
cially in the case that: the participants are quite busy and/or
the meeting takes several days and/or they live in differ-
ent places, etc. The problem becomes more complex if
we consider transportation schedules and people have sev-
eral meetings with different people in different places. The
problem could be even more difficult to solve if we take

into consideration user’s preferences, where every partici-
pant has different criteria. In such situations it is mostly
impossible to plan meetings in an optimal way by hand.

Basically, our problem is naturally a choice problem.
Participants to meetings have to choose among several op-
tions. These choices cannot be taken freely because many
elements are interconnected, i.e. there are dependencies
and incompatibilities between the different choices to take.
Considering these factors, the problem of arranging meet-
ings according to transport constraints and personal prefer-
ences can be easily formulated as a Constraint Satisfaction
Problem (CSP).

With the information about transportation schedules by
neutral travel providers and the possibility of interaction
among agents on the Internet, the task can be mostly done
automatically and thus it could become a useful tool for
people. On the other hand, the application demonstrates the
utility of using constraint satisfaction for solving complex
problems in multi-agent recommender systems.

In order to build up a recommender multi-agent sys-
tem for planning meetings, we suppose that every partic-
ipant has an agenda which is accessible by aAgenda
Agent through Internet. Another agent calledFlight
Scheduler Agent has access to the schedules and
availability of flights around the world. Such kind of
agent is described in [1]. These two agents are implied
in the process of collecting information. Other agents are
needed for accomplishing the task: thePlanner Agent
and theSolver Agent . All the information implied in
the recommender system and the problem modelling are
formalised using constraint satisfaction formalism, so it
is ubiquitous that the agents communicate each other us-
ing a FIPA1 compliant language calledConstraintChoice
Language (CCL2) [2]. The solving task which is basically

1Foundation for Intelligent Physical Agents:
http://www.fipa.org

2Constraint Choice Language:http://liawww.epfl.ch/CCL

1



to solve a configuration problem is carried out by constraint
satisfaction algorithms implemented in theJavaConstraint
Library (JCL3) [3].

In the next section we describe how to formalise our
problem using Constraint Satisfaction Problems. Then, we
show how to solve the problem using information gather-
ing on the Web and constraint satisfaction techniques un-
der the multi-agent framework. Next section is intended
for describing the multi-agent architecture for our system,
more concretely: theConstraintChoiceLanguage (CCL),
the different agents and the interaction between them. Then,
we point out further work and we finish the paper giving
some conclusions.

2 Problem Modeling

The problem of arranging meetings is formulated in our
framework as a CSP. In the following subsection, we briefly
describe CSPs and then we present a concrete way to model
our problem by identifying the main components of such
formulation.

2.1 Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction Problems (CSPs) (see [4]) are
ubiquitous in applications like configuration [5, 6], plan-
ning [7], resource allocation [8, 9], scheduling [10] and
many others. A CSP is specified by a set of variables and
constraints among them. A solution to a CSP is a set of
value assignments to all variables such that all constraints
are satisfied. There can be either many, 1 or no solutions to
a given problem. The main advantages of constraint-based
programming are the following:� It offers a general framework for stating many real

world problems in a succinct, elegant and compact
way.� A constraint based representation can be used to syn-
thesize solutions of the problem as well as for verifica-
tion purposes (i.e. showing that a solution satisfies all
constraints).� The nature of the representation allows a formal de-
scription of the problems as well as a declarative de-
scription of search heuristics.

Formally, a finite, discrete Constraint Satisfaction Prob-
lem (CSP) is defined by a tupleP = (X;D;C) whereX = fX1; : : : ; Xng is a finite set of variables, each associ-
ated with a domain of discrete valuesD = fD1; : : : ; Dng,
and a set of constraintsC = fC1; : : : ; Clg. Each con-
straintCi is expressed by a relationRi on some subset of

3Java Constraint Library:http://liawww.epfl.ch/˜torrens/JCL

variables. This subset of variables is called theconnec-
tion of the constraint and denoted by con(Ci). The rela-
tionRi over the connection of a constraintCi is defined byRi � Di1 � : : : � Dik and denotes the tuples that satisfyCi. Thearity of a constraintC is the size of its connection.

2.2 The Problem of Arranging Meetings as a CSP

The problem of arranging meetings can be formulated as
a choice problem, more specifically as a Constraint Satis-
faction Problem (CSP). For simplicity, we consider that we
have to plan only one meeting among several participants
that lives in different places. Three phases are needed in
order to model a problem as a CSP4:

1. Variables: identify the variables involved in the prob-
lem,

2. Domains:associate to all variables the appropriate fi-
nite domain of discrete values, and

3. Constraints: link the constrained variables by means
of allowed/disallowed combinations of values.

In our framework, there is a set ofn participants (P =fP0; : : : ; Pn�1g). The meeting has to take place when all
the participantsPi are available. In addition, the meet-
ing will be in a set ofm possible predefined cities (C =fC0; : : : ; Cm�1g). Normally, this set of places corresponds
to the places where the involved people live.

For each participantPi we define his/her agenda as
a set ofk AgendaSlot (AS = fAS0; : : : ; ASk�1g).
An AgendaSlot is defined as aStartSlotTime 5, an
EndSlotTime , and aSlotPlace .

Next, we identify the variables for our model, what are
the associated domains and what kind of constraints the sys-
tem has to take into consideration. The model has been sim-
plified for a better comprehension of the formalism.

2.2.1 Variables

The variables of the CSP depend on the solution we want
to find out. In our case, for each participant (Pi) to the
meeting we are interested in: anOutgoingFlight i
and aReturnFlight i. For every participantPi exists
three variables for each freeAgendaSlot in his agenda:
StartFreeTime j, EndFreeTime j andPlace j .

Other variables concern the meeting itself: the
StartMeetingTime , the EndMeetingTime and the
MeetingPlace .

4in our framework, we refer CSPs as finite and discrete CSPs.
5when we refer toTimevariables, we include for each value an exact

time meaning an hour, day, a month, a year, etc...

2



2.2.2 Domains

For variablesOutgoingFlight i andReturnFlight i
the domains are possible flights the participantPi can take
to attend the meeting. At the beginning of the solving pro-
cess, the system does not know explicitly what are the possi-
ble flights for such variables, these domains are only known
once the system starts solving the problem and after query-
ing the flight database.

Concerning the variables of the type
Start/EndFreeTime j and Place j , the values
are retrieved from the corresponding agendas for every
participant and for each free time slot.

The values of the variables concerning the meeting itself
are known a priori. In some sense, these values define the
problem to solve. For example, if we want to plan a meet-
ing, normally the problem can be stated as:

“We want to meet next month, from 15th to 23rd
in some of the places we live. The meeting will
take place during 3 days. We can meet on Satur-
days but not on Sundays”.

From such a formulation, the system deduces the domains
of the variables related to the meeting. In other words, these
variables define the problem the system has to solve.

2.2.3 Constraints

Constraints are used for defining the search space and thus
the solving algorithms will find well defined solutions. Ba-
sically, the constraints involved in our problem are:� OutgoingFlight j-ReturnFlight j: The re-

turn flight has to be taken after the outgoing flight. The
arrival place of the outgoing flight must be the same
than the departure of return flight.� OutgoingFlight j-Place j : The departure of the
outgoing flight must be the same place asPlace j .� OutgoingFlight j-MeetingPlace : The outgo-
ing flight must arrive at the place where the meeting
will take place.� OutgoingFlight j-StartMeetingTime : All
the participants must arrive before the meeting starts.� ReturnFlight j-EndMeetingDate/Time : All
the participants must leave the meeting place after the
meeting has finished.� StartFreeTime k-StartMeetingTime :
For each user, there must exist at least one
StartFreeTime k which is before the
StartMeetingTime .

� EndFreeTime k-EndMeetingTime : For each
user, the EndFreeTime k must be after the
EndMeetingTime .� StartFreeTime k-EndFreeTime k:
EndFreeTime k must be afterStartFreeTime k.
With this constraint we guarantee that the free time
slots are well defined.

3 Problem Solving

In our framework, problem solving is mainly composed
of two phases, gathering information and finding solutions:� Gathering information: the recommender system col-

lects information from different agents in order to
model the corresponding CSP. Some domains of the
variables are filled in by means of queries to the in-
volved agents. ThePlanner Agent is responsible
for requesting toinformation agentsthe needed infor-
mation in the appropriate order to build the whole CSP.
Information agentsare, for example, the agent that
collects information of the free time slots of different
user’s agendas (Agenda Agent ) or the agent that re-
quests schedules and availability of flights (Flight
Scheduler Agent ).� Finding solutions: once the CSP is built, the solver
agent can apply constraint satisfaction algorithms from
the JCL and find solutions according to the constraints.
When the solutions are found, the system informs to
eachPersonal Assistant Agent about the so-
lutions.

4 The Multi-Agent Architecture

The multi-agent recommender system is composed by
the following agents (see Fig. 1):� Personal Assistant Agent : is the interface

agent between the user and the multi-agent system.� Planner Agent : is the main agent, who is respon-
sible for getting the involved variables, the associated
domains and the needed constraints in order to plan
the meeting. Basically, this agent composes the whole
problem as a CSP.� Agenda Agent : every user has a personal agenda
with all the information about meetings and personal
constraints. These agendas are accessible by the
Agenda Agent .� Flight Agent : is connected to a database of flights
over the world.

3



� Solver Agent : is the agent responsible to solve the
CSP using the JCL algorithms.

In our system, a user that coordinates the meeting plan
is charged of inputing the main parameters of the meeting,
such as:� the users willing to attend the meeting,� how long the meeting will take,� in what range of dates the meeting must be planned,

and� where the meeting can take place (it is possible to give
several optional places).

When thePersonal Assistant Agent has all
the data about the meeting we want to plan, it builds the
associated CSP and sends it to thePlanner Agent . The
Planner Agent receives a CSP without all the needed
variables to recommend the meeting. Variables concerning
the user’s agendas and variables concerning the flight sched-
ules are not yet present in the CSP. Then, thePlanner
Agent sends the CSP to everyAgenda Agent of par-
ticipants involved in the meeting to get constraints about
their availability. A similar process is carried out for getting
the information about flight schedules between the cities of
the users and the city of the meeting. After this process
of collecting information, thePlanner Agent contains
a CSP with all variables and constraints about the meeting,
the users and the possible flights. At this point, the CSP is
ready to be solved. Thus, thePlanner Agent sends the
CSP to theSolver Agent in order to solve it. Once the
Solver Agent has received the CSP, it has to perform
two phases: firstly it translates the CSP written in the CCL
to the data structures of the JCL, and secondly it uses the
JCL algorithms to find solutions to the problem. Once the
CSP is solved, theSolver Agent has to perform the in-
verse work. It translates the CSP from the JCL structures
to the CCL and sends it to thePlanner Agent . Then,
the Planner Agent passes the CSP to thePersonal
Assistant Agent who will show the solutions to each
user. In the case that the meeting proposition is accepted,
the agenda is updated according to the new meeting.

Our multi-agent system uses ACL message for interact-
ing. As a content language of the ACL messages, we use
the Constraint Choice Language (CCL).

4.1 Constraint Choice Language (CCL) [2]

CCL is a FIPA compliant content language based on
Constraint Satisfaction techniques. The CCL specifica-
tion includes semantic foundations, abstract syntax and lan-
guage ontology. CCL:

Figure 1. The multi-agent architecture.� is based on constraint satisfaction formalism,� is suitable for choice problems or CSPs,� supports communication about CSPs from modelling
right through to problem solving, and� has been incorporated in the FIPA 1999 standard as
content language FIPA-CCL.

A traditional way to formulate constraints in discrete CSPs
is to define the tuples by an explicit list of allowed
or excluded values between the implied variables. The
ConstraintChoice Language deals with a slight different
notation which simplifies the implementation of constraint
engines. In particular, it allows us to express two types of
constraints:� Exclusion constraints, which act on a single variable

and are specified as ano-good list.� Relations, which act on two variables and are restricted
to a closed set of seven general types (=, ! =, <, >,=<,>=, andnot), but can be formulated on tuples.

The use of tuple-valued variables allows the language
to handle n-ary constraints by introducing variables whose
values represent the tuples allowed by the constraint. The
advantage of this formulation is that solving or consistency
engines can be restricted to unary and binary constraints.

4



4.1.1 An example about how to express CSPs using
XML

CCL allows agents to express a CSP as we defined it in
section 2.1. However, three restrictions on the CSP repre-
sentation have been made to make the model minimal and
more suitable for a communication language:

1. Binary constraints: all constraints must be binary, i.e.
constraints that involves two variables. This restriction
is often made in the CSP community, since most pow-
erful solving techniques only apply to binary CSPs.
However, this is only a slight restriction because we
can transform n-ary constraints to binary constraints.

2. Discrete variable domains: most of the real-world
problems like configuration, scheduling or planning
can be formulated using CSPS that have variables with
domains that contain discrete values. For example,
suppose that we want to write in CCL the fact that
the variableMeetingPlace of the typeString
has as domain the values:fZurich, Geneva,
Amsterdam g. This variable would be expressed in
CCL as follows:

<CSP-variable Name="MeetingCity" Type="string">
<Domain>

<CSP-value-list Npart="1">
<List-values Values=

"\{Zurich,Geneva,Amsterdam\}"/>
</CSP-value-list>

</Domain>
</CSP-variable>

3. Intensional relations: instead of working with exten-
sional relations between two variables (good-list
or no-good-list ) we work with intensional rela-
tions (=, ! =, <, >, <=, >= andnot). In this way,
we facilitate the merge of CSP when collecting infor-
mation from several sources.

A CSP expressed in CCL is composed by a zone of vari-
ables and a zone of constraints (relations), for example:

(request
:sender FrontBot@iiop://liasun24.epfl.ch:7999/acc
:receiver planner@iiop://liasun24.epfl.ch:7999/acc
:content #3318<?xml version="1.0"?>
<!DOCTYPE Expression SYSTEM "CCL.dtd">
<Expression>

<Action Name="CSP-solve">
<CSP-solve>

<CSP CSP-ref="id939978811875 ">
<!-- ZONE OF VARIABLES >
<CSP-variable Name=...

...
</CSP-variable>
<CSP-variable>

...
</CSP-variable>

...
<!-- ZONE OF CONSTRAINTS >
<CSP-relation Variables=...

...
</CSP-relation>
<CSP-relation Variables=...

...
</CSP-relation>

...
</CSP>

</CSP-solve>
</Action>

</Expression>
:language FIPA-CSP
:protocol fipa-request
:conversation-id liasun24.epfl.ch/128.155.6312188 )

In the following sections, we briefly describe how each
agent of the system works.

4.2 Personal Assistant Agent

ThePersonal Assistant Agent is the agent that
interfaces between the user and the recommender system
for planning meetings and travels. With this agent, the
user expresses his/her needs and preferences for the meet-
ing. ThePersonal Assistant Agent builds first a
CSP with only a few variables (StartMeetingTime ,
EndMeetingTime , MeetingPlace , etc) and some
constraints. Finally it sends the CSP to the Planner agent.

4.3 Planner Agent

ThePlanner Agent is the main agent of the system.
It is the responsible for building the whole CSP. When the
Planner Agent receives the request to solve the CSP, it
asks for variables and constraints to theinformation agents:
the Agenda Agents (variables and constraints of every
user) and theFlight Agent (variables and constraints
about flights). When thePlanner Agent has all the nec-
essary variables to solve the CSP, it sends the CSP to the
Solver Agent who will solve the problem.

4.4 Agenda Agent

Every user has anAgenda Agent that is connected to
his/her agenda database. TheAgenda Agent is respon-
sible to maintain the personal agenda of every user. This
agent queries the agenda in order to know the free time slots
of the user. It also updates the agenda when a new meeting
is planned.

4.5 Flight Agent

TheFlight Agent is an agent that is connected to the
database of flights (schedules and availability) provided by

5



a neutral travel provider such as Galileo. This agent offers
information services about all the flights over the wold.

4.6 Solver Agent

The Solver Agent is the agent responsible for the
translation of the CSP written in CCL to theJavaConstraint
Library (JCL) structures. TheSolver Agent uses the
constraint satisfaction algorithms of JCL for solving the
CSPs. When the JCL has solved the CSP, JCL sends back
the solutions to theSolver Agent who is responsible for
translating the solutions from the internal JCL data struc-
tures to the CCL format and send it back to thePlanner
Agent .

4.7 Interaction between agents

The agents of the multi-agent recommender system for
planning meetings are FIPA ACL compliant. In the next
subsections we focus on the interaction between the agents.
Firstly we show an overview of ACL messages and finally
we show the following interactions:� Personal Assistant Agent - Planner Agent interaction,� Planner Agent - Agenda Agent interaction,� Planner Agent - Flight Agent interaction, and� Planner Agent - Solver Agent interaction

4.7.1 Overview of ACL messages

The FIPA Agent Communication Language (ACL) is based
on speech act theory: messages are actions, as they are in-
tended to perform some action by virtue of being sent. The
specification consists of a set of message types and the de-
scription of their pragmatics, that is the effects on the mental
attitudes of the sender and receiver agents. Every commu-
nicative act is described with both a narrative form and a
formal semantics based on modal logic [11].

In the FIPA ACL specification there is the description of
some high-level protocols like request, contract net, several
kinds of auctions, etc. Our multi-agent recommender sys-
tem uses the request protocol shown in Fig. 2. With this
protocol, an agent requests another agent to perform an ac-
tion, and the receiver agent is able to perform it or replay
that it can not do it.

The content field of an ACL message contains the ex-
pression (action, proposition or object) and the object (CSP,
solution-list, etc) which is referred by the expression, all
codified in CCL.

Figure 2. The FIPA ACL request protocol.

4.7.2 Personal Assistant Agent - Planner Agent inter-
action

ThePersonal Assistant Agent sends arequest
message with the actionCSP-solve to the Planner
Agent . This message starts a new conversation be-
tween the Personal Assistant Agent and the
Planner Agent . We use the FIPA-request protocol,
so the possible answers from thePlanner Agent to
the Personal Assistant Agent are the FIPA ACL
messages:not-understood , refuse , or agree .

In Fig. 3 we show how thePersonal Assistant
Agent and thePlanner Agent interact.

The Personal Assistant Agent sends a
request message to thePlanner Agent with
the action CSP-Solve . When the Planner
Agent has the solution(s), it sends back the object
CSP-Solution if there is only one solution or the object
CSP-SolutionList if there are more than one solution.

4.7.3 Planner Agent - Agenda Agent interaction

Once theAgenda Agent (of every user) receives the
request from thePlanner Agent , it has to query the
agenda database to set the constraints. TheAgenda
Agent of every user add to the original CSP new vari-
ables and new constraints. Once theAgenda Agent
adds the constraints to the CSP, it sends ainform mes-
sage (this message is inside the request protocol with the
Planner Agent ) to the Planner Agent with the
proposition CSP-constraints . This message ends

6



Figure 3. The interaction between thePersonal
Assistant Agent and thePlanner Agent .

the conversation between theAgenda Agent and the
Planner Agent . ThePlanner Agent sends the ac-
tion CSP-give-constraints and receives the object
CSPthat is the original CSP but with the new constraints
added by theAgenda Agent . In Fig. 4 we illustrate
the interaction between thePlanner Agent and the
Agenda agent .

4.7.4 Planner Agent - Flight Agent interaction

The CSP needs to add the values and constraints about
flights. When theFlight Agent receives the message
with the CSP, it searches to the flight database the available
flights for every user to go to the city(s) of the meeting.

Fig. 5 shows the interaction between thePlanner
Agent and theFlight Agent .

4.7.5 Planner Agent - Solver Agent interaction

At the moment that thePlanner Agent has the CSP
with the variables and the constraints that were set by thein-
formationagents (Agenda Agent s of every user and the
Flight Agent ) the Planner Agent contains all the
necessary information to solve the CSP. In order to solve the
CSP, thePlanner Agent sends arequest message to
theSolver Agent with the actionCSP-Solve . Fig. 6
illustrates this interaction.

Figure 4. The interaction between thePlanner
Agent and theAgenda agent .

Figure 5. The interaction between thePlanner
Agent and theFlight Agent .

JCL solves the CSP and returns the solution(s). Remem-
ber that the CSP is represented in the content language of
the message and written in CCL. TheSolver Agent is

7



Figure 6. The interaction between thePlanner
Agent and theSolver Agent .

responsible for translating the CSP from the CCL to the
JCL data structures. When theSolver Agent has found
the solution(s) of the CSP, it sends back a message to the
Planner Agent with the solution(s).

Next subsection describes theJavaConstraintLibrary.

4.7.6 Java Constraint Library

We implemented theJavaConstraintLibrary (JCL), which
allows us to package constraint satisfaction problems and
their solvers in compact autonomous agents suitable for
transmission on the Internet. It provides services for:� creating and managing discrete CSPs� applying preprocessing and search algorithms to CSPs

JCL can be used either in an applet6 or in a stand-alone Java
application. The purpose of JCL is to provide a framework
for easily building agents that solve CSPs on the Web. JCL
is divided into two parts: A basic constraint library available
on the Web and a constraint shell built on the top of this
library, allowing CSPs to be edited and solved.

5 Further Work

Many extensions to this work are planned. An interest-
ing future research topic will be how to combine thegath-

6An appletis an application designed to be transmited over the Internet
and executed by a Java-compatible Web browser.

ering informationphase with thesolving problemphase
dynamically. The recommender system could start solv-
ing the problem without having all the information in the
CSP. Then, the system would collect information when be-
ing completely necessary. This idea implies to solve the
problem dynamically when searching information. The ad-
vantage would be that we will not collect unnecessary in-
formation, and the user could get some first solutions very
quickly.

Another interesting issue is how to learn from previous
experiences. In the agendas we could have a user profile
with a set of predefined preferences (constraints) that will
be taken into consideration for next meeting plans.

In the future, we also want to deal with several differ-
ent kinds of transportation agents (not only flights). In this
way, we will be able to plan travels and meetings using dif-
ferent transport means. In this direction, a project with train
schedules is already on the track.

Once, the system finds several possible solutions to the
problem, users have to choose one of them. This process
can be very tedious and difficult since people tend to pre-
fer different options. For avoiding to perform this process
manually, we will study some negotiation issues related to
multi-agent systems in order to apply such techniques to our
framework.

6 Conclusions

In this paper, we have shown that constraint techniques
can be very useful for solving complex problems addressed
by recommender systems such as the problem of arranging
meetings and scheduling travels.

Concretely, we have implemented a multi-agent rec-
ommender system which is able to plan meetings using
agenda’s information and transportation schedules. Agents
communicate each other using theConstraint Choice
Language (CCL), a FIPA compliant content language for
modelling problems using constraint satisfaction formal-
ism. With this system, we also have shown the utility of
using theJavaConstraintLibrary (JCL) for solving com-
plex problems in multi-agent systems.

7 Acknowledgements

We thank Steve Willmott and Monique Calisti for the
useful comments on modelling the problem of arranging
meetings and travels as a CSP, and for building up the Con-
straint Choice Language in the FIPA framework.

References

[1] Marc Torrens and Boi Faltings. Smart clients: Con-
straint satisfaction as a paradigm for scaleable in-

8



telligent information systems. InWorking Notes of
the Workshop on Artificial Intelligence on Electronic
Commerce, AAAI-99, Orlando, Florida, USA, 1999.

[2] Steve Willmott, Monique Calisti, Boi Faltings, San-
tiago Macho Gonzalez, Omar Belakdhar, and Marc
Torrens. CCL: Expressions of Choice in Agent Com-
munication. InThe Fourth International Conference
on MultiAgent Systems (ICMAS-2000), Boston, USA,
2000.

[3] Marc Torrens, Rainer Weigel, and Boi Faltings. Java
Constraint Library: bringing constraints technology
on the Internet using the Java language. InWork-
ing Notes of the Workshop on Constraints and Agents,
Tehnical Report WS-97-05, AAAI-97, Providence,
Rhode Island, USA, 1997.

[4] Edward Tsang. Foundations of Constraint Satisfac-
tion. Academic Press, London, UK, 1993.

[5] Felix Freyman Sanjay Mittal. Towards a generic
model of configuration tasks. InProceedings of the
11th IJCAI, pages 1395–1401, Detroit, MI, 1989.

[6] Daniel Sabin and Eugene C. Freuder. Configuration
as Composite Constraint Satisfaction. InProceedings
of the Artificial Intelligence and Manufacturing Re-
search Planning Workshop, pages 153–161, 1996.

[7] Mark Stefik. Planning with constraints (MOLGEN:
Part 1).Artificial Intelligence, 16(2):111–140, 1981.

[8] Berthe Y. Choueiry.Abstraction Methods for Resource
Allocation. PhD thesis, Swiss Federal Institute of
Technology in Lausanne, 1994.

[9] A. Sathi and M. S. Fox. Constraint-Directed Nego-
tiation of Resource Allocations. In L. Gasser and
M. Huhns, editors,Distributed Artificial Intelligence
Volume II, pages 163–194. Pitman Publishing: Lon-
don and Morgan Kaufmann: San Mateo, CA, 1989.

[10] Mark Fox.Constraint-Directed Search: A Case Study
of Job-Shop Scheduling. Morgan Kaufmann Publish-
ers, Inc., Pitman, London, 1987.

[11] Foundation for Intelligent Physical Agents (FIPA).
FIPA Agent Specification 1997. InTechnical Report,
1997.

9


