
Bandwidth allocation heuristics in communication networksChristian Frei and Boi FaltingsArti�cial Intelligence LaboratorySwiss Federal Institute of Technology (EPFL)CH-1015 Lausanne, SwitzerlandVoice: +41-21-693-6682 Fax: +41-21-693-5225frei/faltings@lia.di.epfl.ch1 IntroductionWith the liberalization of the telecommunications indus-try, networks are being used in more and more exibleways. Using technologies such as ATM, service providerscreate virtual networks on top of the physical networks.This new variability means that physical network re-sources must frequently be allocated to these virtual net-works. Formally, we de�ne the problem of resource allo-cation in networks (RAIN) as follows:Given a network composed of nodes and links,each link with a given bandwidth capacity, anda set of communication demands to allocate,each demand de�ned by a triple (source node,destination node, requested bandwidth),Find one route for each demand so that thebandwidth requirements of the demands aresatis�ed within the resource capacities of thelinks.It is important to note that because of technologicallimitations, it is impossible to divide demands amongmultiple routes. With this restriction, the RAIN prob-lem is NP-hard in the number of demands. When de-mands are subject to multiple additive or multiplicativequality of service (QoS) criteria, then [10] have shownthat the allocation of every single demand is NP-hardby itself. This creates a new situation for the network-ing community, as traditional routing algorithms such asshortest paths do not perform very well on this problem.Shortest path routing can lead to poor network utiliza-tion and even congestion.Constraint satisfaction [9] is a technique which hasbeen shown to work well for solving certain NP-hardproblems. Indeed, the RAIN problem is easily formu-lated as a CSP in the following way: variables are de-mands, the domain of each variable is the set of all routesbetween the endpoints of the demand, and constraints oneach link must ensure that the resource capacity is notexceeded by the demands routed through it. A solutionis a set of routes, one for each demand, respecting thecapacities of the links.However, this formulation presents severe complexityproblems. It is computationally too expensive to com-pute the domains of the variables, i.e., all the routes that

join the endpoints of each demand. Suppose the net-work is simple but complete (this is not even the worstcase, since a communication network is a multi-graph:it allows multiple links between same endpoints) with nnodes. A route is a simple path, its length in numberof links is therefore bounded by n� 1. Since a route oflength j has j� 1 intermediate (and distinct) nodes, thenumber of routes of length j is (n�2)!=(n� j�1)!. Thetotal number of routes between two nodes is thereforeequal to Pn�1i=1 (n � 2)!=(n � i � 1)!. Storing all routesbetween a pair of nodes would require exponential space.For instance, in a complete graph with 10 nodes, thereare 69281 routes between any pair of nodes. Since meth-ods such as forward checking or dynamic variable or-dering require explicit representation of domains, theywould be very ine�cient on a problem of realistic size.In this paper, we show how abstraction of the networkcreates a compact representation of the problem whichallows applying well-known CSP techniques such as for-ward checking, variable and value ordering to the RAINproblem, with manageable complexity.2 Related WorkSurprisingly, there has been little published research onthe RAIN problem. Currently, most network providersuse some kind of best e�ort algorithm, without any back-tracking due to the complexity of the problem: given anorder of the demands, each demand is assigned the short-est possible route supporting it, or just skipped if thereis no such route. There are some proprietary tools forthis, about which nothing much is known. Bandwidthauctioning through a multi-agent system, such as in [8],was explored; however, this work is still at an early stage.To our knowledge, the closest published work to oursis the CANPC framework [7]. It is based on the succes-sive allocations of shortest routes to the demands, with-out any backtracking when an assignment fails. Theypropose several heuristics to order the demands (suchas bandwidth ordering) to provide better solutions, i.e.,to route more demands. They are currently developingan optimization tool that takes the partial solution asinput to try to allocate all demands. However, prelim-inary results show that the methods we propose clearlyoutperform theirs.
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Figure 1: The blocking island hierarchy for resource requirements f 64K; 19:2K g. The weights (in parenthesis) on the linksare the available resources. Abstract links' description include their children and network children in brackets. Abstract nodes'description include only their node children and network node children in brackets: link children are omitted for more clarity.(a) the 0-BIG. (b) the 19:2K-BIG.(c) the 64K-BIG. (d) the network graph.



Mann and Smith [6] search for routing strategies thatattempt to ensure that no link is over-utilized (hard con-straint) and, if possible, that all links are evenly loaded(below a �xed target utilization), for the predicted traf-�c pro�le. Finally, the routing assignment attempts tominimize the communication costs. Genetic algorithmsand simulated annealing approaches were used to de-velop such strategies. However, their methods do notapply well, if not at all, to highly loaded networks.Abstraction and reformulation techniques have al-ready been applied to permit more e�cient solution ofa CSP. [2] relate interchangeability to abstraction in thecontext of a decomposition heuristic for resource allo-cation. [11] cluster variables to build abstraction hi-erarchies for con�guration problems viewed as CSPs,and then use interchangeability to merge values on eachlevel of the hierarchy. [4] present abstraction and refor-mulation techniques based on interchangeability to im-prove solving CSPs. [1] is a recent collection of papersaddressing abstraction, reformulation, and abstractiontechniques in a variety of AI techniques.3 The Blocking Island paradigm[3] introduce a clustering scheme based on Blocking Is-lands, which can be used to represent bandwidth avail-ability at di�erent levels of abstraction, as a basis fordistributed problem solving. A �-blocking island (�-BI)for a node x is the set of all nodes of the network that canbe reached from x using links with at least � availableresources, including x. Figure 1 (d) shows all 64K-BIsfor a network. Note that some links inside a �-BI, i.e.,the links that have both endpoints in the �-BI, may haveless than � available resources. In such a case, it sim-ply means that there is another route with � availableresources between the link's endpoints. As a matter offact, link l2 has both endpoints in the 64K-BIN1 but hasless than 64 available resources. However, there are atleast 64 available resources along route f l1; l4 g betweenl2's endpoints.�-BIs have some fundamental properties. Given anyresource requirement, blocking islands partition the net-work into equivalence classes of nodes. The BIs areunique, and identify global bottlenecks, that is, inter-blocking island links. If inter-blocking island links arelinks with low remaining resources, as some links insideblocking islands may be, inter-blocking island links arelinks for which there is no alternative route with the de-sired resource requirement. Moreover, BIs highlight theexistence and location of routes at a given bandwidthlevel:Proposition 1 (route existence property): There isat least one route satisfying the resource requirement ofan unallocated demand du = (x ; y ; �u) if and only if itsendpoints x and y are in the same �u-BI. Furthermore,all links that could form part of such a route lie insidethis blocking island.Blocking islands are used to build the �-blocking is-land graph (�-BIG), a simple graph representing an ab-
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Figure 2: The abstraction tree of the BIH of Figure 1 (linksare omitted for clarity).stract view of the available resources: each �-BI is clus-tered into a single node and there is a abstract link be-tween two of these nodes if there is a link in the networkjoining them, i.e., if their cocycle1 share a link. Figure 1(c) is the 64-BIG of the network of Figure 1 (d). Anabstract link between two BIs clusters all links that jointhe two BIs, and the abstract link's available resources isequal to the maximum of the available resources of thelinks it clusters (since a demand can only be allocatedover one route). These abstract links denote the criti-cal links, since their available resources do not su�ce tosupport a demand requiring � resources.In order to identify bottlenecks for di�erent �s, e.g.,for typical possible bandwidth requirements, we build arecursive decomposition of BIGs in decreasing order ofthe requirements: �1 > �2 > ::: > �b. This layeredstructure of BIGs is a Blocking Island Hierarchy (BIH).The lowest level of the blocking island hierarchy is the�1-BIG of the network graph. The second layer is thenthe �2-BIG of the �rst level, i.e., �1-BIG, the third layerthe �3-BIG of the second, and so on. On top of the hier-archy there is a 0-BIG abstracting the smallest resourcerequirement �b. The abstract graph of this top layer isreduced to a single abstract node (the 0-BI), since thenetwork graph is supposed connected. Figure 1 showssuch a BIH for resource requirements f 64K; 19:2K g.The graphical representation shows that each BIG is anabstraction of the BIG at the level just below (the nextbiggest resource requirement), and therefore for all lowerlayers (all larger resource requirements).A BIH can not only be viewed as a layered structureof �-BIGs, but also as an abstraction tree when consid-ering the father-child relations. In an abstraction tree,the leaves are network elements (nodes and links), theintermediate vertices either abstract nodes or abstractlinks and the root vertex the 0-BI of the top level in thecorresponding BIH. Figure 2 is the abstraction tree ofthe BIH of Figure 1.The �-BI S for a given node x of a network graph canbe obtained by a simple greedy algorithm, with a linearcomplexity of O(m), where m is the number of links.1The cocycle of a subset of nodes A is the set of all linksthat have one and only one endpoint in A.



The construction of a �-BIG is straightforward from itsde�nition and is also linear in O(m). A BIH for a setof constant resource requirements ordered decreasinglyis easily obtained by recursive calls to the BIG com-putation algorithm. Its complexity is bound by O(bm),where b is the number of di�erent resource requirements.The adaptation of a BIH when demands are allocated ordeallocated can be carried out by O(bm) algorithms.4 Routing as a CSPSolving a RAIN problem amounts to solving the CSPintroduced in Section 1. This can be done using a back-tracking algorithm with forward checking (FC) [9]. Itsbasic operation is to pick one variable (demand) at atime, assign it a value (route) of its domain that is com-patible with the values of all instantiated variables sofar, and propagate the e�ect of this assignment (usingthe constraints) to the future variables by removing anyinconsistent values from their domain. If the domain ofa future variable becomes empty, the current assignmentis undone, the previous state of the domains is restored,and an alternative assignment, when available, is tried.If all possible instantiations fail, backtracking to the pre-vious past variable occurs. FC proceeds in this fashionuntil a complete solution is found or all possible assign-ments have been tried unsuccessfully, in which case thereis no solution to the problem.The formulation of the CSP presents severe complex-ity problems (see Section 1). Blocking islands providean abstraction of the domain of each demand, since anyroute satisfying a demand lies within the �-BI of itsendpoints, where � is the resource requirement of thedemand (Proposition 1). In fact, there is a mapping be-tween each route that can be assigned to a demand andthe BIH: a route can been seen as a path in the abstrac-tion tree of the BIH. Thus, there is a route satisfying ademand if and only if there is a path in the abstractiontree that does not traverse BIs of a higher level than itsresource requirement. For instance, from the abstrac-tion tree of Figure 2, it is easy to see that there is noroute between a and m with 64 available resources, sinceany path in the tree must at least cross BIs at level 19.2.This mapping of routes onto the BIH is used to formulatedynamic variable and value ordering heuristics.Forward Checking Thanks to the route existenceproperty, we know at any point in the search if it isstill possible to allocate a demand, without having tocompute a route: if the endpoints of the demand areclustered in the same �-BI, where � is the resource re-quirement of the demand, there is at least one, i.e., thedomain of the variable (demand) is not empty, even if notexplicitly known. Therefore, after allocating a demand,forward checking is performed �rst by updating the BIH,and then by checking that the route existence propertyholds for all uninstantiated demands. If the latter doesnot hold, another route must be tried. Domain pruningis thus implicit while maintaining the BIH.

Variable Ordering A backtracking algorithm in-volves two types of choices: the next variable to assign,and the value to assign to it. The selection of the nextvariable to assign may have a non-negligible e�ect onsearch e�ciency, as shown by Haralick [5] and others. Awidely used variable ordering technique is based on the\fail-�rst" principle (FFP): \To succeed, try �rst whereyou are most likely to fail". The idea is to minimize thesize of the search tree and to ensure that any branch thatdoes not lead to a solution is pruned as early as possiblewhen choosing a variable.There are some natural static variable ordering tech-niques for the RAIN problem, such as �rst choose thedemand that requires the most resources. Nonetheless,BIs allow dynamic (that is during search) approximationof the di�culty of allocating a demand in more subtleways by using the abstraction tree of the BIH:DVO-HL (Highest Level): choose �rst the demandwhose lowest common father of its endpoints is thehighest in the BIH (remember that high in the BIHmeans low in resources requirements). The intuitionbehind DVO-HL is that the higher the lowest com-mon father of the demand's endpoints is, the moreconstrained (in terms of number of routes) the de-mand is. Moreover, the higher the lowest commonfather, the more allocating the demand may restrictthe routing of the remaining demands (FFP), sinceit will use resources on more critical links.DVO-NL (Number of Levels): choose �rst the demandfor which the di�erence in number of levels (in theBIH) between the lowest common father of its end-points and its resources requirements is lowest. Thejusti�cation of DVO-NL is similar to DVO-HL.There are numerous other Dynamic Variable Ordering(DVO) heuristics that can be derived from analyzing theBIH, and their presentation and evaluation is left for alater paper.Value Ordering The domains of the demands are toobig to be computed beforehand. Instead, we compute theroutes as they are required. In order to reduce the searche�ort, routes should be generated in \most interesting"order, so to increase the e�ciency of the search, that is:try to allocate the route that will less likely prevent theallocation of the remaining demands. A natural heuristicis to generate the routes in shortest order (SP), sincethe shorter the route, the fewer resources will be used tosatisfy a demand.However, we can do better with a kind of min-conictheuristic, based on the BIH, called lowest level (LL)heuristic. It considers �rst (in shortest order) the routesin the lowest blocking island (in the BIH), i.e., the block-ing island for the highest resource requirement, cluster-ing the endpoints of the demand. This heuristic is basedon the following observation: the lower a BI is in theBIH, the less critical are the links clustered in the BI.By assigning a route in a lower BI, a better overall load-balancing e�ect is achieved, therefore reducing the risk



Figure 3: The probability of �nding a solution within 1 sec-ond, given the tightness of the problems.of future allocation failures. We call this special kind ofload-balancing preserving bandwidth connectivity. More-over, the lower a BI is, the smaller it is in terms of nodesand links, thus reducing even more the search space whenlooking for the �rst routes, and thereby achieving a com-putational gain during the early stages of the search.Generating one route with the LL heuristic can be donein linear time in the number of links (as long as QoS islimited to bandwidth constraints).5 Results and conclusionIn practice, the RAIN problem poses itself in the follow-ing way: a service provider receives a request from thecustomer to allocate a number of demands, and mustdecide within a certain decision threshold (for example,5 seconds), whether and how the demands could be ac-cepted. A meaningful analysis of the performance of theheuristics we proposed would thus analyze the proba-bility of �nding a solution within the given time limit,and compare this with the performance that can be ob-tained using common methods of the telecom world, inparticular shortest-path algorithms. For comparing thee�ciency of di�erent constraint solving heuristics, it isuseful to plot their performance for problems of di�er-ent tightness. In the RAIN problem, tightness is theratio of resources required for the best possible alloca-tion divided by the total amount of resources available inthe network. Since it is very hard to compute the bestpossible allocation, we use an approximation, the bestallocation found among the methods being compared.Figure 3 provides the probability of �nding a solutionto a problem in less than 1 second, given the tightness ofthe problems. The statistics were obtained from 22'000randomly generated problems, each with 20 nodes, 38links and 80 demands, and each having at least one so-lution. Each problem as a randomly generated networktopology. Three curves are displayed: basic-SP-no per-forms a search using the shortest path heuristic com-mon in the telecom world today; BI-LL-HL uses the LL

heuristic for route generation and HL for DVO, whereasBI-LL-NL di�ers from the latter in using NL for DVO.As shown in Figure 3, both BI search methods are muchbetter than brute-force, even on these small problems,where heuristic computation may proportionally use upa lot of time. Noteworthy, NL outperforms HL: NL isbetter at deciding which demand is the most di�cult toassign, and therefore achieves a greater pruning e�ecton the search tree. The shape of the curves are simi-lar for larger time scales. The quality of the solutions,in terms of network resource utilization, were about thesame for all methods. However, when the solutions weredi�erent, bandwidth connectivity was generally betteron those provided by BI methods.These experimental results allow quantifying the gainobtained by using our methods. If an operator wantsto ensure high customer satisfaction, demands have tobe accepted with high probability. This means that thenetwork can be loaded up to the point where the allo-cation mechanism �nds a solution with probability closeto 1. From the curves, we can see that for the shortest-path methods, this is the case up to a load of about 40%with a probability of 0.9, whereas the NL heuristic al-lows a load of up to about 55%. Using this technique,an operator can thus reduce the capacity of the networkby an expected 27% without a decrease in the quality ofservice provided to the customer!References[1] Symposium on Abstraction, Reformulation and Ap-proximation (SARA-98). Supported in Part byAAAI, Asilomar Conference Center, Paci�c Grove,California, May 1998.[2] Berthe Y. Choueiry and Boi Faltings. A Decompo-sition Heuristic for Resource Allocation. In Proc. ofthe 11 th ECAI, pages 585{589, Amsterdam, TheNetherlands, 1994.[3] Christian Frei and Boi Faltings. A Dynamic Hierar-chy of Intelligent Agents for Network Management.In 2nd Int. W. on Intelligent Agents for Telecommu-nications Applications, IATA'98, pages 1{16, Paris,France, July 1998. Lecture Notes in Arti�cial Intel-ligence, Springer-Verlag.[4] E.C. Freuder and D. Sabin. Interchangeabilitysupports abstraction and reformulation for multi-dimensional constraint satisfaction. In Proceedingsof the 14th National Conference on Arti�cial Intel-ligence and 9th Innovative Applications of Arti�cialIntelligence Conference (AAAI-97/IAAI-97), pages191{196, July27{31 1997.[5] R. M. Haralick and G. L. Elliott. Increasing TreeSearch E�ciency for Constraint Satisfaction Prob-lems. Arti�cial Intelligence, 14:263{313, 1980.[6] Jason W. Mann and George D. Smith. A Com-parison of Heuristics for Telecommunications Traf-�c Routing. In Modern Heuristic Search Methods,pages 235{254. John Wiley & Sons Ltd, 1996.
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