Bandwidth allocation heuristics in communication networks

Christian Frei and Boi Faltings
Artificial Intelligence Laboratory
Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne, Switzerland
Voice: +41-21-693-6682 Fax: +41-21-693-5225
frei/faltings@lia.di.epfl.ch

1 Introduction

With the liberalization of the telecommunications indus-
try, networks are being used in more and more flexible
ways. Using technologies such as ATM, service providers
create virtual networks on top of the physical networks.
This new variability means that physical network re-
sources must frequently be allocated to these virtual net-
works. Formally, we define the problem of resource allo-
cation in networks (RAIN) as follows:

Given a network composed of nodes and links,
each link with a given bandwidth capacity, and
a set of communication demands to allocate,
each demand defined by a triple (source node,
destination node, requested bandwidth),

Find one route for each demand so that the
bandwidth requirements of the demands are
satisfied within the resource capacities of the
links.

It is important to note that because of technological
limitations, it is impossible to divide demands among
multiple routes. With this restriction, the RAIN prob-
lem is NP-hard in the number of demands. When de-
mands are subject to multiple additive or multiplicative
quality of service (QoS) criteria, then [10] have shown
that the allocation of every single demand is NP-hard
by itself. This creates a new situation for the network-
ing community, as traditional routing algorithms such as
shortest paths do not perform very well on this problem.
Shortest path routing can lead to poor network utiliza-
tion and even congestion.

Constraint satisfaction [9] is a technique which has
been shown to work well for solving certain NP-hard
problems. Indeed, the RAIN problem is easily formu-
lated as a CSP in the following way: variables are de-
mands, the domain of each variable is the set of all routes
between the endpoints of the demand, and constraints on
each link must ensure that the resource capacity is not
exceeded by the demands routed through it. A solution
is a set of routes, one for each demand, respecting the
capacities of the links.

However, this formulation presents severe complexity
problems. It is computationally too expensive to com-
pute the domains of the variables, i.e., all the routes that

join the endpoints of each demand. Suppose the net-
work is simple but complete (this is not even the worst
case, since a communication network is a multi-graph:
it allows multiple links between same endpoints) with n
nodes. A route is a simple path, its length in number
of links is therefore bounded by n — 1. Since a route of
length j has j — 1 intermediate (and distinct) nodes, the
number of routes of length j is (n —2)!/(n —j—1)!. The
total number of routes between two nodes is therefore
equal to Z?;ll (n —2)!/(n — i — 1). Storing all routes
between a pair of nodes would require exponential space.
For instance, in a complete graph with 10 nodes, there
are 69281 routes between any pair of nodes. Since meth-
ods such as forward checking or dynamic variable or-
dering require explicit representation of domains, they
would be very inefficient on a problem of realistic size.

In this paper, we show how abstraction of the network
creates a compact representation of the problem which
allows applying well-known CSP techniques such as for-
ward checking, variable and value ordering to the RAIN
problem, with manageable complexity.

2 Related Work

Surprisingly, there has been little published research on
the RAIN problem. Currently, most network providers
use some kind of best effort algorithm, without any back-
tracking due to the complexity of the problem: given an
order of the demands, each demand is assigned the short-
est possible route supporting it, or just skipped if there
is no such route. There are some proprietary tools for
this, about which nothing much is known. Bandwidth
auctioning through a multi-agent system, such as in [8],
was explored; however, this work is still at an early stage.

To our knowledge, the closest published work to ours
is the CANPC framework [7]. It is based on the succes-
sive allocations of shortest routes to the demands, with-
out any backtracking when an assignment fails. They
propose several heuristics to order the demands (such
as bandwidth ordering) to provide better solutions, i.e.,
to route more demands. They are currently developing
an optimization tool that takes the partial solution as
input to try to allocate all demands. However, prelim-
inary results show that the methods we propose clearly
outperform theirs.

Ng

(@ {Ng. N7, Ng} 0K-BIG
{a,b,c,d,e,f,g,h,i,j,k,m}
,"' N6 Lg={L1, L2} N7 B .
. {N1, Ng} = {516, 17} {N2, N3} .
{a,b,c.k,m} (s {d.ef,g}
b _
(b) L11={L3 Lg} L10=1{L6 L7} 19.26-BIG
={lg 117,118} ={l11. 113,120
(11) (16)
. Ng e
(@)
{N4} Ng c
{h,i.j} K7
___________________ &
[¢D]
p—
o
=
) A
Np L1={15, lg} No
{a, b, c} (16) {d, e} N7
Ne / \ L2={17
(c) L=ty N @4 Ls={1g 64K-BIG
; L3={lg - .
(32) “8) Lg={I1 (48) .
/S Ny “\
. N5 tg=fazhg, Ng L7={113 I20} - N3
v fkomp. D oAby 19 gl
o Ng v
(d) Network

1o(64) . 116 (82) 135 (42 :

\i/ N4

K —= l18(9)

Figure 1: The blocking island hierarchy for resource requirements { 64K, 19.2K }. The weights (in parenthesis) on the links
are the available resources. Abstract links’ description include their children and network children in brackets. Abstract nodes’
description include only their node children and network node children in brackets: link children are omitted for more clarity.
(a) the 0-BIG. (b) the 19.2K-BIG.(c) the 64K-BIG. (d) the network graph.

Mann and Smith [6] search for routing strategies that
attempt to ensure that no link is over-utilized (hard con-
straint) and, if possible, that all links are evenly loaded
(below a fixed target utilization), for the predicted traf-
fic profile. Finally, the routing assignment attempts to
minimize the communication costs. Genetic algorithms
and simulated annealing approaches were used to de-
velop such strategies. However, their methods do not
apply well, if not at all, to highly loaded networks.

Abstraction and reformulation techniques have al-
ready been applied to permit more efficient solution of
a CSP. [2] relate interchangeability to abstraction in the
context of a decomposition heuristic for resource allo-
cation. [11] cluster variables to build abstraction hi-
erarchies for configuration problems viewed as CSPs,
and then use interchangeability to merge values on each
level of the hierarchy. [4] present abstraction and refor-
mulation techniques based on interchangeability to im-
prove solving CSPs. [1] is a recent collection of papers
addressing abstraction, reformulation, and abstraction
techniques in a variety of Al techniques.

3 The Blocking Island paradigm

[3] introduce a clustering scheme based on Blocking Is-
lands, which can be used to represent bandwidth avail-
ability at different levels of abstraction, as a basis for
distributed problem solving. A (-blocking island (3-BI)
for a node z is the set of all nodes of the network that can
be reached from z using links with at least 8 available
resources, including z. Figure 1 (d) shows all 64K-Bls
for a network. Note that some links inside a $-BI, i.e.,
the links that have both endpoints in the §-BI, may have
less than [available resources. In such a case, it sim-
ply means that there is another route with § available
resources between the link’s endpoints. As a matter of
fact, link [, has both endpoints in the 64 K-BI N; but has
less than 64 available resources. However, there are at
least, 64 available resources along route {I,14 } between
l5’s endpoints.

(B-Bls have some fundamental properties. Given any
resource requirement, blocking islands partition the net-
work into equivalence classes of nodes. The BIs are
unique, and identify global bottlenecks, that is, inter-
blocking island links. If inter-blocking island links are
links with low remaining resources, as some links inside
blocking islands may be, inter-blocking island links are
links for which there is no alternative route with the de-
sired resource requirement. Moreover, BIs highlight the
existence and location of routes at a given bandwidth
level:

PROPOSITION 1 (route existence property): There is
at least one route satisfying the resource requirement of
an unallocated demand d,, = (x,y,B.) if and only if its
endpoints x and y are in the same (3,-Bl. Furthermore,
all links that could form part of such a route lie inside
this blocking island.

Blocking islands are used to build the B-blocking is-
land graph (8-BIG), a simple graph representing an ab-

N
ANAN

VAN

Figure 2: The abstraction tree of the BIH of Figure 1 (links
are omitted for clarity).

stract view of the available resources: each (3-BI is clus-
tered into a single node and there is a abstract link be-
tween two of these nodes if there is a link in the network

joining them, i.e., if their cocycle! share a link. Figure 1

(c) is the 64-BIG of the network of Figure 1 (d). An
abstract link between two BIs clusters all links that join
the two Bls, and the abstract link’s available resources is
equal to the maximum of the available resources of the
links it clusters (since a demand can only be allocated
over one route). These abstract links denote the criti-
cal links, since their available resources do not suffice to
support a demand requiring [resources.

In order to identify bottlenecks for different s, e.g.,
for typical possible bandwidth requirements, we build a
recursive decomposition of BIGs in decreasing order of
the requirements: ; > (B2 > ... > (. This layered
structure of BIGs is a Blocking Island Hierarchy (BIH).
The lowest level of the blocking island hierarchy is the
51-BIG of the network graph. The second layer is then
the (B2-BIG of the first level, i.e., §;-BIG, the third layer
the 35-BIG of the second, and so on. On top of the hier-
archy there is a 0-BIG abstracting the smallest resource
requirement J,. The abstract graph of this top layer is
reduced to a single abstract node (the 0-BI), since the
network graph is supposed connected. Figure 1 shows
such a BIH for resource requirements {64K,19.2K }.
The graphical representation shows that each BIG is an
abstraction of the BIG at the level just below (the next
biggest resource requirement), and therefore for all lower
layers (all larger resource requirements).

A BIH can not only be viewed as a layered structure
of 3-BIGs, but also as an abstraction tree when consid-
ering the father-child relations. In an abstraction tree,
the leaves are network elements (nodes and links), the
intermediate vertices either abstract nodes or abstract
links and the root vertex the 0-BI of the top level in the
corresponding BIH. Figure 2 is the abstraction tree of
the BIH of Figure 1.

The 8-BI S for a given node x of a network graph can
be obtained by a simple greedy algorithm, with a linear
complexity of O(m), where m is the number of links.

'The cocycle of a subset of nodes A is the set of all links
that have one and only one endpoint in A.

The construction of a 8-BIG is straightforward from its
definition and is also linear in O(m). A BIH for a set
of constant resource requirements ordered decreasingly
is easily obtained by recursive calls to the BIG com-
putation algorithm. Its complexity is bound by O(bm),
where b is the number of different resource requirements.
The adaptation of a BIH when demands are allocated or
deallocated can be carried out by O(bm) algorithms.

4 Routing as a CSP

Solving a RAIN problem amounts to solving the CSP
introduced in Section 1. This can be done using a back-
tracking algorithm with forward checking (FC) [9]. Its
basic operation is to pick one variable (demand) at a
time, assign it a value (route) of its domain that is com-
patible with the values of all instantiated variables so
far, and propagate the effect of this assignment (using
the constraints) to the future variables by removing any
inconsistent values from their domain. If the domain of
a future variable becomes empty, the current assignment
is undone, the previous state of the domains is restored,
and an alternative assignment, when available, is tried.
If all possible instantiations fail, backtracking to the pre-
vious past variable occurs. FC proceeds in this fashion
until a complete solution is found or all possible assign-
ments have been tried unsuccessfully, in which case there
is no solution to the problem.

The formulation of the CSP presents severe complex-
ity problems (see Section 1). Blocking islands provide
an abstraction of the domain of each demand, since any
route satisfying a demand lies within the [-BI of its
endpoints, where (3 is the resource requirement of the
demand (Proposition 1). In fact, there is a mapping be-
tween each route that can be assigned to a demand and
the BIH: a route can been seen as a path in the abstrac-
tion tree of the BIH. Thus, there is a route satisfying a
demand if and only if there is a path in the abstraction
tree that does not traverse Bls of a higher level than its
resource requirement. For instance, from the abstrac-
tion tree of Figure 2, it is easy to see that there is no
route between a and m with 64 available resources, since
any path in the tree must at least cross Bls at level 19.2.
This mapping of routes onto the BIH is used to formulate
dynamic variable and value ordering heuristics.

Forward Checking Thanks to the route existence
property, we know at any point in the search if it is
still possible to allocate a demand, without having to
compute a route: if the endpoints of the demand are
clustered in the same (-BI, where (3 is the resource re-
quirement of the demand, there is at least one, i.e., the
domain of the variable (demand) is not empty, even if not
explicitly known. Therefore, after allocating a demand,
forward checking is performed first by updating the BTH,
and then by checking that the route existence property
holds for all uninstantiated demands. If the latter does
not hold, another route must be tried. Domain pruning
is thus implicit while maintaining the BIH.

Variable Ordering A backtracking algorithm in-
volves two types of choices: the next variable to assign,
and the value to assign to it. The selection of the next
variable to assign may have a non-negligible effect on
search efficiency, as shown by Haralick [5] and others. A
widely used variable ordering technique is based on the
“fail-first” principle (FFP): “To succeed, try first where
you are most likely to fail”. The idea is to minimize the
size of the search tree and to ensure that any branch that
does not lead to a solution is pruned as early as possible
when choosing a variable.

There are some natural static variable ordering tech-
niques for the RAIN problem, such as first choose the
demand that requires the most resources. Nonetheless,
BIs allow dynamic (that is during search) approximation
of the difficulty of allocating a demand in more subtle
ways by using the abstraction tree of the BIH:

DVO-HL (Highest Level): choose first the demand
whose lowest common father of its endpoints is the
highest in the BIH (remember that high in the BIH
means low in resources requirements). The intuition
behind DVO-HL is that the higher the lowest com-
mon father of the demand’s endpoints is, the more
constrained (in terms of number of routes) the de-
mand is. Moreover, the higher the lowest common
father, the more allocating the demand may restrict
the routing of the remaining demands (FFP), since
it will use resources on more critical links.

DVO-NL (Number of Levels): choose first the demand
for which the difference in number of levels (in the
BIH) between the lowest common father of its end-

points and its resources requirements is lowest. The
justification of DVO-NL is similar to DVO-HL.

There are numerous other Dynamic Variable Ordering
(DVO) heuristics that can be derived from analyzing the
BIH, and their presentation and evaluation is left for a
later paper.

Value Ordering The domains of the demands are too
big to be computed beforehand. Instead, we compute the
routes as they are required. In order to reduce the search
effort, routes should be generated in “most interesting”
order, so to increase the efficiency of the search, that is:
try to allocate the route that will less likely prevent the
allocation of the remaining demands. A natural heuristic
is to generate the routes in shortest order (SP), since
the shorter the route, the fewer resources will be used to
satisfy a demand.

However, we can do better with a kind of min-conflict
heuristic, based on the BIH, called lowest level (LL)
heuristic. Tt considers first (in shortest order) the routes
in the lowest blocking island (in the BIH), i.e., the block-
ing island for the highest resource requirement, cluster-
ing the endpoints of the demand. This heuristic is based
on the following observation: the lower a BI is in the
BIH, the less critical are the links clustered in the BI.
By assigning a route in a lower BI, a better overall load-
balancing effect is achieved, therefore reducing the risk

‘+basfc—SP-no —@— Bl-LL-HL --&--BI-LL-NL

=
B A
§ 'Y?\\\ ‘ -
08
\y\\ AN A
\
07 > ~a

06 —
\ X
\ L
\ \ A
05 .

\ N
04 \

03 N
02 N L
N N
\\ \ A_»
0.1 D

03 035 04 045 05 055 06 065 07 075 08 08 09 095 1

Prob. of finding a solution in less than 1s

Tightness

Figure 3: The probability of finding a solution within 1 sec-
ond, given the tightness of the problems.

of future allocation failures. We call this special kind of
load-balancing preserving bandwidth connectivity. More-
over, the lower a Bl is, the smaller it is in terms of nodes
and links, thus reducing even more the search space when
looking for the first routes, and thereby achieving a com-
putational gain during the early stages of the search.
Generating one route with the LL heuristic can be done
in linear time in the number of links (as long as QoS is
limited to bandwidth constraints).

5 Results and conclusion

In practice, the RAIN problem poses itself in the follow-
ing way: a service provider receives a request from the
customer to allocate a number of demands, and must
decide within a certain decision threshold (for example,
5 seconds), whether and how the demands could be ac-
cepted. A meaningful analysis of the performance of the
heuristics we proposed would thus analyze the proba-
bility of finding a solution within the given time limit,
and compare this with the performance that can be ob-
tained using common methods of the telecom world, in
particular shortest-path algorithms. For comparing the
efficiency of different constraint solving heuristics, it is
useful to plot their performance for problems of differ-
ent tightness. In the RAIN problem, tightness is the
ratio of resources required for the best possible alloca-
tion divided by the total amount of resources available in
the network. Since it is very hard to compute the best
possible allocation, we use an approximation, the best
allocation found among the methods being compared.
Figure 3 provides the probability of finding a solution
to a problem in less than 1 second, given the tightness of
the problems. The statistics were obtained from 22’000
randomly generated problems, each with 20 nodes, 38
links and 80 demands, and each having at least one so-
lution. Each problem as a randomly generated network
topology. Three curves are displayed: basic-SP-no per-
forms a search using the shortest path heuristic com-
mon in the telecom world today; BI-LL-HL uses the LL

heuristic for route generation and HL for DVO, whereas
BI-LL-NL differs from the latter in using NL for DVO.
As shown in Figure 3, both BI search methods are much
better than brute-force, even on these small problems,
where heuristic computation may proportionally use up
a lot of time. Noteworthy, NL outperforms HL: NL is
better at deciding which demand is the most difficult to
assign, and therefore achieves a greater pruning effect
on the search tree. The shape of the curves are simi-
lar for larger time scales. The quality of the solutions,
in terms of network resource utilization, were about the
same for all methods. However, when the solutions were
different, bandwidth connectivity was generally better
on those provided by BI methods.

These experimental results allow quantifying the gain
obtained by using our methods. If an operator wants
to ensure high customer satisfaction, demands have to
be accepted with high probability. This means that the
network can be loaded up to the point where the allo-
cation mechanism finds a solution with probability close
to 1. From the curves, we can see that for the shortest-
path methods, this is the case up to a load of about 40%
with a probability of 0.9, whereas the NL heuristic al-
lows a load of up to about 55%. Using this technique,
an operator can thus reduce the capacity of the network
by an expected 27% without a decrease in the quality of
service provided to the customer!

References

[1] Symposium on Abstraction, Reformulation and Ap-
proximation (SARA-98). Supported in Part by
AAAI, Asilomar Conference Center, Pacific Grove,
California, May 1998.

[2] Berthe Y. Choueiry and Boi Faltings. A Decompo-
sition Heuristic for Resource Allocation. In Proc. of
the 11 ' ECAI, pages 585 589, Amsterdam, The
Netherlands, 1994.

[3] Christian Frei and Boi Faltings. A Dynamic Hierar-
chy of Intelligent Agents for Network Management.
In 2nd Int. W. on Intelligent Agents for Telecommu-
nications Applications, IATA 98, pages 1 16, Paris,
France, July 1998. Lecture Notes in Artificial Intel-
ligence, Springer-Verlag.

[4] E.C. Freuder and D. Sabin. Interchangeability
supports abstraction and reformulation for multi-
dimensional constraint satisfaction. In Proceedings
of the 14th National Conference on Artificial Intel-
ligence and 9th Innovative Applications of Artificial
Intelligence Conference (AAAI-97/IAAI-97), pages
191 196, July27 31 1997.

[5] R. M. Haralick and G. L. Elliott. Increasing Tree
Search Efficiency for Constraint Satisfaction Prob-
lems. Artificial Intelligence, 14:263-313, 1980.

6] Jason W. Mann and George D. Smith. A Com-
parison of Heuristics for Telecommunications Traf-
fic Routing. In Modern Heuristic Search Methods,
pages 235 254. John Wiley & Sons Ltd, 1996.

Bruno T. Messmer. A framework for the develop-
ment of telecommunications network planning, de-
sign and optimization applications. Technical Re-
port FE520.02078.00 F, Swisscom, Bern, Switzer-
land, 1997.

M. S. Miller, D. Krieger, and N. Hardy. An Au-
tomated Auction in ATM Network Bandwidth. In
S. H. Clearwater, editor, Market-Based Control: A
Paradigm for Distributed Resource Allocation, pages
96 125. World Scientific, 1996.

Edward Tsang. Foundations of Constraint Satisfac-
tion. Academic Press, London, UK, 1993.

Sundararajan Vedantham and S.S. Iyengar. The
Bandwidth Allocation Problem in the ATM net-
work model is NP-Complete. Information Process-
ing Letters, 65:179-182, 1998.

Rainer Weigel and Boi V. Faltings. Structuring
techniques for constraint satisfaction problems. In
Proceedings of the 15th International Joint Con-
ference on Artificial Intelligence (IJCAI-97), pages
418 423, San Francisco, August23 29 1997. Morgan
Kaufmann Publishers.

