Distributing Problem Solving on the Web using Constraint

Technology.

Marc Torrens, Rainer Weigel and Boi Faltings
Artificial Intelligence Laboratory
Swiss Federal Institute of Technology in Lausanne (EPFL)

IN-Ecublens, CH-1015 Lausanne, Switzerland

Abstract

WWW servers have to serve many clients simultaneously and thus cannot provide in-
telligent services. We present an approach where intelligent problem solving is distributed
so that compute-expensive tasks are carried out on the client side. To this end, we have
implemented a library of constraint satisfaction techniques, called the JAVA constraint li-
brary, which allows composing applets that solve CSPs. We present the library and show
several examples of applications.

Keywords: Intelligent Internet agents, Problem Solving on the Web, Product Configura-

tion, Constraint-based Reasoning.

1 Distributing Problem Solving

As a result of the spread of the world-wide web, interactive information servers are becoming
more and more commonplace. Browsing through databases requires quick response times which
are difficult to achieve when users interact directly with a server. Bandwidth restrictions and

server overload are the two major problems when users are browsing information directly on a

Web server. In addition, very often information on the web servers are not well-structured to fit
certain complex queries.

Consider for example web pages of an airline company. They often provide access to their
flight databases by requiring information about departure and destination airports. The result is
a list of possible flight connections. A more difficult query where one plans a business roundtrip
visiting several cities in an arbitrary order would be much more complicated and cumbersome
using the standard interface. This is true in particular if one would like to minimize the hours
of flight, costs, etc.

In oder to answer such queries a system must provide problem solving capabilities. Our
general approach is the following: The answer of the query is considered to be a solution to a
constraint satisfaction problem (CSP). The formalisation as a CSP supports a natural decompo-
sition of the task into two subtasks: generation of the CSP on the server, and solving the CSP

on the client. The advantages of the approach are that

1. if there are many solutions to the problem, then the CSP can be regarded as a compact rep-
resentation of the solution space. It represents it using a minimum amount of information

that needs to be send to the client, and

2. finding the solutions requires only computing power of the client and thus avoids server
overload. Furthermore, browsing through a large number of possible answers to a query is

independent of the server and can be done locally.

The architecture supporting this methodology is shown in Fig. 1. The client sends a request
containing the user constraints to the server. The server will access databases in order to generate
the corresponding CSP taking into consideration the constraints of the user. The CSP is packaged
with search algorithms for finding the solutions to form an agent which is returned to the user.
In this way the user can browse through the different solutions by interacting with the agent
locally.

We decompose the process into two parts:

e the information server compiles all relevant information from the database and the user
constraints (query) into the corresponding CSP. The CSP is a compact representation of

all solutions that the problem can have given the initial restrictions of the user.

e the server sends an agent consisting of the CSP and search algorithms to the client. This
allows the user to browse through all the possible solutions. Since the agent executes on
the client, response time can be very fast and the user can compare different alternatives

without placing unnecessary load on the server.

Building the CSP requires only a small fraction of time compared to solving the CSP, so having
the agent executed on the client significantly reduces server overload. After having generated the
CSP there is no longer need of accessing the server, so the agent sent by the server is completely

autonomous. This architecture is shown in Fig. 1.

SERVER user constraints CLIENT

Generation of the CSP |:> Solving the CSP and

Database

with) browsing through the
. . accessing the database -)
information agent consisting solutions
for the CSP of the CSP and

search methods

Figure 1: A client-server architecture for distributing problem solving on the Web.

In the next Section we introduce the Java Constraint Library (JCL) that supports our archi-

tecture described above.

2 Java Constraint Library

We implemented the Java Constraint Library (JCL) which allows us to package constraint satis-
faction problems and their solvers in agents on the Internet. We will first give a brief introduction
to constraint satisfaction techniques and then describe JCL. Finally we describe the JCL shell,
a tool to solve CSPs on the Internet by means of a Java applet, and present a resource allocation

problem to illustrate the usage of JCL.

2.1 Constraint Satisfaction Problems (CSPs)

CSPs are ubiquitous in applications like configuration [10, 9], planning [12, 7, 3], resource allo-
cation [1, 11], scheduling [8, 2], timetabling [6] and many others. A CSP is specified by a set
of variables and constraints among them. A solution to a CSP is a set of value assignments to
all variables such that all constraints are satisfied. There can be either many, 1 or no solutions.

The main advantages of constraint based programming are as following:

e [t offers a general framework within which many real world problems can be stated in a

succinct and elegant way.

e A constraint based representation can be used to synthesize solutions of the problem as

well as for verification purposes (i.e. showing that a solution satisfies all constraints).

e The nature of the representation allows a formal description of the problems as well as a

declarative description of search heuristics.

A finite, discrete Constraint Satisfaction Problem (CSP) is defined by a tuple P = (X, D, C, R)
where X = {X;,..., X} is a finite set of variables, each associated with a domain of discrete
values D = {Dq,...,D,}, and a set of constraints C' = {C4,...,C;}. Each constraint C; is
expressed by a relation R; on some subset of variables. This subset of variables is called the
connection of the constraint and denoted by con(C;). The relation R; over the connection of a
constraint C; is defined by R; C D;; x ... x D;; and denotes the tuples that satisfy C;. The arity
of a constraint C' is the size of its connection. In particular, a constraint is called binary if it is
between 2 variables (the size of its connection is equal to 2). If all constraints are binary, then
the CSP is called binary. Otherwise the CSP is called a non-binary CSP.

A solution of a CSP P is a compound label of size n such that all constraints are satisfied
simultaneously. A CSP is said to be satisfiable if a solution exists. Depending on the goals one
wants to satisfy, one can either try to show that a CSP is satisfiable, i.e., show that a solution

exists, find all solutions of a CSP, or find some optimal solutions, where optimality can be defined

according to specified domain criteria. A large body of techniques exists for efficiently solving

CSPs. For more details see [14].

2.2 The Constraint Library

The library provides services for:

e creating, managing and representing binary discrete CSPs

e applying search and preprocessing algorithms to CSPs

JCL can be used either in a Java enabled browser (applet) or in a stand-alone Java application.
In Fig. 2 we present the main components of the JCL environment. The purpose of JCL is to
provide a framework for easily building agents that solve CSPs on the Web. JCL is divided
into two parts: A basic constraint library available on the network and a constraint shell build
on the top of this library, allowing CSPs to be edited and solved. JCL allows the development
of portable applications and applets using the constraint mechanisms. JCL can be downloaded

from http://liawww.epfl.ch/"torrens. For more details see [13].

Shell

user-friendly interface for editing and solving CSPs

JCL .
JavaScript
algorithms for searching solutions

and preprocessing CSPs)
functions for

scripting HTML
JAVA language pages

Figure 2: The components of the JCL environment.

The algorithms

The library contains search and preprocessing algorithms for CSPs. The search algorithms allow

us to find the solutions of a CSP, while the preprocessing algorithms are used to simplify a

CSP by eliminating values and compound labels that do not affect its solutions. Several search
algorithms are implemented in JCL. There are three main algorithms derived from Chronological
Backtracking (BT) that are: Backmarking (BM), Backjumping (BJ) and Forward Checking
(FC) [4]. Some combinations of them are implemented in [15] and adapted in JCL. Fig. 3 shows

a hierarchy of the algorithms in JCL.

Backtracking
T T j
A 4
Backmarking Backjumping Forwardchecking
BM BJ FC
Constrained Directed
BM-BJ Backjumping
CBJ Maintinging
Arc-consistency
MAC

Graph Directed
Backumping
GBJ

ry | > Fce]

Figure 3: A hierarchy of the search algorithms implemented in JCL.

The following two preprocessing algorithms are implemented in JCL: Arc-consistency (AC)

and Path-consistency (PC) [5].

2.3 the JCL Shell

The purpose of the shell is to provide a user-friendly interface to the library. The JCL shell can
be executed as a stand-alone application or as an applet. The following aspects are taken into

consideration:
e CSP definition and generation from scratch,
e algorithm application and

e intermediate and final solution management.

JCL library

GUI JCL Shell File /0O (application)
Graphical User @—P»| . Application mode j——P» or
Interface . Applet mode browser (applet)

Figure 4: Relations between JCL library, JCL shell and the external world.

‘i JCL Main Window : S—queens by C5P E iJ

File Operations

Constraints definitions 4| Text Editor

Variable 1 Variable 2 Constraints
ariable 0 Wariable_0 Walue_0 [value_1 [value_z [value_3 [Value 4 | |
Variable_2 ﬁﬁ:ﬁ% |LATIaN] L3 [[3
Variable 3 varavie 5 WY ICTOR NN N B
Variable_4 Wariable 4 [value 2 | [=x | [x |
[vawe 3| = | [= | [x
[vawe 4] x [x | [x |

5]

|Java Applet Window

Figure 5: The constraints editor in the JCL shell.

Fig. 4 illustrates the relations between the library, the shell and the external world.

Fig. 5 shows how constraints in between variables can be edited using mouse and menus.
We can select a pair of variables and then mark the allowed combination of values defining the
constraint. Another important window is the solving control window shown in Fig. 6. It allows
the user choose the algorithm, solution options, displaying options and start the algorithm. The
HTML output produces the output in a browser window. The algorithm panel permits algorithm
selection among the JCL algorithms or other algorithms that could be implemented by the user.
While the algorithms are running, a “solving in progress” window is displayed indicating how
many solutions have been found so far. In this window one can also suspend, resume or stop the

resolution process.

— |CL Solving Control — S—queens BE

Fle Operations Options

Algorithm Number of solutions
@ BT Simple Backiracking i@ one solution
) BJ Simple Backjumping __ all solutions
) CBJ Constraint- Directed Backjumping) max 2 zolutions

) FC Simple Forward Checking

) BM Simple Backmarking

) GBJ Graph- Based Backjumping

' BM-BJ Backmarking & Backjumping

) BM-CBJ Backmarking & Constraint-Directed Backjumping
) BM- GBJ Backmarking & Graph- Based Backjumping

) FC-BJ Forward Checking & Backjumping

) FC-CBJ Forward Checking & Constraint- Directed Backjumping
) FC-GBJ Forward Checking & Graph-Directed Backjumping
) MAC Forward Checking with Full Arc Consistency

) FC-D¥0 Forward Checking with DYO

) MAC-DVO MAC with DVO

_ other solver |]

J.Java Applet Yincow

Figure 6: The solving control window.

2.4 A simple graphical application using JCL

We describe an applet for solving Resource Allocation problems. It is a simple application to
demonstrate the flexibility and adaptability of the JCL for programming applications using CSP
mechanisms on the Web. Resource Allocation (RA) problems can be defined as follows (see [1]):
“Given a set of tasks with fixed endpoints, and given, for each task, a set of resources that can
carry out the task, assign one resource to each of the tasks such that no resource is assigned to
two different tasks at the same time”. The RA problem can be modeled as a discrete binary
CSP where the variables are the tasks, the values are the resources and there are constraints of
mutual exclusion between two variables if the corresponding tasks intersect in time. Consider
the interval representation of the small example in Fig. 7, where we have 7 tasks T;,...,T7 and
resources Ry,..., Rs. Two tasks intersecting in time are not allowed to use the same resource.
The applet of solving RA problems can be executed from the Web at:
http://liawww.epfl.ch/“torrens/exercise/exercise.html. The tasks to be executed are

represented as rectangles, and rectangles intersecting horizontally do intersect in time. Each

T1:{R1,Ra. Rs} T4 {R3, Ry}
| | nn L}

T3:{R1, R2, R3, Rg}

T2: {R1, R2} Ts: {R3, Ra}
L '} L '}
| | |] | | |]

T7:{R2, Ra}

|]
. Tg: {R1, R2, Ra}
| | |]
Te: {R1, R2, Rs}

>

Time

Figure 7: Interval orders: a schedule of seven tasks whose start time and duration are fized. For
each task, a set of possible resources is shown. A correct assignment of resources to the tasks is
Wllustrated in red.

resource corresponds to a different color. When a resource is assigned to a task then the task is
colored with the color of the resource. The applet allow the user to generate random Resource
Allocation problems, select a search algorithm, and solve the CSP. A step-by-step mode allows a

user to trace the execution of the algorithms. In Fig. 8 we show the appearance of this applet.

File Edit Yiew Go Communicator Help
Td 2 3 84 2 & < & &
% Back Fopwerd Reload Home Search Guide Print Secuity Stop

j <" Boockmarks £ Location! fnttp: //1iawsw, epfl.ch/~torrens/ezercise/ezercize. html /]
.‘ (5 Cours 4 Press (4§ HomePages

Solving Resource Allocation problem using JCL

- B
Task(Taskl TFaskZ Taskd
= B,
Tookd Taoks TaokE Method MAC with DVO 1
Taski
lac
Faskll
Taskiz Taskid
Abort
a b @ 1@ e @ f

Solving details :
Entering level 10 A
Instantiating TaskD, resource a

Yarisble Taskd shrinks varisble Taskil donain containing 3 values to 2 values,

Warighle Task shrinks varisble TaskZ donain containing 4 values to 3 values.

Entering level 11 _|
Inetartiating Taskll, resource & -5“
=

iﬁ_l

Figure 8: Resource Allocation applet searching a solution.

3 Applications

3.1 Air Travel Planning (ATP) system

From time to time, we are all faced with the problem of arranging business trips. Typically, we
have to meet with a set of people in different cities, each of which has certain days where they are
available for a meeting. Transportation schedules impose additional constraints. In the current
state of affairs, schedule information can only be obtained by queries to travel agents or WWW
servers for particular routes, dates and times. Thus, finding the optimal plan would require
separate queries for every part of every alternative itinerary. Since each query implies response
times on the order of 1 minute, this makes travel planning very tedious. A better solution is to
use a client server architecture distributing problem solving on the Web.

The prototypical business Air Travel Planning (ATP) system is designed to facilitate arrang-
ing these kinds of business trips using JCL. An air travel plan is a sequence of flights connecting
different cities a user plans to visit. Given such a set of cities together with possible time slots
to visit each city, the system generates a set of plans. This plan consists of the meeting together
with all possible flight connections from which the user can easily select the most preferred one.

The input data for ATP system is a set of meetings, where every meeting is described by the
place and the possible time-slots for the different days the meeting could take place (see Table 1
and Fig. 9). We formulate the problem of finding a travel plan as a binary CSP. For each meeting
M; there exists a constraint variable and the domain are the flights in between cities where the
meetings could take place. The constraints require that flights are available such that the person
can attend all the meetings. They can roughly be formulated as follows: a flight action from
meeting 7 to meeting 7 can be accepted if meeting j finishes before the departure time and the
plane arrives before meeting ¢ starts. A solution of the CSP corresponding to the business travel
problem can be seen as a sequence of flights in between the cities of the meetings. For each
meeting, one of the possible days must be assigned and it must be guaranteed that then exists at

least one flight connection between consecutive meetings. Consider as example the travel data

10

| M | City |

Time-Slots for November

M1 | AMS | 1%¢ 12h-16h | 3" 13h-15h

M2 | BCN | 15 12h-15h | 2" 13h-17h

M3 | LON | 277 12h-15h | 8" 11h-14h

M4 | GVA | 277 9h-12h | 4" 9h-12h | 5"10h-15h
M5 | PAR | 5" 8h-12h | 8 8h-12h

M6 | BER | 6" 15h-18h | 8" 10h-16h

M7 | FRA | 4" 8h-12h | 7% 8h-12h

Table 1: Input Data to be send to the server.

from Table 1.

In the following we present a new methodology for solving the business travel problem on the
Web using JCL. The main idea is to generate the CSP corresponding the business travel problem
on the server and solve the problem locally on the client (see Fig. 1). The input required from
the traveler includes all possible meeting slots. The input is sent to the server in order to build
the corresponding CSP, taking flight databases and the user input into account. Then the CSP
is packaged together with search algorithms from JCL into an autonomous agent. The CSP
can then be solved on the client without having to access the server. This allows the user to
browse autonomously through the different solutions. When the user selects a travel plan (a
solution) then the actual flights can be presented in the form of a list such that the user can
easily select the most preferred one. The example below describes some possible partial solution

of the problem shown in Table 1:

e meeting M1 (Amsterdam) is scheduled on the 37 (from 13h to 15h)
e meeting M2 (Barcelona) is scheduled on the 2"¢ (from 13h to 17h)
e meeting M4 (Geneva) is scheduled on the 4" (from 9h to 12h)

e meeting M5 (Paris) is scheduled on the 5 (from 8h to 12h)

The corresponding flights to this partial solution are shown in Table 2. In order to access flight

data for building the CSP, we created a MiniSQL' database. We use a Java class library called

'"Reference at http://Huges.com.au

11

i i

=.§ Air Travel Planning System ; a ;D

File Operations

Head Schedule Letinition

Schedule Mame : Marc
Schedule Month : July =i
Initial Continent: Initial Country: Inicial Airport:
Slovakia 4 |Grenchen Al
Asia Slovenia Locarno
South America Spain Montreus

Central America
North America

Oceany
Meetings Definition
Number of meeting: e
Meeting Name: M2
Continent: Country: Airport:
Portugal & |arrecife, Canary Islands [Lanzar |4
Romania Malaga [Pablo Ruiz Picassol

South America Slovakia
Central America
North America

&l

Cceany Badajez [Talavera La Reall
San Sebastian i
United Kingdom V| = J— =
Edit Time Slot
Number of TS: 1 Day : 1 4| New Time Slot
Start Hour : Start Minute : End Hour : End Minute : Next Tirme Slot >
12 —f 5 —f 15 —f 25

Delete Time Slot

Ok

Edit button

New Meeting | Next Meeting > << Previous Meeting Delete Meeting

] l Unsigned Java Applet Window

Figure 9: The input data window for the ATP system.

MsqlJava? which allows applications or applets to access and manipulate MiniSQL databases.
On the server the MiniSQL is running in background. This makes it possible for the applet on
the client to access the flight database to build the corresponding CSP. Table 3 describes some

rows of the created database.

2Reference at http://mama.minet.uq.oz.au/msqljava

12

‘ Comp ‘ Fly ‘ From ‘ To ‘ Dep ‘ Arr ‘ Dur ‘
IB 4248 | BCN | AMS | 10:15 | 12:25 | 2:10
KL 352 | BCN | AMS | 7:05 | 9:25 | 2:20

SR 724 | GVA | PAR | 12:15 | 13:20 | 1:05
AF 2855 | GVA | PAR | 14:10 | 15:15 | 1:05
SR 726 | GVA | PAR | 16:15 | 17:20 | 1:05
AF 2835 | GVA | PAR | 17:15 | 18:20 | 1:05
AF 2893 | GVA | PAR | 18:05 | 19:10 | 1:05
SR 728 | GVA | PAR | 18:45 | 19:50 | 1:05
AF 2887 | GVA | PAR | 20:40 | 21:45 | 1:05

Table 2: Possible flights from Barcelona on 2" (after 17h) to Amsterdam on 3" (before 13h)
and from Geneva on 4™ (after 12h) to Paris on 5" (before 8h).

| Code | Flight | Dep. | Time | Ar. | Time | Days

IB | 4248 [BCN | 1015 | AMS | 1225 | 1234567
KL 354 | BCN | 1125 | AMS | 1345 | 1234567
KL 356 | BCN | 1610 | AMS | 1830 | 1234567
IB | 4262 | BCN | 1640 | AMS | 1855 | 1234567

Table 3: Description of some rows of the flight database.

3.2 Product Configuration for Electronic Commerce

In recent years, manufacturing trends have changed from pure mass-production towards a more
customer oriented one-of-a-kind production. The main reason for this change is that today’s
customers have very specific and individual requirements which cannot be satisfied by mass-
products. The one-of-a-kind production of many consumer and investment products imposes new
challenges concerning the marketing of these products, in particular in Electronic Commerce.
With current electronic catalogs, customers are supposed to compose solutions themselves by
selecting elements individually. In the future, product configuration utilities that synthesize
products according to customer’s wishes will be indispensable for selling multi-variant products
through Electronic Commerce, and will be an essential part of more intelligent electronic catalogs.

The general configuration task can be defined as follows: Given

e a set of predefined components,

13

e the knowledge of how components can be connected,
e the customer requirements for a specific configuration

find the sets of components fulfilling the user-requirements and respecting all the compatibility
constraints. The configuration task can be formalized as a general constraint satisfaction problem

(CSP). Two approaches for solving configuration problems represented as CSPs exist:

Standard approach: Using this technique one needs to solve the CSP corresponding to the
configuration problem from scratch. That is the customer inputs the requirements and
then the constraint solver tries to find the solutions. There are three major problems with
this approach. The first is that user requirements may lead to an over-constrained CSP
and thus no product can be configured. The second is that there are too many possible
products satisfying the requirements and the customer is overloaded with information. The
third and most serious problem is that often a user has only a vague idea about the product

and cannot really express the input requirements.

Case-based approach: This approach allows the customer to select a configuration from a set
of configurations sold to earlier (possibly fictitious) customers. Then the selected configura-
tion can interactively be modified until a product satisfying all the requirements is found.
The case-based method is especially well-suited when there are only a few “standard”
products which could be represented in a catalog and when constraint based adaptation
methods to modify these standard products are available. This approach avoids all the

problems mentioned above.

In both cases, the JCL allows executing the computationally expensive parts of the problem

on the customer side. Fig. 10 shows the resulting architecture for the case-based approach.

14

SERVER requirements CLIENT

Selction of a product from Search for reconfigurations
the case base. Bundle the |:|,> and browsing through
selected product with the them in an interactive

constraint model. agent consisting of process
the selected case

and the constraint
model.

Casebase with
standard
products

Figure 10: A client server architecture for distributing product configuration on the Web.

4 Conclusions

As a result of the spread of the world-wide web, interactive information servers are becoming
more and more important. Browsing through databases requires quick response times which are
difficult to achieve when users interact directly with a server. We have shown a methodology
when agent techniques underlying Java can separate browsing from database access. The key
element of this approach is to represent solution spaces of a problem as a CSP. This CSP will be
bundled with search engines from JCL that allow the problem to be solved locally on the client

without requiring computation resources from the server.

References

[1] Berthe Y. Choueiry. Abstraction Methods for Resource Allocation. PhD thesis, Swiss Federal

Institute of Technology in Lausanne, 1994.

[2] Mark Fox. Why is Scheduling Difficult? A CSP Perspective. In Proc. of the 9" ECAI

pages 754 758, Stockholm, Sweden, 1990.

[3] Matthew L. Ginsberg. A new algorithm for generative planning. In Luigia Carlucci Aiello,
Jon Doyle, and Stuart Shapiro, editors, Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning, pages 186 197, San Francisco,

November 5-8 1996. Morgan Kaufmann.

15

[4]

[10]

[11]

[12]

Grzegorz Kondrak. A Theoretical Evaluation of Selected Backtracking Algorithms. Techni-
cal Report TR-94-10, Department of Computing Science, University of Alberta, Edmonton,

Alberta, Canada, 1994.

Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8:99-118,

1977.

Amnon Meisels, Ehud Gudes, and Gadi Solotorevsky. Employee timetabling, constraint
networks and knowledge-based rules: a mixed approach. In Proceedings of the First Inter-
national Conference on the Practice and Theory of Automated Timetabling (ICPTAT ’95),

pages 504 510, 1995.

Claude Le Pape. Constraint propagation in planning and scheduling. Technical report,

Stanford University, 1991.

Patrick Prosser. Scheduling as a Constraint Satisfaction Problem: Theory and Practice.
In Scheduling of Production Processes Workshop Notes, W7, ECAI-92, pages 7-15, Vienna,

Austria, 1992.

Daniel Sabin and Fugene C. Freuder. Configuration as composite constraint satisfaction. In
Proceedings of the Artificial Intelligence and Manufacturing Research Planning Workshop,
pages 153-161, 1996.

Felix Freyman Sanjay Mittal. Towards a generic model of configuration tasks. In Proc. of

the 11 '™ ILJCAI, pages 1395 1401, Detroit, MI, 1989.

A. Sathi and M. S. Fox. Constraint-directed negotiation of resource allocations. In L. Gasser
and M. Huhns, editors, Distributed Artificial Intelligence Volume II, pages 163 194. Pitman

Publishing: London and Morgan Kaufmann: San Mateo, CA, 1989.

Mark Stefik. Planning with constraints (molgen: Part 1). Artificial Intelligence, 16(2):111-

140, 1981.

16

[13] Marc Torrens, Rainer Weigel, and Boi V. Faltings. Java Constraint Library: bringing con-
straints technology on Internet using Java language. In Working Notes of the Workshop on
Constraints and Agents, Technical Report WS-97-05, AAAI-97, Providence, Rhode Island,

USA, 1997.
[14] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, London, UK, 1993.

[15] Peter van Beek. CSPLib : a CSP library written in C language. University of Alberta,

vanbeek@cs.ualberta.

17

