
Distributing Problem Solving on the Web using ConstraintTechnology.Marc Torrens, Rainer Weigel and Boi FaltingsArti�cial Intelligence LaboratorySwiss Federal Institute of Technology in Lausanne (EPFL)IN-Ecublens, CH-1015 Lausanne, SwitzerlandAbstractWWW servers have to serve many clients simultaneously and thus cannot provide in-telligent services. We present an approach where intelligent problem solving is distributedso that compute-expensive tasks are carried out on the client side. To this end, we haveimplemented a library of constraint satisfaction techniques, called the JAVA constraint li-brary, which allows composing applets that solve CSPs. We present the library and showseveral examples of applications.Keywords: Intelligent Internet agents, Problem Solving on the Web, Product Con�gura-tion, Constraint-based Reasoning.1 Distributing Problem SolvingAs a result of the spread of the world-wide web, interactive information servers are becomingmore and more commonplace. Browsing through databases requires quick response times whichare di�cult to achieve when users interact directly with a server. Bandwidth restrictions andserver overload are the two major problems when users are browsing information directly on a1

Web server. In addition, very often information on the web servers are not well-structured to �tcertain complex queries.Consider for example web pages of an airline company. They often provide access to their
ight databases by requiring information about departure and destination airports. The result isa list of possible
ight connections. A more di�cult query where one plans a business roundtripvisiting several cities in an arbitrary order would be much more complicated and cumbersomeusing the standard interface. This is true in particular if one would like to minimize the hoursof
ight, costs, etc.In oder to answer such queries a system must provide problem solving capabilities. Ourgeneral approach is the following: The answer of the query is considered to be a solution to aconstraint satisfaction problem (CSP). The formalisation as a CSP supports a natural decompo-sition of the task into two subtasks: generation of the CSP on the server, and solving the CSPon the client. The advantages of the approach are that1. if there are many solutions to the problem, then the CSP can be regarded as a compact rep-resentation of the solution space. It represents it using a minimum amount of informationthat needs to be send to the client, and2. �nding the solutions requires only computing power of the client and thus avoids serveroverload. Furthermore, browsing through a large number of possible answers to a query isindependent of the server and can be done locally.The architecture supporting this methodology is shown in Fig. 1. The client sends a requestcontaining the user constraints to the server. The server will access databases in order to generatethe corresponding CSP taking into consideration the constraints of the user. The CSP is packagedwith search algorithms for �nding the solutions to form an agent which is returned to the user.In this way the user can browse through the di�erent solutions by interacting with the agentlocally.We decompose the process into two parts: 2

� the information server compiles all relevant information from the database and the userconstraints (query) into the corresponding CSP. The CSP is a compact representation ofall solutions that the problem can have given the initial restrictions of the user.� the server sends an agent consisting of the CSP and search algorithms to the client. Thisallows the user to browse through all the possible solutions. Since the agent executes onthe client, response time can be very fast and the user can compare di�erent alternativeswithout placing unnecessary load on the server.Building the CSP requires only a small fraction of time compared to solving the CSP, so havingthe agent executed on the client signi�cantly reduces server overload. After having generated theCSP there is no longer need of accessing the server, so the agent sent by the server is completelyautonomous. This architecture is shown in Fig. 1.
SERVER

Generation of the CSP
accessing the database

CLIENT

Solving the CSP and
browsing through the

solutions

user constraints

agent consisting
of the CSP and
search methods

Database
with

information
for the CSPFigure 1: A client-server architecture for distributing problem solving on the Web.In the next Section we introduce the Java Constraint Library (JCL) that supports our archi-tecture described above.2 Java Constraint LibraryWe implemented the Java Constraint Library (JCL) which allows us to package constraint satis-faction problems and their solvers in agents on the Internet. We will �rst give a brief introductionto constraint satisfaction techniques and then describe JCL. Finally we describe the JCL shell,a tool to solve CSPs on the Internet by means of a Java applet, and present a resource allocationproblem to illustrate the usage of JCL. 3

2.1 Constraint Satisfaction Problems (CSPs)CSPs are ubiquitous in applications like con�guration [10, 9], planning [12, 7, 3], resource allo-cation [1, 11], scheduling [8, 2], timetabling [6] and many others. A CSP is speci�ed by a setof variables and constraints among them. A solution to a CSP is a set of value assignments toall variables such that all constraints are satis�ed. There can be either many, 1 or no solutions.The main advantages of constraint based programming are as following:� It o�ers a general framework within which many real world problems can be stated in asuccinct and elegant way.� A constraint based representation can be used to synthesize solutions of the problem aswell as for veri�cation purposes (i.e. showing that a solution satis�es all constraints).� The nature of the representation allows a formal description of the problems as well as adeclarative description of search heuristics.A �nite, discrete Constraint Satisfaction Problem (CSP) is de�ned by a tuple P = (X;D;C;R)where X = fX1; : : : ; Xng is a �nite set of variables, each associated with a domain of discretevalues D = fD1; : : : ; Dng, and a set of constraints C = fC1; : : : ; Clg. Each constraint Ci isexpressed by a relation Ri on some subset of variables. This subset of variables is called theconnection of the constraint and denoted by con(Ci). The relation Ri over the connection of aconstraint Ci is de�ned by Ri � Di1� : : :�Dik and denotes the tuples that satisfy Ci. The arityof a constraint C is the size of its connection. In particular, a constraint is called binary if it isbetween 2 variables (the size of its connection is equal to 2). If all constraints are binary, thenthe CSP is called binary. Otherwise the CSP is called a non-binary CSP.A solution of a CSP P is a compound label of size n such that all constraints are satis�edsimultaneously. A CSP is said to be satis�able if a solution exists. Depending on the goals onewants to satisfy, one can either try to show that a CSP is satis�able, i.e., show that a solutionexists, �nd all solutions of a CSP, or �nd some optimal solutions, where optimality can be de�ned4

according to speci�ed domain criteria. A large body of techniques exists for e�ciently solvingCSPs. For more details see [14].2.2 The Constraint LibraryThe library provides services for:� creating, managing and representing binary discrete CSPs� applying search and preprocessing algorithms to CSPsJCL can be used either in a Java enabled browser (applet) or in a stand-alone Java application.In Fig. 2 we present the main components of the JCL environment. The purpose of JCL is toprovide a framework for easily building agents that solve CSPs on the Web. JCL is dividedinto two parts: A basic constraint library available on the network and a constraint shell buildon the top of this library, allowing CSPs to be edited and solved. JCL allows the developmentof portable applications and applets using the constraint mechanisms. JCL can be downloadedfrom http://liawww.epfl.ch/~torrens. For more details see [13].

Shell

user-friendly interface for editing and solving CSPs

JCL

algorithms for searching solutions
and preprocessing CSPs

JavaScript

functions for
scripting HTML

pagesJAVA languageFigure 2: The components of the JCL environment.The algorithmsThe library contains search and preprocessing algorithms for CSPs. The search algorithms allowus to �nd the solutions of a CSP, while the preprocessing algorithms are used to simplify a5

CSP by eliminating values and compound labels that do not a�ect its solutions. Several searchalgorithms are implemented in JCL. There are three main algorithms derived from ChronologicalBacktracking (BT) that are: Backmarking (BM), Backjumping (BJ) and Forward Checking(FC) [4]. Some combinations of them are implemented in [15] and adapted in JCL. Fig. 3 showsa hierarchy of the algorithms in JCL.
Backtracking

BT

Backmarking
BM

Backjumping
BJ

Forwardchecking
FC

Maintinging
Arc-consistency

MAC

Constrained Directed
Backjumping

CBJ

Graph Directed
Backumping

GBJ

BM-BJ

BM-GBJ

FC-CBJ

BM-CBJ

FC-GBJFigure 3: A hierarchy of the search algorithms implemented in JCL.The following two preprocessing algorithms are implemented in JCL: Arc-consistency (AC)and Path-consistency (PC) [5].2.3 the JCL ShellThe purpose of the shell is to provide a user-friendly interface to the library. The JCL shell canbe executed as a stand-alone application or as an applet. The following aspects are taken intoconsideration:� CSP de�nition and generation from scratch,� algorithm application and� intermediate and �nal solution management.6

JCL library

JCL Shell
 . Application mode
 . Applet mode

GUI
Graphical User

Interface

File I/O (application)
or

browser (applet)Figure 4: Relations between JCL library, JCL shell and the external world.

Figure 5: The constraints editor in the JCL shell.Fig. 4 illustrates the relations between the library, the shell and the external world.Fig. 5 shows how constraints in between variables can be edited using mouse and menus.We can select a pair of variables and then mark the allowed combination of values de�ning theconstraint. Another important window is the solving control window shown in Fig. 6. It allowsthe user choose the algorithm, solution options, displaying options and start the algorithm. TheHTML output produces the output in a browser window. The algorithm panel permits algorithmselection among the JCL algorithms or other algorithms that could be implemented by the user.While the algorithms are running, a \solving in progress" window is displayed indicating howmany solutions have been found so far. In this window one can also suspend, resume or stop theresolution process.
7

Figure 6: The solving control window.2.4 A simple graphical application using JCLWe describe an applet for solving Resource Allocation problems. It is a simple application todemonstrate the
exibility and adaptability of the JCL for programming applications using CSPmechanisms on the Web. Resource Allocation (RA) problems can be de�ned as follows (see [1]):\Given a set of tasks with �xed endpoints, and given, for each task, a set of resources that cancarry out the task, assign one resource to each of the tasks such that no resource is assigned totwo di�erent tasks at the same time". The RA problem can be modeled as a discrete binaryCSP where the variables are the tasks, the values are the resources and there are constraints ofmutual exclusion between two variables if the corresponding tasks intersect in time. Considerthe interval representation of the small example in Fig. 7, where we have 7 tasks T1; : : : ; T7 andresources R1; : : : ; R5. Two tasks intersecting in time are not allowed to use the same resource.The applet of solving RA problems can be executed from the Web at:http://liawww.epfl.ch/~torrens/exercise/exercise.html. The tasks to be executed arerepresented as rectangles, and rectangles intersecting horizontally do intersect in time. Each8

Time

T6: {R1, R2, R5}

T2: {R1, R2} T5: {R3, R4}

T1: {R1, R2, R5}

T7: {R2, R4}

T8: {R1, R2, R4}

T3: {R1, R2‚ R3, R4}

T4: {R3, R4}

Figure 7: Interval orders: a schedule of seven tasks whose start time and duration are �xed. Foreach task, a set of possible resources is shown. A correct assignment of resources to the tasks isillustrated in red.resource corresponds to a di�erent color. When a resource is assigned to a task then the task iscolored with the color of the resource. The applet allow the user to generate random ResourceAllocation problems, select a search algorithm, and solve the CSP. A step-by-step mode allows auser to trace the execution of the algorithms. In Fig. 8 we show the appearance of this applet.

Figure 8: Resource Allocation applet searching a solution.9

3 Applications3.1 Air Travel Planning (ATP) systemFrom time to time, we are all faced with the problem of arranging business trips. Typically, wehave to meet with a set of people in di�erent cities, each of which has certain days where they areavailable for a meeting. Transportation schedules impose additional constraints. In the currentstate of a�airs, schedule information can only be obtained by queries to travel agents or WWWservers for particular routes, dates and times. Thus, �nding the optimal plan would requireseparate queries for every part of every alternative itinerary. Since each query implies responsetimes on the order of 1 minute, this makes travel planning very tedious. A better solution is touse a client server architecture distributing problem solving on the Web.The prototypical business Air Travel Planning (ATP) system is designed to facilitate arrang-ing these kinds of business trips using JCL. An air travel plan is a sequence of
ights connectingdi�erent cities a user plans to visit. Given such a set of cities together with possible time slotsto visit each city, the system generates a set of plans. This plan consists of the meeting togetherwith all possible
ight connections from which the user can easily select the most preferred one.The input data for ATP system is a set of meetings, where every meeting is described by theplace and the possible time-slots for the di�erent days the meeting could take place (see Table 1and Fig. 9). We formulate the problem of �nding a travel plan as a binary CSP. For each meetingMi there exists a constraint variable and the domain are the
ights in between cities where themeetings could take place. The constraints require that
ights are available such that the personcan attend all the meetings. They can roughly be formulated as follows: a
ight action frommeeting j to meeting i can be accepted if meeting j �nishes before the departure time and theplane arrives before meeting i starts. A solution of the CSP corresponding to the business travelproblem can be seen as a sequence of
ights in between the cities of the meetings. For eachmeeting, one of the possible days must be assigned and it must be guaranteed that then exists atleast one
ight connection between consecutive meetings. Consider as example the travel data10

M City Time-Slots for NovemberM1 AMS 1st 12h-16h 3th 13h-15hM2 BCN 1st 12h-15h 2nd 13h-17hM3 LON 2nd 12h-15h 8th 11h-14hM4 GVA 2nd 9h-12h 4th 9h-12h 5th10h-15hM5 PAR 5th 8h-12h 8th 8h-12hM6 BER 6th 15h-18h 8th 10h-16hM7 FRA 4th 8h-12h 7th 8h-12hTable 1: Input Data to be send to the server.from Table 1.In the following we present a new methodology for solving the business travel problem on theWeb using JCL. The main idea is to generate the CSP corresponding the business travel problemon the server and solve the problem locally on the client (see Fig. 1). The input required fromthe traveler includes all possible meeting slots. The input is sent to the server in order to buildthe corresponding CSP, taking
ight databases and the user input into account. Then the CSPis packaged together with search algorithms from JCL into an autonomous agent. The CSPcan then be solved on the client without having to access the server. This allows the user tobrowse autonomously through the di�erent solutions. When the user selects a travel plan (asolution) then the actual
ights can be presented in the form of a list such that the user caneasily select the most preferred one. The example below describes some possible partial solutionof the problem shown in Table 1:� meeting M1 (Amsterdam) is scheduled on the 3rd (from 13h to 15h)� meeting M2 (Barcelona) is scheduled on the 2nd (from 13h to 17h)� meeting M4 (Geneva) is scheduled on the 4th (from 9h to 12h)� meeting M5 (Paris) is scheduled on the 5th (from 8h to 12h)The corresponding
ights to this partial solution are shown in Table 2. In order to access
ightdata for building the CSP, we created a MiniSQL1 database. We use a Java class library called1Reference at http://Huges.com.au 11

 ��

Figure 9: The input data window for the ATP system.MsqlJava2 which allows applications or applets to access and manipulate MiniSQL databases.On the server the MiniSQL is running in background. This makes it possible for the applet onthe client to access the
ight database to build the corresponding CSP. Table 3 describes somerows of the created database.2Reference at http://mama.minet.uq.oz.au/msqljava
12

Comp Fly From To Dep Arr DurIB 4248 BCN AMS 10:15 12:25 2:10KL 352 BCN AMS 7:05 9:25 2:20SR 724 GVA PAR 12:15 13:20 1:05AF 2855 GVA PAR 14:10 15:15 1:05SR 726 GVA PAR 16:15 17:20 1:05AF 2835 GVA PAR 17:15 18:20 1:05AF 2893 GVA PAR 18:05 19:10 1:05SR 728 GVA PAR 18:45 19:50 1:05AF 2887 GVA PAR 20:40 21:45 1:05Table 2: Possible
ights from Barcelona on 2nd (after 17h) to Amsterdam on 3rd (before 13h)and from Geneva on 4th (after 12h) to Paris on 5th (before 8h).Code Flight Dep. Time Ar. Time DaysIB 4248 BCN 1015 AMS 1225 1234567KL 354 BCN 1125 AMS 1345 1234567KL 356 BCN 1610 AMS 1830 1234567IB 4262 BCN 1640 AMS 1855 1234567Table 3: Description of some rows of the
ight database.3.2 Product Con�guration for Electronic CommerceIn recent years, manufacturing trends have changed from pure mass-production towards a morecustomer oriented one-of-a-kind production. The main reason for this change is that today'scustomers have very speci�c and individual requirements which cannot be satis�ed by mass-products. The one-of-a-kind production of many consumer and investment products imposes newchallenges concerning the marketing of these products, in particular in Electronic Commerce.With current electronic catalogs, customers are supposed to compose solutions themselves byselecting elements individually. In the future, product con�guration utilities that synthesizeproducts according to customer's wishes will be indispensable for selling multi-variant productsthrough Electronic Commerce, and will be an essential part of more intelligent electronic catalogs.The general con�guration task can be de�ned as follows: Given� a set of prede�ned components, 13

� the knowledge of how components can be connected,� the customer requirements for a speci�c con�guration�nd the sets of components ful�lling the user-requirements and respecting all the compatibilityconstraints. The con�guration task can be formalized as a general constraint satisfaction problem(CSP). Two approaches for solving con�guration problems represented as CSPs exist:Standard approach: Using this technique one needs to solve the CSP corresponding to thecon�guration problem from scratch. That is the customer inputs the requirements andthen the constraint solver tries to �nd the solutions. There are three major problems withthis approach. The �rst is that user requirements may lead to an over-constrained CSPand thus no product can be con�gured. The second is that there are too many possibleproducts satisfying the requirements and the customer is overloaded with information. Thethird and most serious problem is that often a user has only a vague idea about the productand cannot really express the input requirements.Case-based approach: This approach allows the customer to select a con�guration from a setof con�gurations sold to earlier (possibly �ctitious) customers. Then the selected con�gura-tion can interactively be modi�ed until a product satisfying all the requirements is found.The case-based method is especially well-suited when there are only a few \standard"products which could be represented in a catalog and when constraint based adaptationmethods to modify these standard products are available. This approach avoids all theproblems mentioned above.In both cases, the JCL allows executing the computationally expensive parts of the problemon the customer side. Fig. 10 shows the resulting architecture for the case-based approach.
14

SERVER

Selction of a product from
the case base. Bundle the
selected product with the

constraint model.

CLIENT

Search for reconfigurations
and browsing through
them in an interactive

process

requirements

agent consisting of
the selected case
and the constraint
model.

Casebase with
standard
productsFigure 10: A client server architecture for distributing product con�guration on the Web.4 ConclusionsAs a result of the spread of the world-wide web, interactive information servers are becomingmore and more important. Browsing through databases requires quick response times which aredi�cult to achieve when users interact directly with a server. We have shown a methodologywhen agent techniques underlying Java can separate browsing from database access. The keyelement of this approach is to represent solution spaces of a problem as a CSP. This CSP will bebundled with search engines from JCL that allow the problem to be solved locally on the clientwithout requiring computation resources from the server.References[1] Berthe Y. Choueiry. Abstraction Methods for Resource Allocation. PhD thesis, Swiss FederalInstitute of Technology in Lausanne, 1994.[2] Mark Fox. Why is Scheduling Di�cult? A CSP Perspective. In Proc. of the 9 th ECAI,pages 754{758, Stockholm, Sweden, 1990.[3] Matthew L. Ginsberg. A new algorithm for generative planning. In Luigia Carlucci Aiello,Jon Doyle, and Stuart Shapiro, editors, Proceedings of the Fifth International Conferenceon Principles of Knowledge Representation and Reasoning, pages 186{197, San Francisco,November 5{8 1996. Morgan Kaufmann.

15

[4] Grzegorz Kondrak. A Theoretical Evaluation of Selected Backtracking Algorithms. Techni-cal Report TR-94-10, Department of Computing Science, University of Alberta, Edmonton,Alberta, Canada, 1994.[5] Alan K. Mackworth. Consistency in Networks of Relations. Arti�cial Intelligence, 8:99{118,1977.[6] Amnon Meisels, Ehud Gudes, and Gadi Solotorevsky. Employee timetabling, constraintnetworks and knowledge-based rules: a mixed approach. In Proceedings of the First Inter-national Conference on the Practice and Theory of Automated Timetabling (ICPTAT '95),pages 504{510, 1995.[7] Claude Le Pape. Constraint propagation in planning and scheduling. Technical report,Stanford University, 1991.[8] Patrick Prosser. Scheduling as a Constraint Satisfaction Problem: Theory and Practice.In Scheduling of Production Processes Workshop Notes, W7, ECAI-92, pages 7{15, Vienna,Austria, 1992.[9] Daniel Sabin and Eugene C. Freuder. Con�guration as composite constraint satisfaction. InProceedings of the Arti�cial Intelligence and Manufacturing Research Planning Workshop,pages 153{161, 1996.[10] Felix Freyman Sanjay Mittal. Towards a generic model of con�guration tasks. In Proc. ofthe 11 th IJCAI, pages 1395{1401, Detroit, MI, 1989.[11] A. Sathi and M. S. Fox. Constraint-directed negotiation of resource allocations. In L. Gasserand M. Huhns, editors, Distributed Arti�cial Intelligence Volume II, pages 163{194. PitmanPublishing: London and Morgan Kaufmann: San Mateo, CA, 1989.[12] Mark Ste�k. Planning with constraints (molgen: Part 1). Arti�cial Intelligence, 16(2):111{140, 1981. 16

[13] Marc Torrens, Rainer Weigel, and Boi V. Faltings. Java Constraint Library: bringing con-straints technology on Internet using Java language. In Working Notes of the Workshop onConstraints and Agents, Technical Report WS-97-05, AAAI-97, Providence, Rhode Island,USA, 1997.[14] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, London, UK, 1993.[15] Peter van Beek. CSPLib : a CSP library written in C language. University of Alberta,vanbeek@cs.ualberta.

17

