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Abstract

This paper presents SpaceSolver, a constraint sat-
isfaction tool-box providing access to constraint satis-
faction techniques on continuous variables through an
intuitive, web-based user interface. Moreover, we de-
scribe possible applications of such a platform to col-
laborative design and conclude that Internet-based use
of constraint satisfaction techniques has the potential
of increasing productivity in several fields in engineer-
ing.
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1 Introduction

In complex design projects collaboration is unavoid-
able. Knowledge of several designers with different
backgrounds is employed concurrently. However, col-
laboration also implies problems as illustrated in the
following (simplified) example: An architect, an en-
gineer, and a contractor collaborate on constructing
a computer-building. Since such buildings have spe-
cial requirements for ventilation, they agree on drilling
holes into the steel beams of the steel-framed building
in order to pass ventilation ducts. Now they must de-
cide about the spacing e and the diameter d of these
holes, as well as the distance between the support and
the first hole z (see Figure 1).

During the construction of the building, the val-
ues for d, e, and = evolved as shown in Table 1. For
maximum flexibility, the architect proposes big holes
at small intervals. In contrast, the engineer would pre-
fer small holes in order to maintain structural integrity.
Now the needs for ventilation are not satisfied and this
leads to negotiation that may iterate several times.

One solution at a time: When designers collab-
orate, the design-task is divided into sub-tasks, which

Figure 1: Beam with holes to pass ventilation ducts.
d, e and x define the geometry.

d e x
Architect 500mm  800mm  600mm
Engineer 250mm 900mm 500mm
Contractor | 250mm  900mm  700mm
Architect 300mm 800mm 700mm

Table 1: When single values for parameters are fized,
artificial conflicts arise and negotiations may iterate.

Variables d, e,and x are defiined in Figure 1.

are first treated separately, before the results to the
sub-tasks are combined to form a solution to the whole
task. Traditionally, designers provide one or few solu-
tions to their sub-task. In order to do so, they may
take decisions too early even though the task is influ-
enced by decisions of other collaborators. Information
related to alternatives and possible adaptation is thus
lost. This may cause conflicts during the combination
of sub-solutions, even though design-goals are not con-
tradictory. The resolution of such artificial conflicts is
performed during negotiation.

Using design spaces: An alternative to the above
approach is to use design spaces. Instead of determin-
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Figure 2: Solution spaces show the impact of decisions
on other parameters. Choosing d very high in the space
shown above requires high values for x.

ing single solutions to a sub-task, designers provide
all acceptable solutions. Decisions are not taken if
the needed information is not available, no arbitrary
choices for parameters are made, and all alternative
solutions can be used in subsequent negotiation. So-
lution spaces for sub-tasks can be combined to find a
solution space for the whole task. Since all acceptable
solutions to sub-tasks are considered, conflicts only
arise when designers have incompatible design-goals.
In this way less negotiation is necessary.

Simplifying the steel-framed building example men-
tioned above, the collaborators involved might impose
the following constraints:

e Architect: = < 1000, d > 300, 600 < e < 1200
e Engineer: z > 2d, d < 400, e > 900
e Contractor: = > 700, e > d + 50

Such a formalisation of the needs for every partici-
pating designer allows them to determine a solution
space for the whole task as shown in Figure 2. Instead
of negotiating about single solutions without knowing
whether a valid solution to the problem exists, design-
ers negotiate within feasible spaces in order to find the
best solution. Table 2 shows a selection of the con-
straints which model the ventilation ducts example.
Constraint satisfaction techniques: In order
to employ solution spaces as described, techniques to
determine and combine solution spaces are needed,
together with an adequate communication platform.
Many problems in several domains such as civil engi-
neering and mechanical design can be modelled as con-
straint satisfaction problems. A constraint satisfaction
problem (CSP) is specified in terms of variables and

their domains, as well as constraints on these variables.
Variables represent properties of the artifact to be de-
signed, each variable is assigned a domain, which con-
tains the a priori possible values of its variable, and the
constraints specify the restrictions which must hold for
any valid solution of the problem. The solution space
of a CSP which corresponds to a design task contains
all feasible designs for the task at hand. When col-
laborating designers provide a CSPs corresponding to
their sub-task, it is enough to combine the solution
spaces of these CSPs, to determine the solution space
for the whole design task.

Techniques to approximate solution spaces of CSPs
have been under development for over two decades.
An important class of CSPs are those defined for finite
domains. Efficient methods for finding approximations
of various accuracy [1, 9, 10] are available..

The task to find solution spaces for CSPs on con-
tinuous variables (CCSPs) is more difficult. However,
tasks in design usually involve continuous parameters.
Most successful systems which treat CCSPs concen-
trate on finding single solutions, possibly considering
some optimisation criteria [15, 14]. Little previous re-
search into finding solution spaces for continuous CSPs
[3, 8, 12] is available.

Communication platform: In order to collabo-
rate using solution spaces, designers need a common
communication platform to exchange information on
parameters and constraints. SpaceSolver is a plat-
form. It interfaces with the Internet and provides
access to constraint solving algorithms on continuous
numerical CSPs, i.e., constraints are given as closed
mathematical expressions over continuous variables.

This paper contains a brief description of Space-
Solver’s constraint satisfaction techniques in the next
section. Section 3 illustrates its architecture and the
WWW interface. Section 4 gives a summary of our
first experiences and Section 5 provides conclusions.

2 Constraint satisfaction
techniques

Resolution techniques for numerical constraint satis-
faction problems encompass areas that include linear
and non-linear programming, numerical analysis, hill-
climbing and stochastic techniques. Most of these tech-
niques attempt to compute a single solution, optimal
according to some criterion. When the constraint sat-
isfaction problem is embedded in a larger decision pro-
cess, as it is often the case in collaborative applica-
tions, it becomes desirable to compute the space of all
solutions. This section describes how SpaceSolver
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Table 2: The constraints in the above table partially model a civil engineering problem concerning ventillation in a

steel-framed computer-building

uses and implements consistency techniques to com-
pute compact descriptions of the complete solution
space of a numerical CSP.

2.1 Consistency techniques

From a general perspective, local consistency tech-
niques can be seen as a means of computing approxi-
mate descriptions of the complete solution space for a
CSP. These descriptions serve as simplified bases for
further search or reasoning tasks. In practice, they
are constructed by pruning locally inconsistent values
from the domains of the variables.

One can distinguish different orders of consistency:
1-, 2- and in general k-consistency, depending on the
degree, k, of locality taken into consideration. A k-
consistency algorithm furnishes an approximation of
the solution space where each sub-problem of k vari-
ables is guaranteed to be consistent. This amount to
ensuring that each partial solution of k-1 variables can
be extended consistently to a partial instantiation of
k variables. In practice, this is achieved by assigning
a label to each subset of k-1 variables which contains
their legal value assignments.

Constraint satisfaction problems are generally rep-
resented using a graph (or hyper-graph) called the con-
straint network. In such a graph, nodes represent vari-
ables involved in the problem while arcs or hyper-arcs
stand for constraints between variables.

Global consistency When the labeling constructed
by a consistency algorithm contains only those values

or value combination which occur in at least one so-
lution, it is said to be globally consistent. A globally
consistent labeling is a compact and conservative rep-
resentation of all solutions admitted by a CSP. It is
sound in the sense that the labeling never admits any
value which does not lead to a solution. It is conser-
vative in the sense that all solutions are represented in
it.

Backtrack-free search Extracting a particular so-
lution from a consistent labeling is an iteration of two
steps in which values are assigned to variables sequen-
tially. In the first step, an unassigned variable is se-
lected and assigned a value within its label. In the
second step, the labels of all remaining unassigned
variables are updated so that they contain only val-
ues which are consistent with those already assigned.
If the initial labeling is globally consistent and non-
empty, every partial assignment of variables can be
extended to a full solution. Consequently, the as-
signment procedure never requires backtracking. In
general, a globally consistent labeling may require ex-
plicitly representing constraints for all variables in the
problem (i.e. computing n-dimensional labels for a
problem of size n), a task which has exponential time

3

complexity in the worst case.

SpaceSolver’s Consistency techniques While in
general computing a consistent labeling is NP-hard, re-
cent results show that for special classes of problems,
low orders of consistency are equivalent to global con-
sistency. These results lead to polynomial time algo-



rithms for computing globally consistent labelings and
can be summarized as follows:

e 2-consistency (arc-consistency) is equivalent to
global consistency when the constraint network
is a tree [4],

e 3-consistency (path-consistency) is equivalent to
global consistency when the CSP is convex! and
binary (constraint involves at most two variables)
[2, 13, 12],

e 3,2-relational-consistency (a variant of 5-consis-
tency defined in [11, 12]) is equivalent to global
consistency when the CSP is convex and ternary.
Note that a numerical CSP, stated analytically,
can always be transformed into a ternary one
without loss of information using syntactic trans-
formations.

These 3 algorithms constitute the core of Space-
Solver’s consistency module. They have been chosen
for their ability to construct complete and sound de-
scriptions of the entire solution space at low cost under
well-identified conditions.

When the problem has no special simplifying prop-
erties, these algorithms will be used as pre-processing
tools for reducing the complexity of the search space.
They must then be interleaved with backtrack-search
algorithms based on interval to generate consistent
sub-regions of the solution space [7].

In implementing these algorithms, a key problem
is representing and reasoning about continuous labels.
In discrete domains, labels are represented simply as
enumerations of values or value combinations. A label
for a single continuous variable can be represented by
a small collection of intervals. However, representing
and manipulating labels of several variables is more
involved since they may represent complex geometric
shapes. The next section describes how this issue is
addressed in SpaceSolver.

2.2 Constraint and label
representation

SpaceSolver uses a quadtree/octree representation of
continuous constraints as developed in computer vision
and proposed in [11, 12] for computing a labeling of
any degree of consistency in continuous domains. The
quad/oct-trees representation of constraints is based
on the observation that in most practical applications

LA CSP is convex when all its constraints are. A constraint
is convex if the straight line between any two feasible points
entirely lays within the feasible region.
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Figure 3: A continuous relation can be approximated
by carrying out a hierarchical binary decomposition of
its solution space into a 2 -tree the nodes of which rep-
resent completely and partially legal regions. This fig-
ure shows y > arctan(-15).

each variable takes its values in a bounded domain
(bounded interval) and there exists a maximum preci-
sion with which results can be used.

Provided that these two assumptions hold, a re-
lation can be approximated by carrying out a hierar-
chical binary decomposition of its solution space into
quadtrees for binary relations and octrees for ternary
ones etc ... (see Figure 2.2).

Numerical constraints generally arise as algebraic
or transcendental equalities and inequalities involving
several variables. Traditional CSP approaches process
constraints directly in this form and therefore they
encounter serious analytical difficulties related to in-
tersecting surfaces and finding extrema. This partly
explains why the most prominent advances in numeri-
cal constraint satisfaction are related to 2-consistency.
[3, 5, 8, 14] 2. As opposed to the implicit represen-
tation of numerical constraints, the 2*-tree represen-
tation allows a logical rather than numerical handling
of continuous solution spaces. It conveys a simple im-
plementation even for higher degrees of consistency in
continuous domains (see [11] for further details on the
2*_tree construction and on the implementation of con-

2Tn this case, the goal is to compute unary labels. Constraints
are therefore approximated by enclosing boxes (or set of boxes)
and the combination of constraints then reduces to operations
on intervals



Figure 4: Consistency techniques can approxzimate the solution space of a CSP. This figure shows 3d-projections
onto the same variables of a) the arc-, b) the path-, and ¢) the 3,2-relational consistent space of the same problem.

sistency algorithms). Figure 4 shows a ternary label
computed by arc-, path- and 3,2-relational consistency
respectively.

3 The SpaceSolver implementa-
tion

SpaceSolver is an Internet-based software package
that provides consistency techniques for CCSPs. It
is available at the URL

http://licwww.epfl.ch/ lottaz/SpaceSolver/

This section describes SpaceSolver’s architecture and
modules.

3.1 System architecture

SpaceSolver is conceived as an Internet application,
in order to make consistency techniques on continuous
variables available world-wide. The system architec-
ture chosen places most modules on the server-side,
thus avoiding client-side plug-ins or Java-Applets, thus
making the solver more independent of the user’s ma-
chine and configuration.

Figure 5 illustrates SpaceSolver’s system archi-
tecture. On the client side any JavaScript-enabled
HTML-browser communicates through standard In-
ternet protocols with the WWW-gserver where Space-
Solver is installed. Whenever a user is manipulating
CSPs, asking for calculation or visualising constraints
and solution spaces, the WW W-server calls the corre-
sponding CGI-scripts to perform the demanded oper-
ation. These scripts are written in PERL and commu-
nicate through UNIX-sockets with the SpaceSolver-

server. The SpaceSolver-server has the rights to per-
form activities such as writing files containing defini-
tions of CSPs and executing SpaceSolver-modules.
These modules include the symbolic manipulator, the
constraint converter, the constraint solver, and the
VRML-Generator.

Several scripts for Maple V make up the Symbolic
Manipulator which is used to eliminate unnecessary
auxiliary variables and bring the CSPs into ternary
form. The Constraint Converter is used to convert
constraints from symbolic form into an explicit spa-
tial representation as illustrated in Section 2.2. The
Constraint Solver module implements the consistency
algorithms such as arc-, path- and 3,2-relational con-
sistency. To achieve best performance, this module
and the constraint converter are written in C++. Fi-
nally, the VRML-Generator dynamically generates 3D
VRML models of constraints and solution spaces avail-
able in order to view constraints and solution-spaces
on the Internet.

3.2 WWW interface

When users connect to the SpaceSolver-WWW-page,
they are prompted for a user-name and a password.
The purpose of this user authentication is not to pre-
vent people from using SpaceSolver; but it allows us
to keep data from different users apart and to control
access to projects. Registration is free and access is
given immediately.

When users select a project, i.e. a CSP, or create
a new one, they are presented a page similar to Fig-
ure 6. On this page they can specify equalities and
inequalities in ASCII-text using Maple V’s syntax, as
well as minima, maxima, default values and short de-
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Figure 5: SpaceSolver’s architecture avoids requir-
ing users to install plug-ins or run java-applets by per-
forming most tasks on the server-side.

scription for each variable. The table that specifies
variables, shown in the lower part of Figure 6, is gen-
erated automatically by detecting the variables found
in the constraints.

For collaborative work SpaceSolver provides the
possibility, that several users can participate in the
same project and specify their own constraints on par-
tially shared variables. Users can be added and re-
moved from a project by the creator of the project.

The visualisation of constraints and solution spaces
helps understand CSPs and this supports decision mak-
ing. Suppose for instance that an engineering task
has three optimisation criteria. By visualising the pro-
jection of the solution space on these criteria, trade-
offs can be illustrated and possible alternatives can be
examined. In order to provide visualisation, VRML-
scenes representing constraints and solution spaces are
generated dynamically (see Figure 4). VRML is a 3D
modelling language for the Internet. Several plug-ins
to WWW-browser and stand-alone VRML-browsers
allow Internet-users to examine and walk scenes spec-

ified as VRML.

3.3 Symbolic pre-treatment

Although SpaceSolver’s consistency techniques are
based on spatial representations of constraints and so-
lution spaces, it performs symbolic pre-treatment for
two reasons. First, the number of variables involved in
the CSP is important for the efficiency of the consis-
tency algorithms. Therefore avoidable auxiliary vari-
ables should be eliminated. Second, the consistency al-
gorithms described in Section 2 treat CSPs in ternary
form, i.e., each constraint must involve at most three
variables. Thus SpaceSolver substitutes constants
and auxiliary variables defined by functional equations,
and makes CSPs ternary.

Substituting constants: Equalities of the form
v = const are used to substitute v by const in the
whole CSP. This kind of equality may occur when de-
signers commit to a value for a parameter, or to make
the CSP-specification more readable.

Substituting auxiliary variables: Certain aux-
iliary variable are defined as an expression of only on
one other variable z, i.e. v = expr(z). Since this
dependency attributes to each value of x exactly one
value of v, v is substituted by expr(x) in the whole
CSP.

Making CSPs ternary: In general CSPs contain
constraints which involve an arbitrary number of vari-
ables. For numeric CSPs, however, it is possible to
introduce auxiliary variables such that all constraints
are expressed using ternary constraints. The brute
force method that involves introducing an auxiliary
variable for each intermediate result generates many
auxiliary variables. Therefore a more sophisticated al-
gorithm introduces as few auxiliary variables as possi-
ble through reusing expressions as often as possible.

3.4 Consistency algorithms

SpaceSolver implements the consistency concepts in-
troduced in Section 2. Two algorithms for arc-consis-
tency are available: the standard version [11] and an
improved one inspired by [3]. The original path- and
3,2-relational consistency algorithms have been sub-
stantially improved by avoiding the storage of large
intermediate 2*-trees.

4 First experiences

SpaceSolver has been used to model full-scale exam-
ples taken from the construction industry. In this field,
it is possible to model most critical aspects related
to building design and construction in terms of con-
straints. Moreover, it has been confirmed that Space-
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Figure 6: SpaceSolver’s WWW-Interface allows users to specify CSPs in an intuitive way through the Internet

Solver performs efficiently as a communication plat-
form for assisting collaboration.

The arc-consistency algorithm detects contradic-
tions within a few seconds even in large examples (with
about 100 parameters). Furthermore, 3,2-relational
consistency can be obtained overnight for small ex-
amples. Such a response time is acceptable in many
engineering contexts since numerical modelling is tra-
ditionally performed this way.

Limitations and future work: The computa-
tion needed for 3,2-relational consistency, though poly-
nomial, remains costly for large problems. We plan to
address this question using tree-structured decompo-
sition of CSPs as described in [6]. The search-module
will provide a navigation tool to explore the solution
space interactively. It is worth mentioning that the 2*-
tree approach implies limited precision. This restric-
tion is acceptable for many engineering applications.

5 Conclusions

SpaceSolver provides an intuitive interface to spec-
ify numeric constraint satisfaction problems on contin-

uous variables. Its Internet-based approach makes it
available throughout the world and it provides useful
facilities for collaborative work. State-of-the-art con-
sistency techniques to determine approximations of so-
lution spaces are available and the 3D-visualisation of
constraints and solution-spaces is well suited to facili-
tate the analysis of a given CSP and its results.

In the context of collaborative design and concur-
rent engineering, SpaceSolver shows through its data
management capabilities that using constraints has the
potential to improve Mrommunication between collab-
orating designers.
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