
Constraint Techniques for Collaborative DesignClaudio Lottaz*, Djamila Sam-Haroud*,Boi Faltings* and Ian Smith***AI-Lab, Computer-Science Department,**IMAC-ISS, Department of Civil Engineering,Swiss Federal Institute of Technology,CH-1015 Lausanne (Switzerland)AbstractThis paper presents SpaceSolver, a constraint sat-isfaction tool-box providing access to constraint satis-faction techniques on continuous variables through anintuitive, web-based user interface. Moreover, we de-scribe possible applications of such a platform to col-laborative design and conclude that Internet-based useof constraint satisfaction techniques has the potentialof increasing productivity in several �elds in engineer-ing.Keywords: Constraint satisfaction, collaborativedesign, WWW-interface1 IntroductionIn complex design projects collaboration is unavoid-able. Knowledge of several designers with di�erentbackgrounds is employed concurrently. However, col-laboration also implies problems as illustrated in thefollowing (simpli�ed) example: An architect, an en-gineer, and a contractor collaborate on constructinga computer-building. Since such buildings have spe-cial requirements for ventilation, they agree on drillingholes into the steel beams of the steel-framed buildingin order to pass ventilation ducts. Now they must de-cide about the spacing e and the diameter d of theseholes, as well as the distance between the support andthe �rst hole x (see Figure 1).During the construction of the building, the val-ues for d, e, and x evolved as shown in Table 1. Formaximum 
exibility, the architect proposes big holesat small intervals. In contrast, the engineer would pre-fer small holes in order to maintain structural integrity.Now the needs for ventilation are not satis�ed and thisleads to negotiation that may iterate several times.One solution at a time: When designers collab-orate, the design-task is divided into sub-tasks, which
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d
xFigure 1: Beam with holes to pass ventilation ducts.d, e and x de�ne the geometry.d e xArchitect 500mm 800mm 600mmEngineer 250mm 900mm 500mmContractor 250mm 900mm 700mmArchitect 300mm 800mm 700mm... ... ... ...Table 1: When single values for parameters are �xed,arti�cial con
icts arise and negotiations may iterate.Variables d, e,and x are de�ined in Figure 1.are �rst treated separately, before the results to thesub-tasks are combined to form a solution to the wholetask. Traditionally, designers provide one or few solu-tions to their sub-task. In order to do so, they maytake decisions too early even though the task is in
u-enced by decisions of other collaborators. Informationrelated to alternatives and possible adaptation is thuslost. This may cause con
icts during the combinationof sub-solutions, even though design-goals are not con-tradictory. The resolution of such arti�cial con
icts isperformed during negotiation.Using design spaces: An alternative to the aboveapproach is to use design spaces. Instead of determin-



Figure 2: Solution spaces show the impact of decisionson other parameters. Choosing d very high in the spaceshown above requires high values for x.ing single solutions to a sub-task, designers provideall acceptable solutions. Decisions are not taken ifthe needed information is not available, no arbitrarychoices for parameters are made, and all alternativesolutions can be used in subsequent negotiation. So-lution spaces for sub-tasks can be combined to �nd asolution space for the whole task. Since all acceptablesolutions to sub-tasks are considered, con
icts onlyarise when designers have incompatible design-goals.In this way less negotiation is necessary.Simplifying the steel-framed building example men-tioned above, the collaborators involved might imposethe following constraints:� Architect: x < 1000, d > 300, 600 < e < 1200� Engineer: x > 2d, d < 400, e > 900� Contractor: x > 700, e > d+ 50Such a formalisation of the needs for every partici-pating designer allows them to determine a solutionspace for the whole task as shown in Figure 2. Insteadof negotiating about single solutions without knowingwhether a valid solution to the problem exists, design-ers negotiate within feasible spaces in order to �nd thebest solution. Table 2 shows a selection of the con-straints which model the ventilation ducts example.Constraint satisfaction techniques: In orderto employ solution spaces as described, techniques todetermine and combine solution spaces are needed,together with an adequate communication platform.Many problems in several domains such as civil engi-neering and mechanical design can be modelled as con-straint satisfaction problems. A constraint satisfactionproblem (CSP) is speci�ed in terms of variables and

their domains, as well as constraints on these variables.Variables represent properties of the artifact to be de-signed, each variable is assigned a domain, which con-tains the a priori possible values of its variable, and theconstraints specify the restrictions which must hold forany valid solution of the problem. The solution spaceof a CSP which corresponds to a design task containsall feasible designs for the task at hand. When col-laborating designers provide a CSPs corresponding totheir sub-task, it is enough to combine the solutionspaces of these CSPs, to determine the solution spacefor the whole design task.Techniques to approximate solution spaces of CSPshave been under development for over two decades.An important class of CSPs are those de�ned for �nitedomains. E�cient methods for �nding approximationsof various accuracy [1, 9, 10] are available..The task to �nd solution spaces for CSPs on con-tinuous variables (CCSPs) is more di�cult. However,tasks in design usually involve continuous parameters.Most successful systems which treat CCSPs concen-trate on �nding single solutions, possibly consideringsome optimisation criteria [15, 14]. Little previous re-search into �nding solution spaces for continuous CSPs[3, 8, 12] is available.Communication platform: In order to collabo-rate using solution spaces, designers need a commoncommunication platform to exchange information onparameters and constraints. SpaceSolver is a plat-form. It interfaces with the Internet and providesaccess to constraint solving algorithms on continuousnumerical CSPs, i.e., constraints are given as closedmathematical expressions over continuous variables.This paper contains a brief description of Space-Solver's constraint satisfaction techniques in the nextsection. Section 3 illustrates its architecture and theWWW interface. Section 4 gives a summary of our�rst experiences and Section 5 provides conclusions.2 Constraint satisfactiontechniquesResolution techniques for numerical constraint satis-faction problems encompass areas that include linearand non-linear programming, numerical analysis, hill-climbing and stochastic techniques. Most of these tech-niques attempt to compute a single solution, optimalaccording to some criterion. When the constraint sat-isfaction problem is embedded in a larger decision pro-cess, as it is often the case in collaborative applica-tions, it becomes desirable to compute the space of allsolutions. This section describes how SpaceSolver
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V1 < (fy A1w) = �p3Gr�V2 < (fy (e� d) tw) = �p3Gr�11 tw < a� 1=2 t32LE Iy > 175Lsc bs L4Iy = ctb2 + tw (a� t) (b� a)2 =22 ct < tw (a� t)cn = A1= (2 tw)Z1 = cn2tw2 + (a�cn�tw)22 tw+ (2 a� 2 cn � t) ctTable 2: The constraints in the above table partially model a civil engineering problem concerning ventillation in asteel-framed computer-buildinguses and implements consistency techniques to com-pute compact descriptions of the complete solutionspace of a numerical CSP.2.1 Consistency techniquesFrom a general perspective, local consistency tech-niques can be seen as a means of computing approxi-mate descriptions of the complete solution space for aCSP. These descriptions serve as simpli�ed bases forfurther search or reasoning tasks. In practice, theyare constructed by pruning locally inconsistent valuesfrom the domains of the variables.One can distinguish di�erent orders of consistency:1-, 2- and in general k-consistency, depending on thedegree, k, of locality taken into consideration. A k-consistency algorithm furnishes an approximation ofthe solution space where each sub-problem of k vari-ables is guaranteed to be consistent. This amount toensuring that each partial solution of k-1 variables canbe extended consistently to a partial instantiation ofk variables. In practice, this is achieved by assigninga label to each subset of k-1 variables which containstheir legal value assignments.Constraint satisfaction problems are generally rep-resented using a graph (or hyper-graph) called the con-straint network. In such a graph, nodes represent vari-ables involved in the problem while arcs or hyper-arcsstand for constraints between variables.Global consistency When the labeling constructedby a consistency algorithm contains only those values

or value combination which occur in at least one so-lution, it is said to be globally consistent. A globallyconsistent labeling is a compact and conservative rep-resentation of all solutions admitted by a CSP. It issound in the sense that the labeling never admits anyvalue which does not lead to a solution. It is conser-vative in the sense that all solutions are represented init.Backtrack-free search Extracting a particular so-lution from a consistent labeling is an iteration of twosteps in which values are assigned to variables sequen-tially. In the �rst step, an unassigned variable is se-lected and assigned a value within its label. In thesecond step, the labels of all remaining unassignedvariables are updated so that they contain only val-ues which are consistent with those already assigned.If the initial labeling is globally consistent and non-empty, every partial assignment of variables can beextended to a full solution. Consequently, the as-signment procedure never requires backtracking. Ingeneral, a globally consistent labeling may require ex-plicitly representing constraints for all variables in theproblem (i.e. computing n-dimensional labels for aproblem of size n), a task which has exponential timecomplexity in the worst case.SpaceSolver's Consistency techniques While ingeneral computing a consistent labeling is NP-hard, re-cent results show that for special classes of problems,low orders of consistency are equivalent to global con-sistency. These results lead to polynomial time algo-



rithms for computing globally consistent labelings andcan be summarized as follows:� 2-consistency (arc-consistency) is equivalent toglobal consistency when the constraint networkis a tree [4],� 3-consistency (path-consistency) is equivalent toglobal consistency when the CSP is convex1 andbinary (constraint involves at most two variables)[2, 13, 12],� 3,2-relational-consistency (a variant of 5-consis-tency de�ned in [11, 12]) is equivalent to globalconsistency when the CSP is convex and ternary.Note that a numerical CSP, stated analytically,can always be transformed into a ternary onewithout loss of information using syntactic trans-formations.These 3 algorithms constitute the core of Space-Solver's consistency module. They have been chosenfor their ability to construct complete and sound de-scriptions of the entire solution space at low cost underwell-identi�ed conditions.When the problem has no special simplifying prop-erties, these algorithms will be used as pre-processingtools for reducing the complexity of the search space.They must then be interleaved with backtrack-searchalgorithms based on interval to generate consistentsub-regions of the solution space [7].In implementing these algorithms, a key problemis representing and reasoning about continuous labels.In discrete domains, labels are represented simply asenumerations of values or value combinations. A labelfor a single continuous variable can be represented bya small collection of intervals. However, representingand manipulating labels of several variables is moreinvolved since they may represent complex geometricshapes. The next section describes how this issue isaddressed in SpaceSolver.2.2 Constraint and labelrepresentationSpaceSolver uses a quadtree/octree representation ofcontinuous constraints as developed in computer visionand proposed in [11, 12] for computing a labeling ofany degree of consistency in continuous domains. Thequad/oct-trees representation of constraints is basedon the observation that in most practical applications1A CSP is convex when all its constraints are. A constraintis convex if the straight line between any two feasible pointsentirely lays within the feasible region.

Figure 3: A continuous relation can be approximatedby carrying out a hierarchical binary decomposition ofits solution space into a 2k-tree the nodes of which rep-resent completely and partially legal regions. This �g-ure shows y � arctan( 1x�1).each variable takes its values in a bounded domain(bounded interval) and there exists a maximum preci-sion with which results can be used.Provided that these two assumptions hold, a re-lation can be approximated by carrying out a hierar-chical binary decomposition of its solution space intoquadtrees for binary relations and octrees for ternaryones etc : : : (see Figure 2.2).Numerical constraints generally arise as algebraicor transcendental equalities and inequalities involvingseveral variables. Traditional CSP approaches processconstraints directly in this form and therefore theyencounter serious analytical di�culties related to in-tersecting surfaces and �nding extrema. This partlyexplains why the most prominent advances in numeri-cal constraint satisfaction are related to 2-consistency.[3, 5, 8, 14] 2. As opposed to the implicit represen-tation of numerical constraints, the 2k-tree represen-tation allows a logical rather than numerical handlingof continuous solution spaces. It conveys a simple im-plementation even for higher degrees of consistency incontinuous domains (see [11] for further details on the2k-tree construction and on the implementation of con-2In this case, the goal is to compute unary labels. Constraintsare therefore approximated by enclosing boxes (or set of boxes)and the combination of constraints then reduces to operationson intervals



a) b) c)Figure 4: Consistency techniques can approximate the solution space of a CSP. This �gure shows 3d-projectionsonto the same variables of a) the arc-, b) the path-, and c) the 3,2-relational consistent space of the same problem.sistency algorithms). Figure 4 shows a ternary labelcomputed by arc-, path- and 3,2-relational consistencyrespectively.3 The SpaceSolver implementa-tionSpaceSolver is an Internet-based software packagethat provides consistency techniques for CCSPs. Itis available at the URLhttp://liawww.ep
.ch/~lottaz/SpaceSolver/This section describes SpaceSolver's architecture andmodules.3.1 System architectureSpaceSolver is conceived as an Internet application,in order to make consistency techniques on continuousvariables available world-wide. The system architec-ture chosen places most modules on the server-side,thus avoiding client-side plug-ins or Java-Applets, thusmaking the solver more independent of the user's ma-chine and con�guration.Figure 5 illustrates SpaceSolver's system archi-tecture. On the client side any JavaScript-enabledHTML-browser communicates through standard In-ternet protocols with the WWW-server where Space-Solver is installed. Whenever a user is manipulatingCSPs, asking for calculation or visualising constraintsand solution spaces, the WWW-server calls the corre-sponding CGI-scripts to perform the demanded oper-ation. These scripts are written in PERL and commu-nicate through UNIX-sockets with the SpaceSolver-

server. The SpaceSolver-server has the rights to per-form activities such as writing �les containing de�ni-tions of CSPs and executing SpaceSolver-modules.These modules include the symbolic manipulator, theconstraint converter, the constraint solver, and theVRML-Generator.Several scripts for Maple V make up the SymbolicManipulator which is used to eliminate unnecessaryauxiliary variables and bring the CSPs into ternaryform. The Constraint Converter is used to convertconstraints from symbolic form into an explicit spa-tial representation as illustrated in Section 2.2. TheConstraint Solver module implements the consistencyalgorithms such as arc-, path- and 3,2-relational con-sistency. To achieve best performance, this moduleand the constraint converter are written in C++. Fi-nally, the VRML-Generator dynamically generates 3DVRML models of constraints and solution spaces avail-able in order to view constraints and solution-spaceson the Internet.3.2 WWW interfaceWhen users connect to the SpaceSolver-WWW-page,they are prompted for a user-name and a password.The purpose of this user authentication is not to pre-vent people from using SpaceSolver; but it allows usto keep data from di�erent users apart and to controlaccess to projects. Registration is free and access isgiven immediately.When users select a project, i.e. a CSP, or createa new one, they are presented a page similar to Fig-ure 6. On this page they can specify equalities andinequalities in ASCII-text using Maple V's syntax, aswell as minima, maxima, default values and short de-
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Figure 5: SpaceSolver's architecture avoids requir-ing users to install plug-ins or run java-applets by per-forming most tasks on the server-side.scription for each variable. The table that speci�esvariables, shown in the lower part of Figure 6, is gen-erated automatically by detecting the variables foundin the constraints.For collaborative work SpaceSolver provides thepossibility, that several users can participate in thesame project and specify their own constraints on par-tially shared variables. Users can be added and re-moved from a project by the creator of the project.The visualisation of constraints and solution spaceshelps understand CSPs and this supports decision mak-ing. Suppose for instance that an engineering taskhas three optimisation criteria. By visualising the pro-jection of the solution space on these criteria, trade-o�s can be illustrated and possible alternatives can beexamined. In order to provide visualisation, VRML-scenes representing constraints and solution spaces aregenerated dynamically (see Figure 4). VRML is a 3Dmodelling language for the Internet. Several plug-insto WWW-browser and stand-alone VRML-browsersallow Internet-users to examine and walk scenes spec-i�ed as VRML.

3.3 Symbolic pre-treatmentAlthough SpaceSolver's consistency techniques arebased on spatial representations of constraints and so-lution spaces, it performs symbolic pre-treatment fortwo reasons. First, the number of variables involved inthe CSP is important for the e�ciency of the consis-tency algorithms. Therefore avoidable auxiliary vari-ables should be eliminated. Second, the consistency al-gorithms described in Section 2 treat CSPs in ternaryform, i.e., each constraint must involve at most threevariables. Thus SpaceSolver substitutes constantsand auxiliary variables de�ned by functional equations,and makes CSPs ternary.Substituting constants: Equalities of the formv = const are used to substitute v by const in thewhole CSP. This kind of equality may occur when de-signers commit to a value for a parameter, or to makethe CSP-speci�cation more readable.Substituting auxiliary variables: Certain aux-iliary variable are de�ned as an expression of only onone other variable x, i.e. v = expr(x). Since thisdependency attributes to each value of x exactly onevalue of v, v is substituted by expr(x) in the wholeCSP.Making CSPs ternary: In general CSPs containconstraints which involve an arbitrary number of vari-ables. For numeric CSPs, however, it is possible tointroduce auxiliary variables such that all constraintsare expressed using ternary constraints. The bruteforce method that involves introducing an auxiliaryvariable for each intermediate result generates manyauxiliary variables. Therefore a more sophisticated al-gorithm introduces as few auxiliary variables as possi-ble through reusing expressions as often as possible.3.4 Consistency algorithmsSpaceSolver implements the consistency concepts in-troduced in Section 2. Two algorithms for arc-consis-tency are available: the standard version [11] and animproved one inspired by [3]. The original path- and3,2-relational consistency algorithms have been sub-stantially improved by avoiding the storage of largeintermediate 2k-trees.4 First experiencesSpaceSolver has been used to model full-scale exam-ples taken from the construction industry. In this �eld,it is possible to model most critical aspects relatedto building design and construction in terms of con-straints. Moreover, it has been con�rmed that Space-



Figure 6: SpaceSolver's WWW-Interface allows users to specify CSPs in an intuitive way through the InternetSolver performs e�ciently as a communication plat-form for assisting collaboration.The arc-consistency algorithm detects contradic-tions within a few seconds even in large examples (withabout 100 parameters). Furthermore, 3,2-relationalconsistency can be obtained overnight for small ex-amples. Such a response time is acceptable in manyengineering contexts since numerical modelling is tra-ditionally performed this way.Limitations and future work: The computa-tion needed for 3,2-relational consistency, though poly-nomial, remains costly for large problems. We plan toaddress this question using tree-structured decompo-sition of CSPs as described in [6]. The search-modulewill provide a navigation tool to explore the solutionspace interactively. It is worth mentioning that the 2k-tree approach implies limited precision. This restric-tion is acceptable for many engineering applications.5 ConclusionsSpaceSolver provides an intuitive interface to spec-ify numeric constraint satisfaction problems on contin-

uous variables. Its Internet-based approach makes itavailable throughout the world and it provides usefulfacilities for collaborative work. State-of-the-art con-sistency techniques to determine approximations of so-lution spaces are available and the 3D-visualisation ofconstraints and solution-spaces is well suited to facili-tate the analysis of a given CSP and its results.In the context of collaborative design and concur-rent engineering, SpaceSolver shows through its datamanagement capabilities that using constraints has thepotential to improve Mrommunication between collab-orating designers.AcknowledgementsThis work was performed within a project founded bythe Swiss Priority Programme in Computer Science(SPP-IF). The authors would also like to thank DenisCl�ement and Andr�e Fl�uckiger for their help in provid-ing the civil engineering examples, the project partnersat CAAD (ETH Z�urich), namely Gerhard Schmitt,Rudi Stou�s, Bige Tun�cer, Kuk-Hwan Mieusset andDavid Kurmann for helpful discussions.
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