Infoscience

Journal article

Genomic distances under deletions and insertions

As more and more genomes are sequenced, evolutionary biologists are becoming increasingly interested in evolution at the level of whole genomes, in scenarios in which the genome evolves through insertions, deletions, and movements of genes along its chromosomes. In the mathematical model pioneered by Sankoff and others, a unichromosomal genome is represented by a signed permutation of a multiset of genes; Hannenhalli and Pevzner showed that the edit distance between two signed permutations of the same set can be computed in polynomial time when all operations are inversions. El-Mabrouk extended that result to allow deletions (or conversely, a limited form of insertions which forbids duplications). In this paper, we extend El-Mabrouk's work to handle duplications as well as insertions and present an alternate framework for computing (near) minimal edit sequences involving insertions, deletions, and inversions. We derive an error bound for our polynomial-time distance computation under various assumptions and present preliminary experimental results that suggest that performance in practice may be excellent, within a few percent of the actual distance.

    Note:

    Special issue on best papers from COCOON'03.

    Reference

    Record created on 2006-12-12, modified on 2016-08-08

Related material