Algorithms and Experiments:
The New (and Old) Methodology

Bernard M.E. Moret
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131, USA
nmor et @s. unm edu

Henry D. Shapiro
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131, USA
shapi ro@s. unm edu

Abstract: The last twenty years have seen enormous progress in tigndesalgorithms, but
little of it has been put into practice. Because many regetgbeloped algorithms are hard to
characterize theoretically and have large running-timeffents, the gap between theory and
practice has widened over these years. Experimentatiamdispgensable in the assessment of
heuristics for hard problems, in the characterization ghgstotic behavior of complex algo-
rithms, and in the comparison of competing designs for ataetproblems.

Implementation, although perhaps not rigorous experiatamt, was characteristic of early work

in algorithms and data structures. Donald Knuth has throughsisted on testing every algo-

rithm and conducting analyses that can predict behavioctuabdata; more recently, Jon Bentley
has vividly illustrated the difficulty of implementation @the value of testing. Numerical ana-
lysts have long understood the need for standardized téesdo ensure robustness, precision
and efficiency of numerical libraries. It is only recentlgwever, that the algorithms community

has shown signs of returning to implementation and testranantegral part of algorithm devel-

opment. The emerging disciplines of experimental algorits and algorithm engineering have
revived and are extending many of the approaches used byutomioneers such as Floyd and
Knuth and are placing on a formal basis many of Bentley's nladi®ns.

We reflect on these issues, looking back at the last thirtysyefalgorithm development and
forward to new challenges: designing cache-aware algosttalgorithms for mixed models of
computation, algorithms for external memory, and algangtor scientific research.

Key Words: Algorithm engineering, cache-aware algorithms, efficjeegperimental algorith-
mics, external memory algorithms, implementation, methagly,

1 Introduction

Implementation, although perhaps not rigorous experiatant, was characteristic of
early work in algorithms and data structures. Donald Knaslisted on implementing
every algorithm he designed and on conducting a rigorougsie@f the resulting code
(in the famous MIX assembly language) [Knu98], while othemgers such as Floyd
are remembered as much for practical “tricks” (e.g., the-fmint method to eliminate
most points in an initial pass in the computation of a convelt &nd the “bounce”

techniques for binary heaps, see, e.g. [MS91a]) as for n@@rétical contributions.

Throughoutthe last 25 years, Jon Bentley has demonstiatelue of implementation
and testing of algorithms, beginning with his text on wigtiefficient programs [Ben82]
and continuing with his invaluableérogramming Pearls£olumns inCommunications
of the ACM now collected in a new volume [Ben99], and §isftware Explorations
columns in theUNIX Review David Johnson, whose own work on optimization for
NP-hard problems involves extensive experimentatiomtestahe annual ACM/SIAM
Symposium on Discrete Algorithms (SODA), which has souahd every year featured
a few, experimental studies. Itis only in the last few yehosyever, that the algorithms
community has shown signs of returning to implementaticsh tsting as an integral
part of algorithm development. Other than SODA, publicatiutlets remained rare
until the late nineties: th®RSA J. ComputingndMath. Programmindhave published
several strong papers in the area, but the standard jounrtals algorithm community,
such as thd. AlgorithmsJ. ACM SIAM J. ComputingandAlgorithmica as well as the
more specialized journals in computational geometry ahdrodreas, have been slow
to publish experimental studies. (It should be noted thatynsérong experimental stud-
ies dedicated to a particular application have appearedbiigation outlets associated
with the application area; however, many of these studietests to understand the data
or the model rather than to understand the algorithm.) Thie@ACM Journal Exper-
imental Algorithmicss dedicated to this area and is starting to publish a reapkxt
number of studies. The two workshops targeted at experahewotk in algorithms, the
Workshop on Algorithm Engineerif@/AE), held every late summer in Europe, and the
Workshop on Algorithm Engineering and Experimd@sENEX), held every January
in the United States, are also attracting growing numbegibfmissions. Support for
an experimental component in algorithms research is ggaimong funding agencies
as well. We may thus be poised for a revival of experimentedi® a research method-
ology in the development of algorithms and data structiaespst welcome prospect,
but also one that should prompt some reflection.

2 Empiricism in Algorithm Design

Natural scientists have perfected since at least the Middles a particular form of
enquiry, which has come to be called the scientific method. ftunded upon exper-
iments; in its most basic form, it consists of using accunagdadata to formulate a
conjecture within a particular model, then conducting &ddal experiments to affirm
or refute the conjecture. Such a completely empirical aggnas well suited for a nat-
ural science, where the final arbiter is nature as revealad tbrough experiments and
measurements, but it is incomplete in the artificial and maidtically precise world of
computing, where the behavior of an algorithm or data stinectan often, at least in
principle, be characterized analytically. Natural sd&etrun experiments because they
have no other way of learning from nature. In contrast, dllgor designers run exper-
iments mostly because an analytical characterizatiorisiéwd to achieve in practice.
(Much the same is done by computational scientists in pBysteemistry, and biology,

but typically their aim is to analyze new data or to comparegtedictions given by a

model with the measurements made from nature, not to cleaizethe behavior of an

algorithm.) Algorithm designers are measuring the actlgarithm, not a model, and

the results are not assessed against some gold standascejnatt simply reported

as such or compared with other experiments of the same types omputer scien-

tists must both learn from the natural sciences, where @arpetation has been used
for centuries and where the scientific method has been deseltm optimize the use
of experiments, but must also remain aware of the fundarhéiffierence between the

natural sciences and computer science, since the goal efimxgntation in algorithmic

work differs in important ways from that in the natural saies.

3 Asymptotic Analysis vs. Implementation

For over thirty years, the standard mode of theoreticalyammland thus also the main
tool used to guide new designs, has been the asymptoticsmélpig Oh” and “big
Theta”) of worst-case behavior (running time or quality ofusion). The asymptotic
mode eliminates potentially confusing behavior on smaildnces due to start-up costs
and clearly shows the growth rate of the running time. Thestvoase (per operation or
amortized) mode gives us clear bounds and also simplifiesrtalysis by removing the
need for any assumptions about the data. The resultingrgeg&m is easy to commu-
nicate and reasonably well understood, as well as machiependent. However, we
pay a heavy price for these gains:

— The range of values in which the asymptotic behavior is tlesthibited (“asymp-
topia,” as it has been named by many authors) may includeiosignce sizes that
are well beyond any conceivable application. A good exargpiee algorithm of
Fredman and Tarjan for minimum spanning trees. Its asyneptatrst-case running
time isO(| E|8(|E|, |V |))—where(m, n) is given bymin{i | log™ n < m/n},
so that, in particular3(n, n) is justlog” n. This bound is much better for dense
graphs than that of Prim’s algorithm, whichd¥| E|log |V'|) when implemented
with binary heaps, but experimentation [MS94] verifies thatcrossover point oc-
curs for dense graphs with well over a million vertices angsthundreds of millions
of edges—beyond the size of any reasonable data set.

— In another facet of the same problem, the constants hiddémeiasymptotic anal-
ysis may prevent any practical implementation from runrimgompletion, even
if the growth rate is quite reasonable. An extreme examptaisfproblem is pro-
vided by the theory of graph minors: Robertson and Seyma#r [RS85]) gave a
cubic-time algorithm to determine whether a given graphrsrgor of another, but
the proportionality constants are gigantic—a recent edtmvas on the order of
10159 [Fel99]—and have not been substantially lowered yet, ngaktie algorithm
entirely impractical.

— The worst-case behavior may be restricted to a very smadletudf instances and
thus not be at all characteristic of instances encountergdactice. A classic ex-
ample here is the running time of the simplex method for lirpragramming; for
over thirty years, it has been known that the worst-caseviehaf this method is
exponential, but also that its practical running time isic¢gtly bounded by a low-
degree polynomial [AMO93]. (Indeed, in some of its newersi@nms, its running
time is competitive with that of the modern interior-poingéthods [BFG 00].)

— Even in the absence of any of these problems, deriving tigitnatotic bounds
may be very difficult. All optimization metaheuristics foP\hard problems (such
as simulated annealing or genetic algorithms) suffer frois drawback: by con-
sidering a large number of parameters and a substantiael glicecent execution
history, they create a complex state space which is verytoaadalyze with exist-
ing methods, whether to bound the running time or to estirtteeguality of the
returned solution.

These are the most obvious drawbacks. A more insidious dgreikylyet one that could
prove much more damaging in the long term, is that worst-eagenptotic analysis
tends to promote the development of “paper-and-penciirtigms, that is, algorithms
that never get implemented. This problem compounds itsetfkdy, as further devel-
opments rely on earlier ones, with the result that many ofrtiost interesting algo-
rithms published over the last ten years rely on severalrsagé complex, unimple-
mented algorithms and data structures. In order to impl¢mes of these recent algo-
rithms, a programmer would face the daunting prospect céldging implementations
for all preceding layers. Moreover, the “paper-and-pératdorithms often ignore is-
sues critical in making implementations efficient, suchaas-level algorithmic issues
and architecture-dependentissues (particularly caghasgvell as issues of robustness
(such as the potential effects of numerical errors or unebgagesymmetries in geomet-
ric computations, although recent recent conferencesnmpatational geometry have
featured a number of papers addressing these issues)fdmrairg) paper-and-pencil
algorithms into efficient and useful implementations isapdeferred to asalgorithm
engineering case studies show that the use of algorithm engineerinmigges, all
of which are based on experimentation, can improve the ngntime of code by up
to three orders of magnitude [MW®&1] as well as yielding robust libraries of data
structures with minimal overhead, as done in the LEDA lip{a4N95, MN99].

There is no reason to abandon asymptotic worst-case asiatydithere is a def-
inite need to supplement it with experimentation, which liegpthat most algorithms
should be implemented, not just designed. Many algorith@gefact quite difficult to
implement—because of their intricate nature and also kscthe designer described
them at a very high level. The practitioner is not the only whe stands to benefit from
implementation: the detailed, step-by-step understanaiquired for implementation
may enable the designer to notice features that had remaivisible in the high-level
design and so to bring about a simplified or improved design.

4 Modes of Empirical Assessment

We can classify modes of empirical assessment into a nunibemexclusive cate-
gories:

— Checking for accuracy or correctness in extreme cases$mgdardized test suites
for numerical computing).

— Assessing the quality of algorithms (heuristics, apprations, or exact solvers)
for the solution of NP-hard problems.

— Comparing the actual performance of competing algorithonsréctable problems
and characterizing the effects of algorithm engineering.

— Investigating and refining models and optimization craerwhat should be opti-
mized? and what parameters matter?

The first category has reached a high level of maturity in micakcomputing, where
standard test suites are used to assess the quality of neericahtodes. Similarly,
the operations research community has developed a numtestafases for linear pro-
gram solvers. We have no comparable emphasis to date in natolial and geometric
computing. Investigation and refinement of models and dp#tion criteria is of major
concern today, particularly in areas such as computatisioddgy and computational
chemistry. While many studies are published, most dematest certain lack of so-
phistication in the conduct of the computational studiesffesing as they do from
various sources of errors. We eschew a lengthy discussithiisaimportant area and in-
stead present sound principles and illustrate pitfallbédontext of the two categories
that have seen the bulk of research to date in the algoritiemsninity. Most of these
principles and pitfalls can be related directly to the tegtand validation of discrete
optimization models in the natural sciences.

4.1 Assessment of Competing Algorithms and Data Structurefor Tractable
Problems

The goal here is to measure the actual performance of congpaitjorithms for well-

solved problems. This is fairly new work in combinatoriag@atithms and data struc-
tures, but common in Operations Research; early (19604 inatata structures typ-
ically included code and examples, but no systematic stBdgttered articles during
the 70s (see, e.g., [DS85]) kept a low level of experimemntagictive, but did not at-
tempt to provide methodological pointers. More recent amahrehensive work be-
gan with Bentley’s many contributions in hRRrogramming Pearlqstarting in 1983

[Ben83]), then with Jones’ comparison of data structuregfarity queues [Jon36]
and Stasko and Vitter's combination of analytical and expental work in the study
of pairing heaps [SV87]. An early experimental study on géascale was that of Moret
and Shapiro on sorting algorithms [MS91a] (Chapter 8)lfiiagpired by the work of

Knuth in his Volume 111 [Knu98], followed by that of the samathors on algorithms for
constructing minimum spanning trees [MS94]. In 1991, Dawidnson and others initi-
ated the very successful DIMACS Computational Challenthesfjrst of which [JM93]
focused on network flow and shortest path algorithms, imtliyegiving rise to sev-
eral modern, thorough studies, by Cherkasskyl. on shortest paths [CGR96], by
Cherkasskyet al. on the implementation of the push-relabel method for matghind
network flows [CGM 98, CG97], and by Goldberg and Tsioutsiouliklis on cut trees
[GTO1]. The DIMACS Computational Challenges (the fifth, 896, focused on an-
other tractable problem, priority queues and point locatiata structures) have served
to highlight work in the area, to establish common data fas(garticularly formats for
graphs and networks), and to set up the first tailored tet@sstor a host of problems.

Much interest has focused over the last three to four yeath®@nuestion of tai-
loring algorithms and implementations to the cache stnecamd policies of the archi-
tecture. Caching effects can significantly alter the prgalic of asymptotic analysis; a
classic example is hashing: most textbook on data struettié advocate using dou-
ble hashing in preference to linear probing, whereas exygzrial data clearly indicates
that linear probing is the faster method, thanks to its gamdlity (see [BMQ98]).
Pioneering studies by Ladner and his coworkers [LL96, LL&3thblished that cache
optimization was feasible, algorithmically interestiramd worthwhile, even for such
old friends as sorting algorithms [ACVWO01, LL97, RR99, XZ&]&and priority queues
[LL96, San00]; indeed, even matrix multiplication, whicashbeen optimized in nu-
merical libraries for over 40 years (including optimizasofor paging behavior), is
amenable to such techniques [ERS90]. Ad hoc reduction in angmsage and im-
provement in patterns of memory addressing have been egptrtgain speedups of
as much as a factor of 10 [MW®1]. The related, and much better studied, model
of out-of-core computing, as pioneered by Vitter and his adwrs [Vit01], has in-
spired new work in cache-aware and cache-independenitaigodesign. Once again,
though, this trend was pioneered over 40 years ago, whengrogers had to work
with very limited memory and studied detailed optimizatstrategies for accessing
early secondary-storage devices such as magnetic druthigliowed in the seventies
by much work on out-of-core computing—Knuth has detailealgses of external sort-
ing algorithms in his Volume 11l [Knu98]. Today, we are coofited with much deeper
memory hierarchies and enormous volumes of data, so we neetltn to these opti-
mization techniques and extend them to apply throughoutittrarchy.

Characterizing the behavior of algoritms on real-worldanses is generally very
hard simply because we often lack the crucial instance paterswith which to cor-
relate running times. Experimentation can quickly pinpgimod and bad implementa-
tions and whether theoretical advantages are retaineaaetipe. In the process, newer
insights may be gleaned that might enable a refinement orlifitagion of the algo-
rithm. Experimentation can also enable us to determine¢he&hbhconstants in the run-
ning time analysis; determining such constants beforelsamte difficult (see [FM97]

for a possible methodology), but a simple regression arsafiyem the data can gives us
quite accurate values. Experimental studies naturallpdecaching effects, whereas
adding those into the analysis in a formal manner is verylehging.

4.2 Assessment of Heuristics

Here the goal is to measure the performance of heuristicsalrand artificial instances
and to improve the theoretical understanding of the probpresumably with the aim
of producing yet better heuristics or proving that curreatitistics have guaranteed
performance bounds. By performance is implied both theingitime and the quality
of the solution produced.

Since the behavior of heuristics is very difficult to chaegizte analytically, exper-
imental studies have been the rule. The Operations Reseanacimunity, which has a
long tradition of application studies, has slowly develdgeme guidelines for exper-
imentation with integer programming problems (see [AMQ%3fapter 18). Inspired
in part by experimental studies of integer-programmingetgms for combinatorial
optimization, such as algorithms for the set-covering fgwi—see, e.g., [BH80], we
conducted a large-scale combinatorial study on the minirastnset problem [MS85],
one of the first such studies in Computer Science to include te@l-world and gener-
ated instances. Other large-scale studies were publightbe isame time frame, most
notably the classic and exemplary study of simulated ammgély David Johnson’s
group [JAMS89, JAMS91], which, among other things, demi@tetl the value of a var-
ied collection of test instances. The Second DIMACS Contjmrial Challenge [JT96]
was devoted to satisfiability, graph coloring, and cliquelylems and thus saw a large
collection of results in this area. The ACM/SIAM SymposiumDiscrete Algorithms
(SODA) has included a few such studies in each of its dozentste date, such as the
study of cut algorithms by Chekuet al. [CaDRKLS97]. The Traveling Salesperson
problem has seen large numbers of experimental studidading the well publicized
study of Jon Bentley [Ben90]), made possible in part by theeiggment of a library of
test cases [Rei94]. Graph coloring, whether in its NP-hargien of chromatic number
determination or in its much easier (yet still challengingjsion of planar graph color-
ing, has seen much work as well; the second study of simuéatedaling conducted by
Johnson’s group [JAMSB89] discussed many facets of the pnobivhile Morgenstern
and Shapiro [MS91b] provided a detailed study of algoritiionsolor planar graphs.

Understanding how a heuristic works to cut down on computatitime is gener-
ally too difficult to achieve through formal derivations; ofuthe same often goes for
bounding the quality of approximations obtained with maeuttistics. Of course, we
have many elegant results bounding the worst-case perfuenaf approximation al-
gorithms, but many of these bounds, even when attainatdep\arly pessimistic for
real-world data. Yet both aspects are crucial in evalugtiexjormance and in helping
us design better heuristics.

In the same vein, understanding when an exact algorithmquitgkly is often too
difficult for formal methods. It is much easier to characterthe worst-case running
time of an algorithm than to develop a classification of ingata in terms of a few
parameters that suffice to predict the actual running tinmedat cases. Experimentation
can help us assess the performance of an algorithm on re#l-instances (a crucial
point) and develop at leaatl hocboundaries between instances where it runs fast and
instances that exhibit the exponential worst-case behavio

5 Experimental Setup

How should an experimental study be conducted, once a t@gscbkeen identified?
Surely the most important criterion to keep in mind is thaeaperiment is run either
as a discovery tool or as a means to answer specific quesigpsriments as explo-
rations are common to all endeavors; the setup is essgrdidlitrary—it should not be
allowed to limit one’s creativity. We focus instead on exXpemts as means to answer
specific questions—the essence of the scientific methodinsatiphysical sciences.
In this methodology, we begin by formulating a hypothesia question, then set about
gathering data to test or answer it, while ensuring repritdlitg and significance. In
terms of experiments with algorithms, these charactesigfive rise to the following
procedural rules—but the reader should keep in mind that nmgearchers would mix
the two activities for quite a while before running their ‘dih set of experiments:

— Begin the work with a clear set of objectives: which questiaiill you be asking,
which statements will you be testing?

— Once the experimental design is complete, simply gather. dat

— Analyze the data to answer only the original objectivestét,aonsider how a new
cycle of experiments can improve your understanding.)

At all stages, we should beware of a number of potential lgtfancluding various
biases due to:

— The choice of machine (caching, addressing, data movenwdiédnguage (regis-
ter manipulation, built-in types), or of compiler (qualiby optimization and code
generation).

— The quality of the coding (consistency and sophisticatioprogrammers).

— The selection or generation of instances (we must use siffisize and variety to
ensure significance).

— The method of analysis (many steps can be taken to improwaghiicance of the
results as well as to bring out trends).

Caching, in particular, may have very strong effects whemparing efficient algo-
rithms. For instance, in our study of MST algorithms, we obed 3:1 ratios of running

time depending on the order in which the adjacency lists wtyeed; in our study of
sorting algorithms, we observed a nonlinear running timrerddix sort (contradicting
the theoretical analysis), which is a simple consequencadfing effects. Recent stud-
ies by LaMarca and Ladner [LL96, LL97] have quantified marpeass of caching and
offer suggestions on how to work around (or take advantageaching effects.

Johnson [Joh01] offers a detailed list of the various prolsldie has observed in
experimental studies, particularly those dealing withrigties for hard optimization
problems. Most of these pitfalls can be avoided with the typeoutine care used by
experimentalists in any of the natural sciences. Howeveshould point out that con-
founding factors can assume rather subtle forms. Knuth &gaypointed out curious
effects of apparently robust pseudorandom number gemsrgee [Knu98], Vol. 11);
the creation of unexpected patterns as an artifact of a hidalatine (or, in the case
of timing studies, as an artifact of interactions betweenrttemory hierarchy and the
code) could easily lead the experimenter to hypothesizexistent relationships in
the data. The problem is compounded in complex model spaice®, obtaining a fair
sampling of such a space is always problematic. Thus it page tover the design of
an experimental study a few times just to assess its sdhsttivpotential confounding
factors—and then to examine the results with the same jaaddiye.

6 What to Measure?

One of the key elements of an experiment is the metrology.t\Wbave measure, how
do we measure it, and how do we ensure that measurements dderégre with the
experiments? Obvious measures may include the value obthdan (for heuristics
and approximation algorithms), the running time (for altm@sery study), the running
space, etc. These measures are indeed useful, but a goodtandang of the algo-
rithm is unlikely to emerge from such global quantities @oWe also need structural
measures of various types (number of iterations; numbealg to a crucial subrou-
tine; etc.), if only to serve as a scale for determining sinéhgs as convergence rates.
Knuth [Knu93] has advocated the userm&émsor memory references, as a structural
substitute for running time. Other authors have used thebeurof comparisons, the
number of data moves (both classical measures for sortgayitims), the number of
assignments, etc. Most programming environments offerestyme of profiler, a sup-
port system that samples code execution at fixed intervalsets up a profile of where
the execution time was spent (which routines used what ptage of the CPU time) as
well as of how much memory was used; with suitable hardwapgad, profilers can
also report caching statistics. Profiling is invaluablelgoaithm engineering—multiple
cycles of profiling and revising the most time-consumingirees can easily yield gains
of one to two orders of magnitude in running time.

In our own experience, we have found that there is no substitvhen evaluating
competing algorithms for tractable problems, for meagyutire actual running time;

indeed, time and mems measurements, to take one exampldeathgne to entirely
different conclusions. However, the obvious measures tiem dhe hardest to inter-
pret as well as the hardest to measure accurately and repbbdiRunning time, for
instance, is influenced by caching, which in turn is affedtg@dny other running pro-
cesses and thus effectively not reproducible exactly.ércdse of competing algorithms
for tractable problems, the running time is often extrentely (we can obtain a mini-
mum spanning tree for a sparse graph of a million verticesunmiess than a second
on a typical desktop machine), so that the granularity ofsystem clock may create
problems—this is a case where it pays to repeat the enticgitlgh many times over
on the same data, in order to obtain running times with at kpasdigits of precision.
In a similar vein, measuring the quality of a solution can baegdifficult, due to the
fact that the optimal solution can be very closely approddareinstances of small to
medium size or due to the fact that the solution is esseptaiiero-one decision (as
in determining the chromatic index of a graph or the pringadita number), where the
appropriate measure is statistical in nature (how oftehéscbrrect answer returned?)
and thus requires a very large number of test instances.

7 How to Present and Analyze the Data

Perhaps the first requirement in data presentation is toremsproducibility by other
researchers: we need to describe in detail what instances wged (how they were
generated or collected), what measurements were collectgdow, and, preferably,
where the reader can find all of this material on-line. Theaddttould then be ana-
lyzed with suitable statistical methods. Since attainigls of statistical significance
may be quite difficult in the large state spaces we commordywerious techniques to
make the best use of available experiments should be agptedMcGeoch’s excellent
survey [McG92] for a discussion of several such methods)s&rchecking the mea-
surements with any available theoretical results, esfhgtiese that attempt to predict
the actual running time (such as the “equivalent code fragsi@pproach of [FM97]),
is crucial; any serious discrepancy needs to be investgatermalization and scaling
are a particularly important part of both analysis and preg®n: not only can they
bring out trends not otherwise evident, but they can helgtriing out noise and thus
increasing the significance of the results.

8 Conclusions
Implementation and experimentation should become onde #ya“gold standard” in
algorithm design, for several compelling reasons:

— Experimentation can lead to the establishment of well ¢eated well documented
libraries of routines and instances.

— Experimentation can bridge the gap between practitionetlaoretician.

— Experimentation can help theoreticians develop a deepiratanding of existing
algorithms and thus lead to new conjectures and new algasith

— Experimentation can point out areas where additional rekéa most needed.

However, experimentation in algorithm design needs somihadelogical develop-
ment. While it can and, to a large extent, should seek inpirdrom the natural sci-
ences, its different setting (a purely artificial one in whtbe experimental procedure
and the subject under test are unavoidably mixed) requirkssast extra precautions.
Fortunately, a number of authors have blazed what appear togmod trail to follow;
hallmarks of good experiments include:

— Clearly defined goals;

— Large-scale testing, both in terms of a range of instana@ssind in terms of the
number of instances used at each size;

— A mix of real-world instances and generated instancesudict any significant
test suites in existence;

— Clearly articulated parameters, including those definirdi@al instances, those
governing the collection of data, and those establishiegést environment (ma-
chines, compilers, etc.);

— Statistical analyses of the results and attempts at rgl#tiem to the nature of the
algorithms and test instances; and

— Public availability of instances and instance generatialbw other researchers
to run their algorithms on the same instances and, prefenatblic availability of
the code for the algorithms themselves.

Acknowledgments

Bernard Moret’s work was supported in part by the Nationa®me Foundation under
grant ITR 00-81404.

References

[ACVWO01] L. Arge, J. Chase, J. S. Vitter, and R. WickremesiagEfficient sorting using
registers and cache®roc. 4th Workshop on Algorithm Eng. WAE 2000, Springer
Verlag, 2001, to appear in LNCS.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. OrlifNetwork flowsPrentice Hall, En-
glewood Cliffs, NJ, 1993.

[Ben82] J. L. BentleyWriting efficient programsPrentice-Hall, Englewood Cliffs, NJ,
1982.

[Ben83] , Programming pearls: cracking the oyste€€ommun. ACM26 (1983),

no. 8, 549-552.

, Experiments on geometric traveling salesman heurisReport CS TR

151, AT&T Bell Laboratories, 1990.

[Ben90]

[Ben99]
[BFGT00]

[BH80]

[BMQ98]

, Programming pearlsACM Press, New York, 1999.

R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. WuridgtIMIP: Theory
and practice—closing the gaBystem Modelling and Optimization: Methods,
Theory and Applications (M. J. D. Poweel and S. Scholtes,) eliwer Acad.
Pub., 2000, pp. 19-49.

E. Balas and A. HoSet covering algorithms using cutting planes, heurisacs]
subgradient optimization: A computational stuti§ath. Progrl12(1980), 37—60.
J. R. Black, C. U. Martel, and H. QGraph and hashing algorithms for modern
architectures: design and performanderoc. 2nd Workshop on Algorithm Eng.
WAE 98, Max-Planck Inst. fur Informatik, 1998, in TR MPI98-1-019, pp. 37—
48.

[CaDRKLS97] C. S. Chekuri, A. V. Goldberg adn D. R. Karger, $l1.Levine, and C. Stein,

[CGY7]

[CGM*98]

[CGRY6]

[DS85]

[ERS90]

[Fel99]
[FM97]
[GTO1]

[JAMSS9]

[JAMS91]

[IM93]

[Joh01]

[Jon86]
[JT96]
[Knu93]

[Knu98]

Experimental study of minimum cut algorithn®oc. 8th ACM/SIAM Symp. on
Discrete Algs. SODA 97, SIAM Press, 1997, pp. 324-333.

B. V. Cherkassky and A. V. Goldber@n implementing the push-relabel method
for the maximum flow problemlgorithmical9 (1997), 390-410.

B. V. Cherkassky, A.V. Goldberg, P. Martin, J. C. Setybahd J. Stolfi,
Augment or push: a computational study of bipartite matghiend unit-
capacity flow algorithms ACM J. Exp. Algorithmics 3 (1998), no. 8,
www. j ea. acm or g/ 1998/ Cher kasskyAugnent /.

B. V. Cherkassky, A. V. Goldberg, and T. Rad8kportest paths algorithms: the-
ory and experimental evaluatipMath. Progr73(1996), 129-174.

S. P. Dandamudi and P. G. Sorensan,empirical performance comparison of
some variations of the k-d tree and bd tré®’'l J. Computer and Inf. Sciencds!
(1985), no. 3, 134-158.

N. Eiron, M. Rodeh, and I. Stewartslatrix multiplication: a case study of
enhanced data cache utilizatipdhCM J. Exp. Algorithmics4 (1990), no. 3,
wWww. j ea. acm or g/ 1999/ Ei ronMatri x/ .

M. Fellows, 1999, private communication.

U. Finkler and K. MehlhornRuntime prediction of real programs on real ma-
chines Proc. 8th ACM/SIAM Symp. on Discrete Algs. SODA 97, SIAM Bse
1997, pp. 380-389.

A. V. Goldberg and K. TsioutsiouliklisCut tree algorithms: an experimental
study J. Algs.38(2001), no. 1, 51-83.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C.e8oh,Optimization by
simulated annealing: an experimental evaluation. 1. grgphtitioning, Opera-
tions ResearcB7 (1989), 865—892.

, Optimization by simulated annealing: an experimental ezbn. 2.
graph coloring and number partitioningOperations Resear@® (1991), 378—
406.

D. S. Johnson and C. C. McGeoch (edsgtwork flows and matching: First DI-
MACS implementation challengeol. 12, Amer. Math. Soc., 1993.

D. S. Johnsom theoretician’s guide to the experimental analysis of &thons
DIMACS Series in Discrete Mathematics and Theoretical Cat@p Science,
Amer. Math. Soc., 2001, to appear.

D. W. JonesAn empirical comparison of priority queues and event-sqilém
mentationsCommun. ACM29 (1986), 300-311.

D. S. Johnson and M. TriclCliques, coloring, and satisfiability: Second DI-
MACS implementation challengeol. 26, Amer. Math. Soc., 1996.

D. E. Knuth,The Stanford GraphBase: A platform for combinatorial cotimmy)
Addison-Wesley, Reading, Mass., 1993.

, The art of computer programming, vols | (3rd ed.), Il (3rd)e@nd Il
(2nd ed.) Addison-Wesley, Reading, Mass., 1997, 1997, and 1998.

[LL96]

[LL97]

[McG92]
[MN95]
[MN99]
[MS85]
[MS91a]
[MS91b]

[MS94]

[MWB +01]

[Reio4]

[RR99]

[RS85]

[San00]

[SV87]

[Vito1]

[XZK00]

A. LaMarca and R. Ladner, The influence of caches on the
performance of heaps ACM J. Exp. Algorithmics 1 (1996),
www. j ea. acm or g/ 1996/ Lamar cal nf | uence/ .

, The influence of caches on the performance of sartfigpc. 8th
ACM/SIAM Symp. on Discrete Algs. SODA 97, SIAM Press, 199p, 70—
379.

C. C. McGeochAnalysis of algorithms by simulation: variance reductiech-
nigues and simulation speedypsCM Comput. Survey24 (1992), 195-212.

K. Mehlhorn and S. Nahet,EDA, a platform for combinatorial and geometric
computing Commun. ACM38 (1995), 96-102.

K. Melhorn and S. NaheiThe LEDA platform of combinatorial and geometric
computing Cambridge U. Press, Cambridge, UK, 1999.

B. M. E. Moret and H. D. Shapir@n minimizing a set of testSIAM J. Scien-
tific & Statistical Comput6 (1985), 983—-1003.

, Algorithms from P to NP, volume I: Design and efficignBgnjamin-
Cummings Publishing Co., Menlo Park, CA, 1991.

C. Morgenstern and H. D. Shapitteuristics for rapidly four-coloring large pla-
nar graphs Algorithmica6 (1991), 869-891.

B. M. E. Moret and H. D. ShapirdAn empirical assessment of algorithms for
constructing a minimal spanning tre®IMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science (N. Dean and G. Sharasr), vol. 15,
Amer. Math. Soc., 1994, pp. 99-117.

B. M. E. Moret, S. K. Wyman, D. A. Bader, T. Warnow, and M.nY& new im-
plementation and detailed study of breakpoint analyBi®c. 6th Pacific Symp.
Biocomputing PSB 2001, World Scientific Pub., 2001, pp. 58+

G. ReineltThe traveling salesman: Computational solutions for tspl@ations
Springer Verlag, Berlin, 1994, in LNCS 840.

N. Rahman and R. Ramafalysing cache effects in distribution sortjrigroc.
3rd Workshop on Algorithm Eng. WAE 99 (Berlin), Springer V&g, 1999, in
LNCS 1668, pp. 183-197.

N. Robertson and P. Seymo@raph minors—a surveysurveys in Combina-
torics (J. Anderson, ed.), Cambridge U. Press, Cambridég,1985, pp. 153—
171.

P. Sander&ast priority queues for cached mempACM J. Exp. Algorithmics
5(2000), no. 7ywwwv. j ea. acm or g/ 2000/ SandersPriority/.

J. T. Stasko and J. S. Vittérairing heaps: experiments and analysBommun.
ACM 30(1987), 234—-249.

J. S. Vitter, External memory algorithms and data structures: dealing
with massive dataACM Comput. Surveys (2001), to appear, available at
www. cs. duke. edu/ j sv/ Papers/Vit.|QOsurvey. ps. gz.

L. Xiao, X. Zhang, and S. Kubricht, Improving memory performance
of sorting algorithms ACM J. Exp. Algorithmics 5 (2000), no. 3,
www. j ea. acm or g/ 2000/ Xi aoMenory/ .

