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Abstract

Map labeling is of fundamental importance in cartography and geographical information systems
and is one of the areas targeted for research by the ACM Computational Geometry Impact Task Force.
Previous work on map labeling has focused on the problem of placing maximal uniform, axis-aligned,
disjoint rectangles on the plane so that each point feature to be labeled lies at the corner of one rect-
angle. Here, we consider a number of variants of the map labeling problem.

We obtain three general types of results. First, we devise constant-factor polynomial-time approxi-
mation algorithms for labeling point features by rectangular labels, where the feature may lie anywhere
on the boundary of its label region and where labeling rectangles may be placed in any orientation.
These results generalize to the case of elliptical labels. Secondly, we consider the problem of labeling
a map consisting of disjoint rectilinear line segments. We obtain constant-factor polynomial-time ap-
proximation algorithms for the general problem and an optimal algorithm for the special case where
all segments are horizontal. Finally, we formulate a bicriteria version of the map-labeling problem and
provide bicriteria polynomial-time approximation schemes for a number of such problems.

Keywords: Approximation algorithms, map labeling, �� -hardness

1 Introduction

Automatic map-making is an important part of Geographic Information Systems (GIS). Although nearly
two decades of development have led to some good map-making algorithms, cartographic knowledge and
experience remain critical to the production of good maps: “the craft of making maps is still an indispens-
able ingredient” [BC94]. Map labeling has been targeted by the ACM Computational Geometry Task
Force [CGI96] as one of the important areas of research in Discrete Computational Geometry. As pointed
out in [CMS95], applications in cartography require three different label-placement tasks: (i) labeling area
features (such as countries and oceans); (ii) labeling line (segment) features (such as rivers and roads); and
(iii) labeling point features (such as cities and mountain peaks). An efficient algorithm must solve these
three label-placement tasks simultaneously. Note that all three tasks share a combinatorial aspect: labels
must not overlap; as remarked in [CMS95], this aspect of label placement is independent of the nature of
the features being labeled and is perhaps the most basic problem to solve for automating label placement.
In this paper we focus on generating non-overlapping label placements for point features and rectilinear
(axis-parallel) segment features, with possible extensions sketched or suggested.

Cartographic labeling requires a cartographer to consider many conflicting criteria for labeling the
maps, such as location, orientation, shape, size, and typography for each label. In a seminal paper in this
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area, Imhof [Im75] illustrates these goals by giving 100 examples of good and bad labeling decisions. As
pointed out in [MS91], the following concerns are of particular importance: (i) the degree to which labels
overlap with each other and obscure cartographic features; (ii) the degree to which labels are unambigu-
ously and clearly associated with the features they identify; (iii) a priori preferences among a canonical
set of potential label positions; and (iv) the number of point features left unlabeled. Legibility may take
precedence over aesthetic placement, especially for technical maps where every feature must be labeled
[FW91].

These considerations lead us to define the general point-feature map-labeling problem. An instance
of this problem consists of a set of point features and a set of constraints (such as permissible amount
of overlap) for placing labels. The goal of the problem is to label each feature so as to satisfy the con-
straints. On the theoretical side, Formann and Wagner [FW91] studied the problem of labeling a set of
� points such that each point is assigned an axis-aligned labeling rectangle, each rectangle is placed so
that one of its corners is the point feature it labels, all rectangles have the same size, and the size of the
rectangles is maximized. They proved that this problem is �� -complete and that, unless � � �� , no
polynomial-time approximation algorithm can do better than 50% of optimal; moreover, they presented
an

� �� ��� � � time approximation algorithm achieving this bound. Wagner [Wag94] then proved that an
approximation algorithm that achieves this bound must take � �� ��� � � time. More recently, Wagner and
Wolff [WW95, WF95] introduced some heuristics that appear to perform well on small problems. In gen-
eral, map labeling appears to be a hard problem since it is closely related to the �� -hard independent set
and kSAT problems [KR92]. Other researchers have built automated map-labeling systems since the early
70’s, typically using a combination of heuristics such as mathematical programming, gradient descent,
etc.; a comprehensive survey and list of references can be found in [CMS93]. Given that map-labeling
can be thought of as attempting to meet a set of rules [Im75], several researchers have also attempted to
solve the problem using techniques from artificial intelligence and logic programming (see, for instance,
[Jo89]); the aforementioned survey also discusses these attempts as does [DF92].

2 Our Results

We study several variants of the general point-feature map-labeling problem. Our results significantly ex-
tend and generalize those of [CMS93, FW91] on the complexity and approximability of the map-labeling
problem. We consider the following two generalizations of the problem: (i) allowing the labels to be rect-
angular or elliptical while removing any restriction on their orientation; and (ii) allowing a feature to be
anywhere on the boundary of its label region (rather than at a vertex of its labeling rectangle). These gen-
eralizations reflect the fact that, in many of today’s electronic maps, labels are not restricted to textual mat-
ter, but may also be graphical (although even purely textual labels have long been placed non-horizontally
in maps). In all of these cases, we retain the objective function proposed by Wagner and his colleagues,
namely the size of the uniform labeling areas.

We also note that all previous research in map labeling deals with how to label sites (points), while we
mentioned earlier that linear features (rivers, streets, etc.) often need their own labels. In practice, we often
need to label rectilinear line segments, such as city streets or VLSI circuits. The labeling area associated
with such segments is a rectangle, the length of which is the length of the corresponding segment and the
width of which is to be maximized (subject to the constraints of the problem); this area can be placed in
one of three positions: above or below a horizontal segment (naturally, left or right of a vertical segment)
or across and at the middle of it (i.e., making the segment the mid-edge of the labeling area).

Given the complexity of the map-labeling problem, we investigate the existence of polynomial-time
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approximation algorithms. We present the first polynomial-time approximation algorithms and approxi-
mation schemes for a number of variants of the generalized map-labeling problem. Recall that an approx-
imation algorithm for a maximization problem � provides a performance guarantee of � � � � � if, for
every instance � of � , the solution value returned by the approximation algorithm is within a factor � of
the optimal value for � . We obtain the following results for the generalized map-labeling problem:

� For labeling a map with uniform squares (in arbitrary orientations), we provide a polynomial-time
approximation algorithm with a performance guarantee of �	
� ��
 �� �� �.

� For labeling a map with uniform circles, we provide a polynomial-time approximation algorithm
with a performance guarantee of � �
 � 	� �.

� For labeling a map with uniform regular polygons, we prove that there exists a constant-factor,
polynomial-time approximation algorithm for each type of regular polygon.

� For labeling rectilinear segments with rectangles of uniform width, we prove that there exists a
polynomial-time approximation algorithm with a performance guarantee of 2. We also show that
the problem can be solved exactly in � �� ��� � � time when all segments are horizontal.

Our approximation algorithms for labeling point features are very efficient and easily implemented; all
run in

� �� ��� � � time with small constants.
Going back to the criteria of [MS91], we note that one criterion listed is the number of features left

unlabeled—we all have encountered maps with unlabeled features. Yet all the algorithms mentioned above
label every feature. By allowing a small number of features to remain unlabeled, we may be able to better
label the other features. This approach introduces a trade-off between the quality (size) of the labels placed
and the number of unlabeled features. We present a bicriteria framework in which, for � features and any
given �, we must find a placement of at least

�� � �� � � labels, each of size at least
�� � � � �� times

the optimal labels, for some positive constant �. We present a simple, yet very general technique, based
on discretization of the map and its labels, to construct a polynomial-time approximation scheme for this
problem and its variants. Since it has been shown in [FW91] that the map-labeling problem cannot be
approximated within a factor of 2 unless � � �� , our bicriteria framework offers one way to overcome
the limitations imposed by labeling every feature.

3 Preliminaries

We define formally our two problems for labeling point features and briefly discuss a related tractable
problem that we shall use in our approximation algorithms. We give definitions for the decision versions
of our problems, in the interest of clarifying the formal computational complexity of these problems; the
optimization version is trivially formulated from the decision version.

Definition 1. An instance of the problem of Map Labeling with Uniform Squares (MLUS) consists of
� points (features) in the plane and a positive integer bound � . The question is whether there exists a
placement for � squares, each of side � , such that

� no two squares intersect; and
� each point lies on a square and no two points lie on the same square.

Observe that the solution to the MLUS optimization problem diverges if we have four or fewer points:
with four points (in general position), each point can have associated with it an infinite square. Since an
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infinite square is effectively a quarter of the plane, divergent solutions cannot exist for five or more distinct
points.

Definition 2. An instance of the problem of Map Labeling with Uniform Circles (MLUC) is given by a
set of � points (features) in the plane and a positive integer bound � . The question is whether there exists
a placement for � circles, each of radius � , such that

� no two circles intersect; and
� each point lies on a circle and no two points lie on the same circle.

Observe that the solution to the MLUC optimization problem diverges if we have just two points, but must
be finite for three or more points, since an infinite circle is effectively a half-plane.

We shall make extensive use of the following well-solved problem.

Definition 3. Given a set � of points, the �-diameter of any subset of � points is the maximum distance
between any two points in the subset. The minimum �-diameter of � , denoted �� �� �, is the smallest value
of the �-diameter among all subsets of � of size �.

How to compute the minimum �-diameter was studied by [EE94, DLSS]; they gave an algorithm that
returns the value in

� �� ��� � � time. We make some simple observations about the minimum �-diameter.

Lemma 1. � � � �� � � � � � ���� � �� .

Lemma 2. Let 	 
 
 be some constant and draw a circle of radius
��

 centered at some point � � � � ;

then this circle contains at most � � � points.

Proof: The maximum distance between any two points inside the circle is at most the diameter of the
circle, which is 
�� �	 � �� . If the circle were to contain at least � points, then these � points would
constitute a subset of size � with diameter less than �� contradicting the definition of �� .

4 Map Labeling With Uniform Squares

Let � �
denote the size of each square in the optimal solution of the problem MLUS.

Lemma 3. A set of five points with diameter �� has optimal labeling squares of size at most �� � ��
 �� �� �.
Proof: Call the five points �, �, �, �, and �, and assume that the diameter �� occurs between points � and
�. We then can place a regular pentagon � � of side �� that circumscribes all five points. Let � be the
size of the largest labeling square for the original five points and �� that for the five vertices of the regular
pentagon � �; obviously, we have � � ��. Symmetry immediately implies that the largest labeling squares
for the vertices of � � are arranged around � � in a ring such that the inner side of each labeling square has
as its midpoint the vertex of � � that it labels. These inner sides form another regular pentagon; the ratio of
the sides of the two pentagons is easily seen to be ��
 �� �� �. Thus �� is �� ��
 �� �� � times the edge length
of � �, which is �� by construction; thus we have � � �� � �� � ��
 �� �� �.
Theorem 1. A set � of point has maximum labeling squares of size at most �� �� �� ��
 �� �� �.
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Denote the distance between two points � � �� � � � by ��� and denote by � � the circle centered at point

� � � � with radius
� � �� �

 . By Lemma 2, � � contains at most four points of � (counting its center). Denote

by � � the number of points of � within � �; in the following, we assume, without loss of generality, that
we have � � � �. We shall place a square of side

� � �� �
�
� � at each point � �; note that the largest dimension of

this square is its diagonal, which has length
� � �� �
�
 .

We now proceed to describe the algorithm; since the algorithm effectively places the squares, we state
the main result as a theorem and prove it constructively by providing the algorithm. We then analyze the
running time of the algorithm.

Lemma 4. Given a set � of points to be labeled with uniform squares, there exists a set of square labels,
each of size �� 	

� � �� �
�
� � .

Proof: Our proof is a recursive procedure that labels each point: we select some point � � and show how to
place a square of size �� touching � �. Assume, without loss of generality, that we have � � � � and denote
the other three points in � � by � � , � � and � 
. Consider the circle � �� centered at � � with radius

� � �� �
�
 —half

the radius of � � . We distinguish four cases, depending on how many of � � , � � , and � 
 fall within � �� .

1. � �� only contains � �. This case is easy. We can label � � with a square in any arbitrary position: since
� � is at least two diagonals away from any of its neighbors, its labeling square cannot affect the
positioning of labeling squares for its neighbors. Our procedure thus removes � �, recursively labels
all remaining points, then labels � �.

2. � �� contains � � and one more point. Let that point be � � . As in the previous case, note that the
positioning of the label for � � cannot directly affect the positioning of the labels for � � and � 
. Thus
we need only place � �’s label so as to avoid restricting the placement of � � ’s label. To do this, we
remove � �, recursively label the remaining points, then label � �; since only the label of � � can affect
the label of � �, we can always rotate the label of � � if needed (if it actually contains � �, we need to
rotate it; but then also, the rotation cannot affect any other labeling squares) and then label � � itself.

3. � �� contains � � and two more points. Let these points be � � and � � . We further subdivide this case

as follows. Let � ��� be the circle centered at � � of radius
� � �� �
�
 , half the radius of � �� and a quarter

of the radius of � �. We now distinguish three cases, according to the number of points within � ��� .

(a) � ��� only contains � �. In that case, we remove � �, recursively label the remaining points, then
come back to label � � itself. Because � � and � � are at least one diagonal away from � �, their
labels cannot include � � and we can always place a labeling square at � � without intersecting
the labels of � � and � � .

(b) � ��� contains � � and one more point. Let this additional point be � � . Thus we have � � and � �
in � ��� , � � in � �� but not � ��� , and � 
 in � �, but not � �� . If � 
 is at least 3 diagonals away from � �,
we can treat this case exactly like sub-case (c) below. Thus assume that � 
 is less than three
diagonals away. We proceed much as in case (2) above: we remove � �, recursively label the
remaining points, then return to label � �. The labeling square of � � might contain � �; in that
case, we rotate it to a position where it does not intersect the labeling square of � � and does not
contain � �. (Given the constraints defining this case, one can verify that such a position can
always be computed.) Then we place a square at � �; since there are at most two constraints,
(the labeling squares of � � and � �) this can be done in constant time.
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(c) � ��� contains � � and one more point. Let this additional point be � � . Thus we have � � and
� � in � ��� , � � in � �� but not � ��� , and � 
 in � �, but not � �� . If � 
 is at least 3 diagonals away
from � �, we can treat this case exactly like subcase (c) below. Thus assume that � 
 is less than
three diagonals away. We proceed much as in case (2) above: we remove � �, recursively label
the remaining points, then return to label � �. The labeling square of � � might contain � �; in
that case, we rotate it out of the way (which we can do in such a case without intersecting the
labeling square of � � and � 
 Lemma). Then we place a square at � �; since there are at most
two constraints (the labeling squares of � � and � �), this is easily done.

(d) � ��� contains � � and two more points. In this case, we remove all three points at once, recur-
sively label all remaining points, and then proceed to label our three points. The only con-
straint on the labels of � �, � � , and � � is due to the labeling square of � 
. Note that the labeling
square of � 
 cannot include any of the three points to be labeled and thus need not be altered.
It is now a simple matter to place labeling squares for all three points.

4. � �� contains � � and three more points. By the same reasoning as in case 1, the labeling of the four
points cannot affect the labeling of any other point of � , because all other points of � are at least
two diagonals away. We know that we can label any subset of four isolated points with arbitrarily
large squares; in particular, we can label our subset with squares of the desired size. Thus our pro-
cedure removes all four points, recursively labels the remaining points, then labels the four points
as discussed.

This recursive procedure starts by computing �� �� �, which takes
� �� ��� � � time. At each step in the

recursion, the work done is constant, so that the procedure runs in linear time after determining �� �� �.
Overall, then, our approximation procedure runs in

� �� ��� � � time. Combining these observations with
Theorem 1, we get our main result for MLUS.

Theorem 2. The MLUS problem can be approximated to within a factor of �	
� ��
 �� �� � in
� �� ��� � �

time, where � is the number of features to be labeled.

5 Map Labeling With Uniform Circles (MLUC)

Let �� denote the size of the circles in the optimal solution. We derive an upper bound for this size as a
function of � � �� �, much in the same fashion as we bounded the size of squares as a function of �� �� �.
The basic approach is similar: we consider just three points forming a set of diameter � � and bound the
size of the circle as a function of � �; larger sets of points must yield circles that are no larger. By arguments
similar to those in the proof of Lemma 3, we can show the following.

Lemma 5. A set of three points with diameter � � has optimal labeling circles of size �� � �
� 	� � �� � .

Theorem 3. A set � of points has maximum uniform labeling circles of diameter � � � �
� 	� � �� � �� �.

Let � � denote the circle centered at point � � � � with radius
� � �� �

 , where 	 
 
 is a constant. By

Lemma 2, � � contains at most two points, including � � itself; let � � be the other point. Note that � �, �� ,
and their intersection all contain exactly two points, namely � � and � � .

We now present our approximation procedure; as in the MLUS problem, we state a theorem describing
our procedure and give the procedure itself as a proof.
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Lemma 6. Given a set � of points to be labeled with uniform circles, there exists a set of circular labels,
each of size � � 	

� � �� �
�
 .

The proof is quite simple. Note that � � can contain at most two points, say � � and � � . We can label these

points with circles of diameter
� � �� �
�
 that are centered on the line � �� � and are placed opposite each other,

avoiding the central segment � �� � ; by construction, these circles cannot intersect circles attached to points
outside � �.

Using the results of [EE94], we can compute � � �� � in
� �� ��� � � time. We can determine the near-

est neighbor of each point (the � � for our � �) in
� �� ��� � � time using standard techniques. Placing the

labeling circles takes constant time per circle. Thus our approximation algorithm runs in
� �� ��� � � time

overall. Combining these observations with Theorem 3, we get our main result about MLUC.

Theorem 4. The MLUC problem can be approximated to within a factor of � �
� 	� � in
� �� ��� � � time,

where � is the number of features to be labeled.

6 A Bicriteria Approximation Algorithm

We now consider the variant of the map-labeling problem in which a few point features are allowed to
remain unlabeled. We present a polynomial-time approximation scheme for this problem. Define a (bi-
criteria) polynomial-time

�	 � � �-approximation algorithm for the MLUS problem as a polynomial-time
approximation algorithm that finds a placement of at least 	 circles such that the size of each circle is at
least � times the size of a circle in an optimal solution that places circles at each point. Such an algorithm
is a bicriteria approximation, governed by 	 and � .

The basic idea behind our approximation algorithm is to construct a number of geometric intersection
graphs and solve the maximum independent set problem for each of the graphs. We then argue that a
good approximate solution for the map-labeling problem is given by the solution to one of the graphs. We
first consider a restriction of the MLUS problem in which each square must be placed so that its sides are
parallel to the axes; call this problem MLUS-AP.

An undirected graph is a square graph if and only if its vertices can be put in one-to-one correspon-
dence with uniformly-sized squares in the plane in such a way that two vertices are joined by an edge if
and only if the corresponding squares intersect. (We assume that tangent squares intersect.) For any fixed� 
 �, we say that a square graph is a

�
-precision square graph if the centers of any two squares are

separated by at least
�

times the size of a square.
We reduce the MLUS-AP problem to that of finding maximum independent sets for a number of squares

graphs. Specifically, given an instance � of MLUS-AP, we construct
� ���� 
�� �� �� square graphs, each

of size polynomial in � . For each square graph thus created, we obtain an approximate solution to the
Maximum Independent Set problem—for which a polynomial-time approximation scheme is known to
exist in a variety of geometric graphs [HM+95].

Theorem 5. For any fixed � 
 �, given an instance � of � points of MLUS-AP, our algorithm finds a
placement of at least

�� � �� � � squares of size at least ���� � �� � , where
�� � denotes the size of the

squares in an optimal solution.

Proof: Since
�� � � 
�� �� �, there exists some iteration � � such that

�� � ��� � � �� � � �� � ��� �� �.
By the construction of the square graph in Step 2a, it is clear that the optimal solution to the independent
set problem for the set of squares �� � has � elements; thus Step 2b finds a placement of � � � 	 �� � �� � �
squares. Since we choose the largest � that gives a placement of at least

�� � �� � � squares, it follows that

7



� Input: A set of points
�� � � � � � � � � � in the plane and an accuracy requirement � 	 
.� Output: A placement of isothetic (axis-parallel) squares �� � � � � � �� , such that � 
 lies on the boundary

of square �
 and the squares �
 are disjoint, � � �� � �� � � , and the size of each square is at least������ times the optimal solution.� Procedure:

1. Let � denote the smallest integer such that �� � ��� � �� � �� �.
2. For  ! � to � do

(a) Construct a square graph, with squares of size �� � ��" � �� � ��, as follows. Let # $ %�� &.
On each side place marks � � �� � �� � apart and label these marks by indices � � � � � � � �'( .
For each point � 
 and each mark �) , place a copy of a square in four ways so that mark �)
coincides with � 
. Denote the set of squares thus obtained by �" $ ��� � � � � � �'(� �.

(b) Solve the Maximum Independent Set problem for the set of squares �" using the algorithm
of [HM+95]; let � " be the size of the independent set returned by the algorithm.

3. Let  * denote the largest value of  obeying � " � �� � �� � � .

4. The solution output by the heuristic consists of the placement in iteration  *.

the size of the squares in iteration � � is at least
�� � ��� � � 
� ����� � . The second term in the expression

arises due to the discretization of the possible positions at which the square could be placed. Thus we have

�� � ��� � � 
� ����� � 	 �� � ��� � �� � 
�� 	
�� � 
���� � ��

� �� � �

Theorem 6. For any fixed � 
 �, our algorithm runs in
� �� ��� �� �� ��.

Proof: Observe that, for each fixed � 
 �, the number of squares in �� is +�� , � � �� �. The maximum
value of - is

� ���� �� �� ��. Steps 2a and 2b take
� �� � time for each iteration, since, for each fixed �,

we obtain a
�

-precision square graph with � squares. The algorithm of [HM+95] runs in linear time. All
other steps take constant time.

Note that ��� �� �� � is bounded by a polynomial in the input size, since it is the logarithm of a distance
between two points given (by their coordinates) in the input.

For the case of the map labeling problem of [FW91], we can further reduce the running time by observ-
ing that we have only four possible positions for placing each square. Also note that our algorithms extend
to the case when we are allowed to place uniform rectangles at each point feature. Indeed, although the
basic idea is quite simple, it is very general and extends to a large number of variants of the map labeling
problem, some of which we sketch below.

1. Arbitrary orientation: We have already discretized (through the system of marks) the position of
the point on the boundary of the labeling square; to handle arbitrary orientation, we also discretize
the angle of the labeling square with the horizontal axis. Specifically, we divide the 
� radians in
discrete subangles of �, thus yielding 
� �� possible angular positions. The algorithm otherwise pro-
ceeds as outlined in the case of MLUS-AP, albeit with higher running-time factors.

2. Circles and other regular polygons: The algorithm can easily be extended to other regular polygons.
(The algorithm of [HM+95] works on many variations of geometric graphs, not just square graphs.)
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It can also be applied with a slight modification to circles: we then use the maximum independent
set algorithm for unit disk graphs given in [HM+95].

3. Placement with non-uniform squares: Assume that different-sized squares can be used under the
condition that the ratio of the sides of the largest to the smallest square be bounded (a reasonable
aesthetic requirement). In Step 2a, we place squares of different sizes at each point:

��� ��� denotes
the size of the smallest square and other squares are scaled as required by the problem. In Step 2b
we again solve the maximum independent set problem for the induced graph. This time, we use the
algorithm given in [HM+95] to find a large independent set for

�� � � �-civilized graphs.

4. Placement for vertices of a graph: Consider a generalization of the map labeling problem in which
we are given a graph in the plane and we wish to label the vertices of the graph. The labels must be
mutually non-intersecting and must not intersect the the edges of the graph. In such a case, we do
the following: every time we construct a square graph, we remove those squares that overlap with
any of the edges. The algorithm is otherwise similar and can also be extended to partial overlap of
the squares.

5. Placement for rectilinear line features: Our approximation algorithm extends to labeling line fea-
tures in which the line segments are rectilinear. We omit this due to lack of space.

7 Labeling a Rectilinear Map

In this section we study the problem of how to label a rectilinear map. As discussed in Section 2 each
line segment can be labeled in one of three possible ways. We say that a rectangle is a valid label for a
line segment if the rectangle is positioned in exactly one of three possible ways with respect to the line
segment; among other things, a valid label has as length the length of the segment it labels and we refer
to its other dimension as its width.

Definition 4. An instance of the problem of Rectilinear Segment Labeling (RSL) consists of � rectilinear
line segments (features) in the plane and a positive integer bound � . The question is whether there exists
a placement for � rectangles, each of width � , such that

� no two rectangles intersect; and
� each rectangle is a valid label for a distinct segment.

We first present an optimal � �� ��� � � time algorithm for the case when all segments are horizontal and
then present an approximation algorithm for the general problem.

7.1 An Optimal Solution for Horizontal Segments

Let the � horizontal segments be denoted ��, � � � � �; without loss of generality, we assume that no two
segments have the same �-coordinates. The vertical neighbors of a segment �� are those segments that are
first hit by �� when �� is translated vertically. It is well known that the set of relations “is a vertical neighbor
of” (also called a trapezoidal decomposition or a vertical visibility map) can be computed in

� �� ��� � �
time, e.g., through simple scanning (as was first observed by Bentley and Ottmann [BO79]). The resulting
map, which we shall call the VVM, is linear in size and can be used for point location in logarithmic time.
We shall assume that the map has guards, i.e., segments with a left endpoint left of all � input segments and
a right endpoint right of all input segments, with one segment above all others and another below all others.
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Let -�� �
� �, -�� �

� �, and -�� �
�� denote the rectangles of width

�
placed respectively above, below,

and across horizontal segment �, and let - ��� �
� � denote the set of all three possible rectangles.

Lemma 7. Let �� and �� be two segments such that neither is a vertical neighbor of the other. If the optimal
width of labels is

�
, then - ��� �

�� � will not first intersect - ��� �
�� � and vice versa.

While rather obvious, this lemma has an important corollary: the number of potential intersections among
labeling rectangles that we need to consider is

� �� �. Consider the directed acyclic graph � � �� �� �
where each node corresponds to a segment and there is an edge from vertex �� to �� if there is a vertical
visibility edge between segments �� and �� and �� is below �� (i.e., in the visibility map make the vertical
visibility edges directed upwards). � has � vertices and

� �� � edges and can be topologically ordered in� �� � time; let the ordering of the nodes be �� , ��, . . . , ��� �, where �� and ��� � are the two guards. For
each segment ��, we maintain three variables,

� � �, � �� , and
� �� , with the following interpretation: after

having processed segment ��, � �� is the largest possible height of a feasible solution among all (transi-
tively closed) predecessors of ��, subject to the constraint that segment �� is in state � . Initially we set all� ��’s to infinity. Processing �� takes

� ��� time per incoming edge from a predecessor segment ��. Using
the quantities

� � �, � �� , and
� �� , we update

� � �, � � �, and
� � � in

� ��� time as follows; we use ��� to
denote the vertical distance between �� and �� .

� � � � � 	
��� � � �	
� �� � � � � � � � ��
where � � � 	
��� � � � ��� �, � � � 	
��� �� � 
��� ���, and � � � 	
��� �� � ��� �
�.

� � � � � 	
��� � � �	
� �� � � �� � �� ��
where � � � 	
��� � � � 
��� �, �� � 	
��� �� � ��� �, and �� � 	
��� �� � 
��� ���.

� � � � � 	
��� � � �	
� �� � � �� � �� ��
where � � � � � �, �� � 	
��� �� � 
��� �, and �� � 	
��� �� � ��� �.

These formulas are self-explanatory. After processing ��� � (the second guard) the optimal solution ��� �
is equal to

� �� . We can thus state the first of two main results about the RSL problem.

Theorem 7. The problem of labeling a set of horizontal segments can be solved optimally in
� �� ��� � �

time, which is optimal in the algebraic decision tree model of computation.

Proof: The upper bound follows easily from the above discussion. We use a linear time reduction from
the Min-Gap problem of � reals, which is known to have a lower bound of � �� ��� � � under the algebraic
decision tree model of computation �BO83�, to show that computing the optimal value ��� � when all �
segments are horizontal, has the same lower bound. The proof is omitted due to lack of space.

7.2 An Approximation Solution for the General Problem

If we allow two of the three possible placements for a label (excluding the placement athwart the segment),
then the problem can be modelled as a series of 2SAT problems and solved in

� �� � � time �FW91�. Denote
the optimal solution to this restricted version of the problem by � � and denote the optimal solution to our
version (with three choices of placement allowed) by ��� � .
Theorem 8. ��� � �� � � 
.
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Proof: Consider the solution of optimal value ��� � . For each rectangle in states 1 or 3, shrink its width
to half. For each rectangle in state 2, simply remove one of its halves to make it a rectangle in state 1
or 3 with half its original width. Clearly the new solution is a valid labeling of value ��� ��
 in which all
rectangles are in state 1 or 3 only. Since the algorithm finds the best solution under this restriction, we
must have � � 	 ��� � �
.

It is easy to construct an example where this bound is achieved.
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