Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity

We introduce a two-dimensional integrate-and-fire model that combines an exponential spike mechanism with an adaptation equation, based on recent theoretical findings. We describe a systematic method to estimate its parameters with simple electrophysiological protocols (current-clamp injection of pulses and ramps) and apply it to a detailed conductance-based model of a regular spiking neuron. Our simple model predicts correctly the timing of 96% of the spikes (±2 ms) of the detailed model in response to injection of noisy synaptic conductances. The model is especially reliable in high-conductance states, typical of cortical activity in vivo, in which intrinsic conductances were found to have a reduced role in shaping spike trains. These results are promising because this simple model has enough expressive power to reproduce qualitatively several electrophysiological classes described in vitro.


Published in:
J. Neurophysiol., 94, 3637 - 3642
Year:
2005
Publisher:
American Physiological Society
ISSN:
0022-3077
Note:
article
Other identifiers:
Laboratories:




 Record created 2006-12-12, last modified 2018-01-27

External link:
Download fulltext
n/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)