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ABSTRACT A description of neuronal activity on the level of ion channels,
as in the Hodgkin-Huxley model, leads to a set of coupled nonlinear differ-
ential equations which are difficult to analyze. In this paper, we present a
conceptual framework for a reduction of the nonlinear spike dynamics to
a threshold process. Spikes occur if the membrane potential u(t) reaches a
threshold . The voltage response to spike input is described by the postsy-
naptic potential €. Postsynaptic potentials of several input spikes are added
linearly until u reaches 9. The output pulse itself and the reset/refractory
period which follow the pulse are described by a function 5. Since € and
7 can be interpreted as response kernels, the resulting model is called the
Spike Response Model (SRM). After a short review of the Hodgkin-Huxley
model we show that (i) Hodgkin-Huxley dynamics with time-dependent
input can be reproduced to a high degree of accuracy by the SRM; (ii)
the simple integrate-and-fire neuron is a special case of the Spike Response
Model; (iii) compartmental neurons with a passive dendritic tree and a
threshold process for spike generation can be treated in SRM-framework;
(iv) small nonlinearities lead to interactions between spikes to be described
by higher-order kernels.

1 Introduction

The successful mathematical description of action potentials in the giant
axon of the squid by Hodgkin and Huxley in 1952 has lead to a whole
series of modeling papers which try to describe in detail the dynamics of
various ion channels on the soma and dendrites during spike reception and
spike emission. With modern computers it is now possible to numerically
integrate models with 10 to 50 types of ion channel and hundreds of spa-
tial compartments [YKA89, TWMMO91, BB95] and reproduce experimental
findings to a high degree of accuracy. On the other hand, it is often diffi-
cult to grasp intuitively the essential phenomena of neuronal dynamics from
these models. In particular, it is out of reach to understand these models
analytically. Moreover, in a network setting the question arises whether all
the details described in compartmental models are necessary to understand
the computation in large populations of neurons.

For an analytical understanding of networks of spiking neurons, a simpli-
fied description of neuronal dynamics is therefore desirable [AK90, Abb91].
For this reason integrate-and-fire models [Lap07, Ste67, Tuc88] have be-
come increasingly popular for the investigation of principles of cortical
dynamics and function, e.g., [MS90, AvV93, Tre93, SNS95, BH99]. The
reduction of detailed neuron models to a standard integrate-and-fire unit
requires simplifications in at least two respects. First, the nonlinear dynam-
ics of spike generation [HH52, RE89] must be reduced to a leaky integrator
with threshold firing [AK90]. Second, effects of the spatial structure of the
neuron [Ral64, Tuc88, AFG91, BT94] must be reduced to some effective
input [Abb91].
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In this paper we address both issues from the systematic point of view of a
response kernel expansion. It is shown that spike generation in the Hodgkin-
Huxley model can be reproduced to a high degree of accuracy by a single-
variable threshold model [KGvH97]. The problem of spatial structure is
studied for a multi-compartmental integrate-and-fire model with a passive
dendritic tree [AFG91, BT94] and active currents at the soma. In this case,
the model dynamics can be solved and systematically reduced to a single-
variable model with response kernels.

After the reduction of the intricate neuronal dynamics to a threshold
model, it is then possible to study analytically the dynamics of networks
of neurons. It has been shown previously that in a large network of model
neurons with homogeneous couplings, the stability of coherent, incoherent,
or partially coherent states can be understood in a transparent manner
[AvV93, GvHI3, Ger95, GvHC96, BH99]. Moreover, the collective response
of a population of spiking neurons to a common time-dependent input can
be analyzed [Ger00]. The mathematical considerations that are necessary
for a reduction of the highly nonlinear Hodgkin-Huxley equations to a
single-variable threshold model are therefore worth the effort.

The chapter is organized as follows. We start in section 2 with a review
of the standard Hodkgin-Huxley model. The four differential equations of
Hodgkin and Huxley give an accurate description of neuronal spiking in the
giant axon of the squid. The drawback is that they are highly non-linear
and therefore difficult to analyze mathematically. We therefore aim for a
simpler phenomenological description. The method we propose is based on
spike response kernels and provides a biologically transparent description
of the essential effects during spiking. In the second part of section 2, we
will see that the Spike Response Model (SRM), derived from the Hodgkin-
Huxley model by the Spike Response Method, can reproduce up to 90
percent of the spike times of the Hodkgin-Huxley model correctly.

A short summary of the mathematics of the Spike Response Model is
presented in section 3. Another well-known model of neuronal spiking is the
integrate-and-fire model which is reviewed in section 4. We show that the
integrate-and-fire is in fact of special case of the Spike Response Model. The
mapping from the integrate-and-fire model to the Spike Response Model is
discussed in some detail in sections 4.3. and 4.4. In section 5 we address the
question of spatial structure. We show that in the case of a linear dendritic
tree the dynamics can be well captured by spike response kernels. Finally
in section 6 we discuss weakly non-linear effects. Throughout the text, the
general arguments are interupted by examples intended to illustrate the
main results.
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FIGURE 1. Schematic diagram for the Hodgkin-Huxley model. Taken from
[Ger98].

2 Hodgkin-Huxley model

The classic description of neuronal spiking dates back to Hodgkin and
Huxley [HH52] who summarized their extensive experimental studies on
the giant axon of the squid with four differ ential equations. A first and
fundamental equation describes the conservation of electric currents. Then
there are three further differential equations which describe the dynamics of
sodium and potassium ion channels. Modern models of neuronal dynamics
make use of the same type of equations, but often involve many more
different ion channel types. The ion channels may be located on different
compartments of a spatially extended neuron model. A single neuron may
then be described by hundreds of coupled non-linear differential equations.
In this section we stick to the standard Hodgkin-Huxley model without
spatial structure and use it as a reference model to study the dynamics
of spike generation. In the first subsection we review the Hodgkin-Huxley
equations. In the second subsection we reduce the nonlinear dynamics of
the Hodgkin-Huxley model to a threshold model with a single variable
u(t). This reduction will be the basis for a discussion of the Spike Response
Model in Sections 3-6.

2.1 Definition of the model

The Hodgkin-Huxley model can be understood with the help of Fig. 1.
The semipermeable cell membrane separates the interior of the cell from
the extracellular liquid. Due to the membrane’s selective permeability and
also because of active ion transport through the cell membrane, the ion
concentration inside the cell is different from the one in the extracellular
liquid. The difference in concentration generates an electrical potential be-
tween the interior and the exterior of the cell. The cell membrane acts like
a capacitor which has been charged by a battery. If an input current Z(t)
is injected into the cell, it may add further charge on the capacitor, or leak
through the channels in the cell membrane.
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FIGURE 2. Equilibrium function (a) and time constant (b) for the three vari-
ables m, n, h in the Hodgkin-Huxley model. Taken from [Ger98].

Let us now translate the above considerations into mathematical equa-
tions. The conservation of electric charge on a piece of membrane implies
that the applied current Z(t) may be split in a capacitive current Z¢ which
charges the capacitor C' and further components I}, which diffuse through
the ion channels. Thus

I(t)=Tc+ Y T (1.1)
k

where the sum runs over all ion channels. In the standard Hodgkin-Huxley
model there are only three types of channel: a sodium channel with index
Na, a potassium channel with index K and an unspecific leakage channel
with resistance R; cf. Fig. 1. From the definition of a capacity C' = Q/u
where ) is a charge and u the voltage across the capacitor, we find the
charging current Zc = C du/dt. Hence from (1.1)

CC;—;L =— zk:lk +I(t). (1.2)

In biological terms, u is the voltage across the membrane and ), I} is the
sum of the ionic currents which pass through the cell membrane.

As mentioned above, the Hodgkin-Huxley describes three types of chan-
nel. All channels may be characterized by their resistance or, equivalently,
by the conductance. The leakage channel is described by a voltage-inde-
pendent conductance g, = 1/R; the conductance of the other ion channels
is voltage dependent. If the channels are fully open, they transmit currents
with a maximum conductance gna Or gk, respectively. Normally, however,
the channels are partially blocked. The removal of the block is voltage de-
pendent and is described by additional variables m, n, and h. The combined
action of m and h controls the Na channels. The K gates are controlled by n.
Specifically, Hodgkin and Huxley formulated the three current components
as

Z I, = gnam®h (u — Vi) + grn® (u — Vi) + g1 (u — V). (1.3)
k

The parameters Vna, Vi, and Vi, are called reversal potentials since the
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T Uy gz
Na | 115mV | 120mS/cm’
K | -12mV | 36mS/cm’
L | 10.6mV | 0.3mS/cm’

x ag(u/mV) B (u/mV)

n | (0.1 —0.01u)/[exp(l —0.1u) — 1] 0.125 exp(—u / 80)
m | (2.5—0.1u) /[exp(2.5 — 0.1u) — 1] dexp(—u/18)

h 0.07 exp(—u / 20) 1/[exp(3 —0.1u) + 1]

TABLE 1.1. The parameters of the Hodgkin-Huxley equations. The membrane
capacity is C = 1pF/cm2.

direction of a current I, changes when u crosses Vj. Reversal potentials
and conductances are empirical parameters and summarized in table 1.

The three variables m, n, and h evolve according to the differential equa-
tions

o= am(u)(l - )— m (w)m

an(u) (1 =n) = Bp(u)n
ap(u)(1 = h) = Br(u)h (1.4)

= :.
|

with 7 = dm/dt, and so on. The « and 3, given in table 1, are empirical
functions of u that have been adjusted by Hodgkin and Huxley to fit the
data of the giant axon of the squid. Egs. (1.2) - (1.4) define the Hodgkin-
Huxley model.

Each of the three equations (1.4) may also be written in the form

r = — 1 T — xp(u
b=l = o (w)] (15)

where z stands for m, n, or h. For fixed voltage u, the variable = ap-
proaches the value xo(u) with a time constant 7, (u). The asymptotic value
xo(u) and the time constant 7, (u) are given by the transformation zo(u) =
ag(u)/[az(u) + Bx(u)] and 7, (u) = [ag(u) + Bz (u)]~!. Using the parame-
ters given by Hodgkin and Huxley [HH52], we have plotted in Fig. 2 the
functions zo(u) and 7 (u).

2.1.1 Example: Spike generation

We see from Fig. 2a that mg and ng increase with u whereas hy decreases.
Thus, if some external input causes the membrane voltage to rise, the ion
conductance of sodium (Na) increases due to increasing m and positive
sodium ions flow into the cell. This raises the membrane potential even
further. If this positive feedback is large enough, an action potential is
initiated.



—_

The Spike Response Model 6

(L) /mV
w(1) /mV

0 ———— -10

0 5 10 15 20 10 15 20 25 30
t/ms /s

FIGURE 3. a) Action potential. The Hodgkin-Huxley model has been stimulated
by a short, but strong, current pulse before ¢ = 0. The time course of the mem-
brane potential u(t) for ¢ > 0 shows the action potential (positive peak) followed
by a relative refractory period where the potential is below the resting poten-
tial. The resting potential has been set to zero. In the spike response framework,
the time course u(t) of the action potential for ¢ > 0 defines the kernel 7n(¢). b)
Threshold effect in the initiation of an action potential. A current pulse of 1 ms
duration has been applied at t=10 ms. For a current amplitude of 7.0 ,uA/cmZ,
an action potential with an amplitude of about 100 mV as in a is initiated (solid
line, the peak of the action potential is out of bounds). If the stimulating current
pulse is slightly weaker (6.9 A /cm?) no action potential is emitted (dashed line)
and the voltage v stays always below 10 mV. Note that the voltage scale in b is
different from the one in a. Taken from [KGvHI7].

At high values of u the sodium conductance is shut off due to the factor
h. Note from Fig. 2b that 7, is always larger than 7,,,. Thus the variable h
which closes the channels reacts more slowly to the voltage increase than
the variable m which opens the channel. On the same slower time scale, the
potassium (K) current sets in. Since it is a current in outward direction,
it lowers the potential. The overall effect of the sodium and potassium
currents is a short action potential followed by a negative overshoot.

In Fig. 3a we show the time course of the membrane voltage u(t) during
an action potential. The spike has been initiated by a short current pulse
of 1 ms duration applied at t < 0. Note that the amplitude of the spike
is about 100 mV. If the size of the stimulating current pulse is reduced
below some critical value, the membrane potential returns to the rest value
without a large spike-like excursion; cf. Fig. 3b. Thus we have a threshold-
type behaviour.

2.1.2 Example: Constant input and mean firing rates

The Hodgkin-Huxley equations (1.2)-(1.4) may also be studied for constant
input Z(t) = Zp for t > 0. (The input is zero for ¢ < 0). If the value Z of
the stimulation is larger than a critical value I, we find a regular spiking
behavior. We may define a firing rate v = 1/T where T is the interspike
interval. The firing rate as a function of the constant input Zy is plotted in
Fig. 4b. Spike trains with intervals T' = 1/v occur if the input current Z
is larger than a threshold value Zy ~ 6 uA /cm?.
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FIGURE 4. (a) Spike train of the Hodgkin-Huxley model for constant input
current Zo. The mean firing rate as a function of Zo is shown in (b).

2.1.3 Example: Step current input

In the previous example we have seen that a constant input current Zg > Iy
generates regular firing. In this paragraph we generalize this approach and
study the response of the Hodgkin-Huxley model to a step current of the
form

I(t) =Ty + AT H(t). (1.6)

Here #H(t) denotes the Heaviside step function. At ¢ = 0 the input changes
from a constant value 7; to a new constant value Zo = Z; + AZ; see Fig. 5a.
We may now ask whether spiking for ¢ > 0 depends only on the final value
7, or also on the step size AZ.

The answer to this question is given by Fig. 5b. A large step AZ facilitates
the spike initiation. Even for Z, = 0 a spike is possible, provided that the
step size is large enough. This is an example of inhibitory rebound: A single
spike is fired, if an inhibitory current 7; < 0 is released. The letter S in
Fig. 5b denotes the regime where only a single spike is initiated. Repetitive
firing (regime R) is possible for Z > 6uA/cm?, but must be triggered by
sufficiently large current steps.

We may conclude from Fig. 5b that there is no unique current threshold
for spike initiation: The trigger mechanism for action potentials depends
not only on Z, but also on the size of the current step AZ. More generally,
it can be shown that the concept of a threshold itself is questionable from
a mathematical point of view [RE89, KpBD95]. In a mathematical sense,
the transition in Fig. 3b, that ‘looks’ like a threshold is, in fact, smooth.
At a higher resolution of the input current in the regime between 6.9 and
7.0 pA/cm?, we would find a family of response curves in between the
curves shown in Fig. 3b. For practical purposes, however, the transition
can be treated as a threshold effect as we will see below.

2.1.4 Example: Stimulation by time-dependent input

As a final example, we stimulate the Hodgkin-Huxley model by a time-
dependent input current Z(¢). In the numerical implementation, the current
is generated by the following procedure. Every 2 ms, a random number is
drawn from a Gaussian distribution with zero mean and standard deviation



1. The Spike Response Model 8

a) £
<h 4,7
=
= ]AI
5
Eh
3
° 0 50 100
time / ms
b) 6 )
100 ] 1
S .
e,
0 7 %4 S I VA v v Ve
0 50 100 ¢ 0 50 100
=~ o~
> 6 e T~
E %2 —_ \\\\\ : J\/VVVW’—
° &
%n 3 173 _ e I .
) /™ el
> 0 Tl
0 50 100 0 o 50 100
time / ms 2 4 6 8
current I,/ uA ent’
6 .
€) 109 RSN 100
50 N 7 s0
(\“E N\ S c
0 " 24 AN Tl 0 A Ararararard
0 50 100 < \\ R 0 50 100
> 6 = N 100
E g2 A4
! “ T S s0
%ﬂ 3 e . I
$ 04} R Rrasaasnaaas
0 50 100 0 0 50 100
time / ms 2 4 6 8

2
current I,/ uA cm

FIGURE 5. Phase diagram for stimulation with a step current. (a) The in-
put current Z(t), shown in the top graph, changes at ¢ = 0 from Z; to Z».
(b) Hodgkin-Huxley model and (c) Spike Response Model with optimal kernels.
Three regimes denoted by S, R, and I may be distinguished. In I no action po-
tential is initiated (inactive regime). In S, a single spike is initiated by the current
step (single spike regime). In R, continuing spike trains are triggered by the cur-
rent step (repetitive firing). Examples of voltage traces in the different regimes
are presented in the smaller graphs to the left and right of the phase diagram
in the center. Note that the Spike Response Model shows qualitatively the same
behavior as the Hodgkin-Huxley model but phase boundaries are not at exactly
the same location. Taken from [KGvHI7].

o = 3uA /cm?. To get a continuous input current, a linear interpolation was
used between the target values. The resulting time-dependent input current
was then applied to the Hodgkin-Huxley model (1.2). The response to the
current is the voltage trace shown in Fig. 6. Note the action potentials
which occur at irregular intervals.
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FIGURE 6. Spike train of the Hodgkin-Huxley model driven by a time depen-
dent input current. The action potentials ocurr irregularly. The figure shows the
voltage u as a function of time. Taken from [Kistler et al., 1997].

2.1.5 Extensions

Using the above equations and an appropriate set of parameters, Hodgkin
and Huxley were able to describe an enormous amount of data from ex-
periments on the giant axon of the squid. Due to its success in this special
system, there have subsequently been several attempts to generalize the
model in order to describe other experimental situations as well (for a re-
view see, e.g., [JNT75, BB93)]).

Whereas the model had originally been designed to describe the form
and temporal change of an action potential during azonal transmission, a
set of equations completely analogous to Egs. (1.2) to (1.4) has been used
to describe spike generation at the soma of the neuron [BDMK91, BD91,
EWLT91, RYS92, TWMM91, WBUB&9, YKAS89]. The main difference is
that additional ion channels have to be included, in particular those that
account for Ca?t and the slow components of the potassium current. For
each type of ion channel i, a current I; = g;z}"' (u — V;) is added. Here z;
is yet another variable with dynamics (1.5). The conductance parameters
gi, the exponents n;, the reversal potential V;, as well as the functions
zo(u) and 7(u) are adjusted to fit experimental data. Nonlinear effects on
dendrites are described analogously.

2.2 Simplification of the model: Spike Response Method (1)

The system of equations proposed by Hodgkin and Huxley is rather com-
plicated. It consists of four coupled nonlinear differential equations and as
such is difficult to analyze mathematically. For this reason, several simpli-
fications of the Hodgkin-Huxley equations have been proposed. The most
common approach reduces the set of four differential equations to a sys-
tem of two equations [Fit61, NAY62, Rin85, RE89, AK90]. Two important
approximations are made. First, the m dynamics which has a faster time
course than the other variables (see the plot for 7, in Fig. 2b) is considered
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to be instantaneous, so that m can be replaced by its equilibrium value
mo(u). Second, the equations for n and h which have according to Fig. 2b
roughly the same time constants are replaced by a single effective variable.
Rinzel [Rin85] and Abbott and Kepler [AK90] have shown how to make
such a reduction systematically. The resulting two-dimensional model is
often called the Morris LeCar model or the FitzHugh-Nagumo Model. The
advantage of a two-dimensional set of equations is that it allows a system-
atic phase plane analysis. For a review of the methods and results see the
excellent article of Rinzel and Ermentrout [RE89]. For a further reduction
of the two-dimensional model to an integrate-and-fire model, see the article
of Abbott and Kepler [AK90].

In this subsection, we will take a somewhat different approach [KGvH97].
We would like to reduce the four Hodgkin-Huxley equations to a single
variable u(t). We identify u with the membrane potential of the neuron.
As we have seen in Fig. 3b, the Hodgkin-Huxley model shows a sharp,
threshold-like transition between an action potential (spike) for a strong
stimulus and graded response (no spike) for a slightly weaker stimulus. This
suggests the idea that emission of an action potential can be described by
a treshold process.

In the simplified model, an action potential will be fired if the voltage
u(t) approaches a formal threshold ¢ from below. Let us suppose that the
threshold is reached at a time t(f) defined by

u(t) =19 and %u(t(f)) >0. (1.7)

We call t) the firing time of the neuron. If there are several neurons we
add a lower index to identify the neuron so that tgf ) is one of the firing
times of neuron i. Let us write £; := max{t")[t!/) < ¢} for the last firing
time of neuron ¢. In the following we only have a single neuron and we
suppress the subscript i. The notation ¢ stands for the last firing time of
this neuron.

Action potentials in the Hodgkin-Huxley model have the stereotyped
time course shown in Fig. 3a. Whatever the stimulating current that has
triggered the spike, the form of the action potential is always roughly the
same (as long as the current stays in a biologically realistic regime). This is
the major observation that we will exploit in the following. Let us consider
the spike triggered at time #. If no further input is applied for ¢ > #, the volt-
age trajectory will have a pulse-like excursion before it eventually returns
to the resting potential. For ¢ > £, we may therfore set u(t) = n(t —t) + trest
where 77 is the standard shape of the pulse and uyes is the resting potential
that the neuron assumes in the absence of any input. Since, without fur-
ther input, the voltage will eventually approach the resting value, we have
n(t—1t) =0 for t —t — oo.

Let us now consider an additional small input current pulse Z which is
applied at t' > ¢. Due to the input, the membrane potential will be slightly
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FIGURE 7. The voltage response of the Hodgkin-Huxley model to a short sub-
threshold current pulse defines the kernel €. The input pulse has been applied
at ¢t = 0. The last output spike occured at £ = —At. We plot the time course
€(At + t,t) (the tilde has been suppressed in the figure legend). For At — oo
we get the response shown by the solid line. For finite At, the duration of the
response is reduced due to refractoriness (dashed line, ouput spike At = 10.5 ms
before the input spike; dotted line At = 6.5 ms) taken from [Kistler et al., 1997].

perturbed from its trajectory. If the input current is sufficiently small, we
may describe the perturbation by a linear impulse response function €.
Since the voltage u depends on the last firing time ¢, the response kernel é
does so as well. For an input with arbitrary time course I(t') for t' > f we
therefore set

w(t) = n(t -9 + /0 b=, 8) Tt —5)ds + tress . (18)

(1.8) will be called the Spike Response Model (SRM). Note that after an
appropriate shift of the voltage scale the resting potential can always be
set to zero, Upest = 0.

To construct an approximative mapping between the SRM (1.8) and the
Hodgkin-Huxley equations, we have to determine the following three terms
(i) the kernel n which describes the response to spike emission, (ii) the
kernel € which describes the response to incoming current, and (iii) the
value of the threshold ¥ in Eq. (1.7).

2.2.1 The n-kernel

In the absence of input the membrane potential u is at some resting value
Urest- If we apply a strong current pulse, an action potential may be excited.
The time course of the action potential determines the kernel 7.

To get the kernel n we use the following procedure. We take a square
current pulse of the form

I(t):c%o for 0 <t <A (1.9)
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and zero otherwise. gp is a unit charge and ¢ a parameter chosen large
enough to evoke a spike. The principle is indicated in Fig 3b. We consider a
series of current pulses of increasing ¢ but the same duration of A = 1ms.
At a critical value of ¢ the voltage response u(t) shows an abrupt change
from a response amplitude of about 10 mV to an amplitude of nearly 100
mV. If ¢ is increased even further, the form of the pulse remains nearly the
same. The kernel n allows us to describe the standard form of the spike
and the spike afterpotential. In order to define the kernel 7, we set

Nt —1) = u(t) — upesy for t >t (1.10)

and n(t —t) = 0 for ¢t < ¢. u(t) is the voltage trajectory caused by the
supra-threshold current pulse. The firing time £ is defined by the moment
when u crosses the formal threshold ¢ from below. The kernel n(s) is shown
in Fig. 3a.

2.2.2 The ékernel

To find the kernel € we perform a simulation with a short current as in
Eq. (1.9), but with a duration A < 1 ms and c¢ sufficiently small. (For-
mally, we consider the limits A — 0 and ¢ — 0.) The voltage response of
the Hodgkin-Huxley model to this sub-threshold current pulse defines the
kernel €,

é(o0,t) = % [0(t) — threst] - (1.11)

t > 0 is the time since the initiation of the pulse. The first argument of €
has been set to infinity in order to indicate that the neuron did not fire an
action potential in the recent past.

In order to calculate e for finite t — #, we use a first strong pulse to
initiate a spike at a time # < 0 and then apply a second weak pulse with
amplitude c at t = 0. The result is a membrane potential with time course
u(t). Without the second pulse the time course of the potential would be
ug(t) = n(t — t) + Uresy for t > £. The response to the second pulse is
u(t) — uo(t), hence

- - 1 R
Et—t,t)= ” [u(t) — n(t — 1) — Urest] - (1.12)
for t > 0. We repeat the above procedure for various spike times .

The result is shown in Fig. 7. Since the input current pulse delivers a
unit charge during a very short amount of time A < 0.1ms, the é-kernel
jumps almost instantaneously at time ¢ = 0 to a value of 1mV. Afterwards
it decays, with a slight oscillation, back to zero. The decay is faster if there
has been a spike in the recent past. This is easy to understand intuitively.
During and immediately after an action potential many ion channels are
open. The resistance of the cell membrane is therefore reduced and the
effective membrane time constant is shorter.
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2.2.3 The threshold ¥

The third term to be determined is the threshold ¢. Even though Fig. 3b
suggests, that the Hodgkin-Huxley equations exhibit some type of threshold
behavior, the threshold is not well-defined [RE89, KpBD95] and it is fairly
difficult to estimate a voltage threshold directly from a single series of
simulations. We therefore take the threshold as a free parameter which will
be adjusted by a procedure discussed below.

2.2.4 Example: Stimulation by time-dependent input

To test the quality of the SRM approximation we compare the performance
of the Spike Response Model (1.8) with that of the full Hodgkin-Huxley
model (1.2) - (1.4). We study the case of a time-dependent input current
Z(t). The input is generated by the procedure discussed in section 2.1.4.
The same current is applied to both the Hodgkin-Huxley and the Spike
Response model. In Fig. 8 the voltage trace of the Hodgkin-Huxley model
is compared to that of the Spike Response Model with the kernels n and
€ derived above. We see that the approximation is excellent both in the
absence of spikes and during spiking. As an aside we note that it is indeed
important to include the dependence of the kernel € upon the last output
spike time #. If we neglected that dependence and used &(oco, s) instead of
é(t — t, s), then the approximation during and immediately after a spike
would be significantly worse; see the dotted line, referred to as SRMy, in
the lower right graph of Fig. 8.

We have used the above scenario with time-dependent input current to
optimize the threshold ¥ by the following procedure. The same input was
applied to the Hodgkin-Huxley model and the Spike Response Model (1.8)
with kernels derived by the procedure described above. The threshold has
been adjusted so that the total number of spikes was about the same in
the two models; see [KGvH97] for details.

To check whether both models generated spikes at the same time, we
compared the firing times of the two models. About 90 per cent of the spikes
of the Spike Response Model occurred within +2 ms of the action potentials
of the Hodgkin-Huxley model [KGvH97]. Thus the Spike Response Model
(1.8) reproduces the firing times and the voltage of the Hodgkin-Huxley
model to a high degree of accuracy.

2.2.5 Example: Constant input and mean firing rates

We study the response of the Spike Response Model to constant stimulation
using the kernels derived by the procedure described above. The result is
shown in Fig. 9. As mentioned above, we take the threshold ¥ as a free
parameter. If ¢ is optimized for stationary input, the frequency plots of the
Hodgkin-Huxley model and the Spike Response Model are rather similar.
On the other hand, if we took the value of the threshold that was found for
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FIGURE 8. A segment of the spike train of Fig. 6. The inset in the lower left
corner shows the voltage of the Hodgkin-Huxley model (solid) together with the
approximation of the Spike Response Model defined by (1.8) (dashed line) dur-
ing a period where no spike occurs. The approximation is excellent. The inset
on the lower right shows the situation during and after a spike. Again the ap-
proximation by the dashed line is excellent. For comparison, we also show the
approximation by the SRMp model which is significantly worse (dotted line).

Taken from [KGvH97].

time-dependent input, the current threshold for the Spike Response Model
would be quite different as shown by the dashed line in Fig. 9.

2.2.6 Example: Step current input
Finally, we test the Spike Response Model for the case of step current input.

For ¢ we take the value found for the scenario with time-dependent input.
The result is shown in Fig. 5¢. The Spike Response Model shows the same
three regimes as the Hodgkin-Huxley model. In particular, the effect of
inhibitory rebound is present in the Spike Response Model. The location
of the phase boundaries depends on the choice of ¥ and would move if we

changed 9.
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FIGURE 9. The firing rate of the Hodgkin-Huxley model (solid line) is compared
to that of the Spike Response Model. Two cases are shown. If the threshold ¥ is
optimized for the constant-input scenario, we get the dotted line. If we take the
same value of ¥ as in the dynamic-input scenario of the previous figure, we find
the dashed line. Input current has a constant value Z. Taken from [KGvH97].

2.2.7 Example: Spike input

In the Hodgkin-Huxley model (1.2), input is formulated as an explicit
driving current Z(t). In networks of neurons, input typically consists of
the spikes of other, presynaptic, neurons. Let us, for the sake of sim-
plicity, assume that a spike of a presynaptic neuron j which was emit-
ted at time tg-f ) generates for ¢t > t;f ) a current input Z(t) = at — t;f ))
to a postsynaptic neuron i. Here « is some arbitrary function which de-
scribes the time course of the postsynaptic current. The voltage of the
postsynaptic neuron i changes, according to (1.8) by an amount Awu;(t) =
[Tl et —1,8) alt— tg-f) — 5) ds where #; is the last output spike of neuron

0
i. For reasons of causality, the voltage response Au vanishes for ¢ < t;f ),

For ¢t > tg-f ) we define (note that there is no tilde on the left-hand side)

et —ti,t—t9): = Au(t)

t—fi
:/ &t —fis)alt— 1) —s)ds  (1.13)
0

What is the meaning of the definition (1.13)7 Let us assume that the last
output spike of the postsynaptic neuron was a long time back in the past.
The voltage response Au;(t) = e(oo, t—tg.f)) is the postsynaptic potential of
neuron ¢ caused by the firing of the presynaptic neuron j. The time course
of the postsynaptic potential can be measured in experiments and has a
clear biological interpretation. For excitatory synapses the response of the
postsynaptic neuron is positive and called an excitatiory postsynaptic po-
tential (EPSP). For inhibitory synapses it is negative (IPSP). The function
(1.13) will play a major role in the formal definition of the Spike Response
Model in the following section.
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3 Spike Response Model (SRM)

In this section we collect the results of the previous discussion of the
Hodgkin-Huxley model. We start with a formal presentation of the Spike
Response Model (SRM) in equation (1.14) and (1.15). We then try to give
each of the terms in (1.15) a biological meaning. To do this we make heav-
ily use of the intuitions and results developed during the discussion of the
Hodgkin-Huxley model. Finally, we present some examples and simplifi-
cations of the SRM which prepare the transition to a discussion of the
integrate-and-fire model in section 4.

3.1 Definition of the SRM

In the framework of the spike response model [KGvH97, GvH92, GvH93,
Ger95, GvHC96, Ger98, Ger00, Maa96, Maa98, Cho98], the state of a neu-
ron i is described by a single variable u;. Neuron i fires, if u; approaches
a threshold ¢ from below. The moment of threshold crossing defines the

firing time tgf),

ui(t) =¢¥ and %ui(t) >0 =—=t= tgf) (1.14)
In the absence of any spikes, the variable u; would have a value of 0. Each
incoming spike will perturb u; and it takes some time before w; return
to zero. The function e describes the time course of the response to an
incoming spike. If, after the summation of the effects of several incoming
spikes, u reaches the threshold ¥ an output spike is triggered. The form of
the action potential followed by a return to a low value after the pulse is
described by a function 7. Let us suppose neuron ¢ has fired its last spike
at time #;. After firing the temporal evolution of u is given by

wilt) = mlt—i)+ > wy Y. eyt — it —t1)

i€t e

+/ &t —ty,8) It — s) ds (1.15)
0

where ¢; is the last spike of neuron i, t;f ) are spikes of presynaptic neurons
j and w;; is the synaptic efficacy. The last term accounts for an external
driving current Z®**, The sum runs over all presynaptic neurons j € I
where

T'; = {j | j presynaptic to i} (1.16)

and Fj is the set of all firing times t;-f) < t of neuron j.
So far Egs. (1.14) and (1.15) define a formal model. Can we give a bio-
logical interpretation of the terms? Let us identify the variable u; with the
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FIGURE 10. Schematic interpretation of the Spike Response Model. The figure
shows the time course of the membrane potential of neuron i as a function of
time ¢. A spike of neuron i has been initiated at ;. The kernel n(t —¢;) for ¢t > #;
describes the form of the action potential (positive pulse) and the (negative)
spike afterpotential that follows the pulse (solid line). If an input current pulse
is applied at a time ¢’ a long time after the firing at #;, it evokes a standard
response described by the function é(co,t — ") and indicated by the dashed line
starting at ¢ (arrow). An input current pulse at ¢ which arrives shortly after the
postsynaptic spike at ¢; evokes, due to refractoriness of the neuron, a response of
significantly shorter duration. Its time course is described by the response kernel
&t — £i,t —t'); see the dashed line after ¢’

membrane potential of neuron 7. The functions 7; and €;; are response ker-
nels which describe the effect of spike emission and spike reception on the
variable u;. This interpretation has motivated the term ‘Spike Response
Model’ (SRM). Let us discuss the meaning of the response kernels; see
Fig. 10.

As we have seen in section 2, the kernel 7; describes the standard form
of an action potential of neuron i including the negative overshoot which
typically follows a spike. Graphically speaking, a contribution 7; is ‘pasted
in’ each time the membrane potential reaches the threshold ¥; Fig. 10.
Since the form of the spike is always the same, the exact time course of the
action potential carries no information. What matters is whether there is

the event ‘spike’ or not. The event is fully characterized by the firing time
()
t

;- In a simplified model, the form of the action potential may therefore

be neglected as long as we keep track of the firing times tgf). The kernel n;

describes then simply the ‘reset’ of the potential to a lower value after the
spike at ¢;. This idea will be exploited later on in section 4 in the context
of the intergrate-and-fire model.

The kernel é(t — #;,s) is the linear response of the membrane potential
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to an input current. We have already seen in Section 2 that the response
depends, in general, on the time that has passed since the last output spike
at t;. Immediately after ; many ion channels are open. The resistance of
the membrane is reduced and the voltage response to an input current
pulse of unit amplitude is therefore reduced compared to the response of
a inactive neuron. A reduced response is one of the signatures of neuronal
refractoriness. Formally, this form of refractory effect is included by making
the kernel € depend, in its first argument, on the time difference t — ¢;. In
Fig. 10 we compare the effect of an input current pulse at ¢ shortly after
t; to that of a pulse at " some time later. The response to the first input
pulse is shorter and less pronounced than that to the second one.

The kernel €;;(t — £;, ) as a function of s = ¢ — tg-f) can be interpreted
as the time course of a postsynaptic potential evoked by the firing of a
presynaptic neuron j at time t;f ) If the synapse from j to i is excitatory,
€;; is called the excitatory postsynaptic potential (EPSP). If it is inhibitory,
it is called the inhibitory postsynaptic potential (IPSP). Similarly as for
the kernel €, the exact shape of the postsynaptic potential depends on the
time t — #; that has passed since the last spike of the postsynaptic neuron
i. In particular, if neuron i has been active immediately before presynaptic
spike arrival, the postsynaptic neuron is in a state of refractoriness. In this
case, the response to an input spike is smaller than that of an ‘unprimed’
neuron. The first argument of €;;(t — #;,s) accounts for the dependence
upon the last firing time of the postsynaptic neuron.

In order to simplify the notation later on, it is convenient to introduce
the total postsynaptic potential

o0
hesp(tlt) = > wy S e,»j(t—fi,t—tg.f))Jr/ E(t—1t;,8) I (t—s) ds.
i€l e, 0
(1.17)
Eq. (1.15) can then be written in the form

ui(t) = ni(t — fl) + hpsp(tﬁi) . (118)

3.1.1 Example: Refractoriness

Refractoriness may be described qualitatively by the observation that im-
mediately after a first action potential it is much more difficult to excite
a second spike. In our description two factors contribute to refractoriness;
see Fig. 10. Firstly n contributes because, during the spike, the voltage is
above threshold. Thus it is excluded that the membrane potential is crossed
from below so that emission of another spike is by definition impossible.
Moreover, after the spike the membrane potential passes through a regime
of hyperpolarization (negative overshoot) where it is below the resting po-
tential. During this phase, more stimulation than usual is needed to drive
the membrane potential above threshold.
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Secondly, € and € contribute because, immediately after an action poten-
tial, the response to incoming spikes is shorter and, possibly, of reduced
amplitude. Thus more input spikes are needed to evoke the same depolar-
ization of the membrane potential as in an ‘unprimed’ neuron. The first
argument of the e function (or € function) allows us to incorporate this ef-

fect. If t;f) —t; — 00, then the response of neuron i to a presynaptic spike of

neuron j is the standard EPSP. If t;f ) is close to t;, then the postsynaptic

€))

potential e(t — t;,t — t;’) has a different time course.

3.1.2 Example: Experimental results

In recent experiments, Stevens and Zador [SZ98] have stimulated a corti-
cal neuron with time-dependent current and measured the response of the
membrane potential during repetitive firing. In order to fit their measure-
ments to integrate-and-fire type dynamics, they found that it was important
to work with a time-varying time ‘constant’ 7(t' — £).

Given that the last output spike was at ¢ < 0, the response to input at
t =0 is (for t > 0) apprixmated by

e(t—f,t):aoexp{—/ot ' } (1.19)

where aj is a parameter and 7(t' —t) is the instantaneous membrane time
constant. Immediately after the output spike at ¢ the membrane time con-
stant is only about 2 ms; for ' — ¢ — oo the membrane time constant
increases and approaches the standard value 7,,, ~ 10 — 15 ms.

3.1.3 Example: SRM,

A simpler version of the spike response model can be constructed, if we
neglect the dependence of € upon the first argument. We simply set

e(s) = e€j(00,s)
€(s) = é€j(o0,s)

and use (1.15) in the form

wi(t) = mit—t)+ > wy > eo(t—t§f>)+/ooo &(s) T (t—s) ds (1.20)

— ;
Jer: tg. )6.7:]‘

Thus each presynaptic spike evokes a postsynaptic potential with the same
time course, independent of the index j of the presynaptic neuron and
independent of the last firing time #; of the postsynaptic neuron. Only
the amplitude of the response is scaled with the synaptic efficact w;;. This
simple version of the Spike Response Model has been termed SRMg [Ger00]
and has been used for the analysis of computation with spiking neurons
[Maa96, Maa98] and for that of network synchronization [GvHC96].



1. The Spike Response Model 20

-

FIGURE 11. In formal models of spiking neurons, the shape of an action potential
(dashed line) is replaced by a ¢ pulse (thick vertical line). The negative overshoot
(spike after potential) after the pulse is included in the kernel 5(t —£) (thick line).
The pulse is triggered by the treshold crossing at ¢.

3.1.4 Example: From action potentials to formal events

The shape of an action potential is described by the function n(t —£). Since
it has a stereotyped time course, the form of the action potential does
not transmit any information. What counts is the event ‘spike’ as such.
In formal model, the form of the pulse is therefore often replaced by a §
function. The negative overshoot after the spike is modelled as a reset to a
lower value. One of several possible descriptions is

. t—t
n(t —1) =6(t —1t) —no exp (——) (1.21)
T
with a parameter 79 > 0. The negative overshoot (second term on the
right-hand-side of (1.21)) decays back to zero with a time constant 7. The
simpification from a nicely shaped action potential to a formal n-function
is illustrated in Fig. 11.

3.1.5 Example: Graphical construction of firing times

Let us now summarize the considerations of the two preceding examples
and procede to a graphical illustration of the model; cf. Fig. 12. The neuron
under consideration receives input from several presynaptic cells. Each in-
put spike evokes a postsynaptic potential of some standard form eg(s). We
assume excitatory synapses, so that e is positive. The excitatory postsy-
naptic potentials are summed until the firing threshold ¥ is reached. Each

output spike is approximated by a § pulse, followed by a reset as in (1.21).
Then the summation of inputs restarts.

3.1.6 Example: Coherent versus incoherent input

What can we do with the simplified neuron model defined by (1.20) and
(1.21)? The Spike Response Model can provide an intuitive understanding
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FIGURE 12. Spike Response Model SRMj. Each input pulse causes an excitatory
postsynaptic potential (EPSP) e(s). All EPSPs are added. If the threshold is
reached the voltage is reset. The reset corresponds to adding a negative kernel

n(s).

of questions of neuronal coding and signal transmission. For example, we
may easily understand why coherent input is more efficient than incoherent
input in driving a postsynaptic neuron.

To illustrate this point, let us consider an e kernel of the form

co(s) = J Sexp(=2) for s>0 (1.22)
T T

and zero otherwise. We set J =1 mV and 7 =10 ms. The function (1.22)
has a maximum value of J/e at s = 7. The integral over s is normalized to
JT.

Let us consider a neuron i which receives input from 100 presynaptic
neurons j. Each presynaptic neuron fires at a rate of 10 Hz. All synapses
have the same efficacy wg = 1. Let us first study the case of asynchronous
input. Different neurons fire at different times so that, on average, spikes
arrive at intervals of At = 1 ms. Each spike evokes a postsynaptic potential
defined by (1.22). The total membrane potential of neuron i is

wit) = nt—i)+3 > woeo(t — )
i
~ n(t—1t;) +wo Zeo(t—nAt) (1.23)
n=0

If neuron i has been quiescent in the recent past (t — #; — 00), then the
first term on the right-hand side of (1.23) can be neglected. The second
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FIGURE 13. Potential u of a postsynaptic neuron which receives input from
two groups of presynaptic neurons. a) Spike trains of the two groups are phase
shifted with respect to each other. The total potential v does not reach the
threshold. There are no output spikes. b) Spikes from two presynaptic groups
arrive synchronously. The summed EPSPs reach the threshold ¥ and cause the
generation of an output spike.

term can be appoximated by an integral over s, hence

o0
ui(t) ~ Z—‘;/O co(s) ds = “"’A‘f =10mV . (1.24)
If the firing threshold of the neuron is at ¥ = 20 mV the neuron stays
quiescient.

Now let us consider the same numer of inputs, but fired coherently at
t;f) = 0,100,200, ...ms. Thus each presynaptic neuron fires as before at
10 Hz but all presynaptic neurons emit their spikes synchronosly. Let us
study what happens after the first volley of spikes has arrived at ¢ = 0.
The membrane potential of the postsynaptic neuron is

wit) = n(t — &) + N wo e () (1.25)

where NV = 100 is the number of presynaptic neurons. The maximum of
(1.25) occurs at t = 7 = 10 ms and has a value of woN.J/e &~ 37 mV which
is above threshold. Thus the postsynaptic neuron fires before ¢ = 10 ms.
We conclude that the same numer of input spikes can have different effects
depending on their level of coherence.

In Fig. 13 we illustrate this effect for a simplified scenarios of two groups
of presynaptic neurons. Neurons within each group fire synchronously. In
a there is a phase shift between the spikes of the two groups, whereas in b
the two groups are synchronous.

3.1.7 Example: Sliding threshold interpretation

The simplified model SRMy defined in (1.20) with the 5 kernel defined in
(1.21) allows us to give a reinterpretation of refractoriness as an increase
of the firing threshold. To see how this works, let us introduce the input
potential

hit) =Y wi; Y et — ) +/oo€g(s)Ze"t(t—s)ds. (1.26)

- 0
i€t dDer;
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FIGURE 14. Sliding threshold interpretation. The input potential h(t) (solid line)
is generated by the superposition of the EPSPs (solid line) caused by presynaptic
spikes. Each spike arrival is denoted by an arrow. An output spike occurs, if h(t)
hits the dynamic threshold 9(t) (dashed line). At the moment of spiking the
value of the treshold is increased by one. After the spike, the threshold decays
exponentially back to its resting value 9 = 1.

We emphasize that h; depends on the input only. In particular, there is no
dependence upon t;. With the above definition of h;, Eq. (1.20) is simply
ui(t) = no(t — t;) + hi(t). The next spike occurs if u;(t) = ¢ or

~

hi(t) =9 —no(t — ;). (1.27)

We may consider ¥ — no(t — #;) as a dynamic threshold which is increased
after each firing. (1.27) has a simple interpretation: The next firing occurs
if the input potential h;(t) reaches the dynamic threshold @ — no(t — #;)
[MOT74]. See Fig. 14 for an illustration.

3.2  Background

In contrast to the standard integrate-and-fire model which is usually stated
in terms of differential equations, Eq. (1.15) is based on an ‘integral’ repre-
sentation with response kernels. Eq. (1.15) is linear in the spikes and can be
considered a starting point of a systematic expansion [Ger95, KGvH97]. As
we will see later in section 6, nonlinear effects between pairs of spikes can
be included by second-order kernels of the form e;; (¢t — ti,t— t(.f), t— t,(gf)).

J
Higher order nonlinearities are treated similarly. Effects of earlier spikes of

postsynaptic neurons can be treated by kernels n;(t — t;,t — th)), ni(t —
iyt — t(»k)) where #; = tgl) is the last spike of neuron ¢ and tgk) is the

kth spike counting backward in time.

The approach by spike response kernels provides a link between sim-
plified neuron models of the form (1.15) and multi-compartmental mod-
els [YKA89, TWMMO1, BB95] and presents an alternative to earlier ap-
proaches towards a reduction of Hodgkin-Huxley equations [AK90, Rin85,

Fit61, KAM92].
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FIGURE 15. Schematic diagram of the integrate-and-fire model. The basic cir-
cuit is the module inside the dashed circle on the right-hand side. A current Z(t)
charges the RC circuit. The voltage u(t) across the capacitance (points) is com-
pared to a threshold 9. If u(t) = 9 at time tgf) an output pulse §(t — tl(f)) is
generated. Left part: A presynaptic spike §(¢t — tg-f)) is low-pass filtered at the

synapse and generates an input current pulse a(t — t](-f)).

The remainder of the chapter is organized as follows. In the following
section, the integrate-and-fire neuron without spatial structure (point neu-
ron) is reviewed. It is shown that integration of the model leads to (1.15)
or (1.20). Thus, the intergrate-and-fire model is a special case of the Spike
Response Model. In section 5, a spatially extended version of the integrate-
and-fire model with linear dendritic tree is considered. It is shown that in-
tegration of the model leads again back to (1.15). In section 6 the problem
of nonlinearities during synaptic and dendritic transmission are discussed.

4 Integrate-and-fire model

We start in the first subsection with a review of the integrate-and-fire
neuron. In the following subsections we will show that the integrate-and-fire
neuron is a special case of the Spike Respone Model defined in the previous
section.

4.1 Definition of the basic model

The basic circuit of an integrate-and-fire model consists of a capacitor C' in
parallel with a resistor R driven by a current Z(t); see Fig. 15, dashed circle.
The driving current may be split into two components, Z(¢t) = Zr + Z¢.
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The first component is the resistive current Zr which passes through the
linear resistor R. It can be calculated from Ohm’s law as Zr = u/R where
u is the voltage applied at the resistor. The second component Zo charges
the capacitor C. From the definition of the capacity as C = q/u (where ¢ is
the charge and w the voltage), we find a capacitive current Zc = C du/dt.
Thus

u(t) du

We multiply (1.28) by R and introduce the time constant 7, = R C of the
‘leaky integrator’. This yields the standard form

du

o = —ult) + RI(1). (1.29)

Tm

We refer to u as the membrane potential and to 7,,, as the membrane time
constant of the neuron.

In integrate-and-fire models the form of an action potential is not de-

scribed explicitly. Spikes are reduced to formal events and fully character-

ized by a ‘firing time’ t(/). The firing time is defined by a threshold process

ut) =9 =t =1t (1.30)
Immediately after t(/), the potential is reset to a new value u, < ¥,

lim u(tY) +6) =u,. (1.31)
5—>0+

For t > /) the dynamics is again given by (1.29) until the next thresh-
old crossing occurs. The combination of leaky integration (1.29) and reset
(1.31) defines the basic integrate-and-fire model.

4.1.1 Example: Constant stimulation and firing rates

Before we continue with the definition of the integrate-and-fire model and
its variants, let us study a simple example. Let us suppose that the integrate-
and-fire neuron defined by (1.29) - (1.31) is stimulated by a constant input
current Z(t) = Zy. To keep the mathematical steps as simple as possible we
take the reset potential to be u, = 0.

As a first step, let us calculate the time course of the membrane potential.
We assume that a first spike has occurred at ¢t = t(°). The trajectory of the
membrane potential can be found by integrating (1.29) with the initial
condition u(#*)) = u, = 0. The solution is

u(t) = RTy {1 — exp (-t — t(o))} : (1.32)

Tm

The membrane potential approaches for ¢ — oo the asymptotic value
u(oo) = RZy. For RZy < ¢ no further spike can occur. For RZy > ¢,
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FIGURE 16. a) Time course of the membrane potential of an integrate-and-fire
neuron driven by constant input current Zo = 1.5. The voltage u(¢) is normalized
by the value of the threshold ¢ = 1. (Resistance R = 1 and membrane time
constant 7, = 10 ms). b) The firing rate v of an integrate-and-fire neuron without
(solid) and with absolute refractoriness of daps = 4 ms (dashed) as a function
of a constant driving current Zp. Current units normalized so that the current
threshold is Zg = 1. (Reset to u, = 0.)

the membrane potential reaches the threshold ¢ at time ¢(!), which can be
found from the threshold condition u(¢t(™) = or

+(1) _ 4(0)
Y= RI [1 — exp (—7)} . (1.33)

Tm
Solving (1.33) for the time interval T' = t(") — ¢(©) yields

RT,
T=rpln—"0 1.34
™ RTy — 9 (1.34)

After the spike at (') the membrane potential is again reset to u, = 0 and
the integration process starts again. If the stimulus Zy remains constant, the
following spike will occur after another interval of duration 7". We conclude
that for a constant input current Zj, the integrate-and-fire neuron fires
regularly with period T given by (1.34).

We may define the mean firing rate of a neuron as v = 1/T. The firing
rate of the integrate-and-fire model with stimulation Zy is therefore

3 RT, 17!

In Fig. 160 the firing rate is plotted as a function of the constant input Z.

4.1.2 Example: Time-dependent stimulus Z ()

The results of the preceding example can be generalized to arbitrary stim-
ulation conditions. Let us suppose that a first spike has occurred at ¢. For
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FIGURE 17. Voltage u(t) of an integrate-and-fire model (top) driven by the input
current Z(t) shown at the bottom. The input Z(t) consists of a superposition of
four sinusoidal components at randomly chosen frequencies plus a positive bias
current Zp = 1.2 which drives the membrane potential towards the threshold.

t >t the stimulating current is Z(t). We allow for an arbitrary reset value
uy. The value u, will be treated as an initial condition for the integration
of (1.29). The formal result of the integration is

u(t) = u, exp (—%) + %/Ot_fexp (-%) I(t—s)ds.  (1.36)

(1.36) describes the membrane potential for ¢ > ¢ and is valid up to the
moment of the next threshold crossing. If u(t) = 1, the membrane potential
is reset to u, and integration may restart; see Fig. 17.

4.1.3 Example: Absolute refractoriness

It is straightforward to include an absolute refractory period. After a spike
at t(5), we force the membrane potential to a value u = u, and keep it there
during a time §2P. Current Z(t) which arrives during the interval [t(/), (/) 4
62P%] has no effect and is disregarded. At ¢t(f) +§2P5 the integration of (1.29)
is restarted with the initial value u = wu,. The time interval §2"® during
which the neuron is insensitive to input is called the ‘absolute refractory
period’.

The inclusion of an absolute refractory period does not cause any prob-
lems for the integration of the model equations. For example, we can solve
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the dynamics for a constant input current IO If a first spike has occurred
at t = t(© then u(t) = u, for t(0 <t < ¢(© 4 §abs and

t—t 6abs t — t(O) _ 6abs
U(t) = RIO |:1 — exp ( 7)] + u, exp <—7)
Tm

Tm
(1.37)
for t > t(©) 4 §2bs,
If RIO > ¢, the neuron will fire regularly. Due to the absolute refrac-
tory period the interval between firings is now longer by an amount §2P
compared to the value in (1.34). The mean firing rate v = 1/T is

The firing rate of the integrate-and-fire neuron as a function of the constant
input current is plotted in Fig. 16b.

In _
V= {6abs+TmlnR 0 ur]

4.2 Stimulation by synaptic currents

So far we have considered an isolated neuron which is stimulated by an
applied current Z(t). In a more realistic situation, the integrate-and-fire
model would be part of a larger network. The input current Z(t) is then
generated by the activity of presynaptic neurons.

In the framework of the integrate-and-fire model, we may assume that
each presynaptic spike generates a synaptic current pulse of finite width. If
the presynaptic neuron j has fired at t(f ) , spike arrival at the synapse will

evoke a current «(t — t(f )) for t > t . Since several presynaptic neurons
contribute to driving the neuron, the total input current to neuron 7 is

=> ¢ > «a (¢t -t/ (1.39)

;
Jels i Deg,

The factor c;; is a measure of the efficacy of the synapse with units of a
charge.! (1.39) is a reasonable model of synaptic interaction. Indeed, each
input spike arriving at a synapse opens some ion channels and evokes a
current through the membrane of the postsynaptic neuron i.

Reality is somewhat more complicated, however, since the amplitude of
the synaptic input current may itself depend on the membrane voltage wu;.
In detailed models, each presynaptic action potential evokes a change in
the synaptic conductance with standard time course g(t — t(/)) where ¢(/)
is the arrival time of the presynaptic pulse. The synaptic input current is
modeled as

Zi(t - t(f)) = g(t - t(f)) [ui(t) - urev] . (140)

1Ci]‘ is, of course, proportional to the synaptic efficacy w;; as we will see later
on.
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The parameter u,ey is called the reversal potential of the synapse.

The level of the reversal potential depends on the type of synapse. For
excitatory synapses, urey is much larger than the resting potential. The
synaptic current then shows saturation. The higher the voltage w;, the
smaller the amplitude of the input current. The total input current is there-
fore not simply the sum of independent contributions. Nevertheless, since
the reversal potential of excitatory synapses is usually significantly above
the firing threshold, the factor [u; — urey] is nearly constant and saturation
can be neglected. Systematic corrections to the current equation (1.39) will
be derived in section 6.

For inhibitory synapses, the reversal potential is close to the resting
potential. An action potential arriving at an inhibitory synapse pulls the
membrane potential towards the reversal potential u,e, which is close to
Uress- Lhus, if the neuron is at rest, inhibitory input hardly has any effect.
If the membrane potential is instead considerably above the resting poten-
tial, then the same input has a strong inhibitory effect. This is sometimes
described as the ‘shunting’ phenomenon of inhibition. The limitations of
the current equation (1.39) will be discussed in section 6. In the following
we will always work with (1.39).

4.2.1 Example: Pulse-coupling and a-function

In this subsection we will give some examples of the synaptic current a(s) in
(1.39). We start with the simplest choice. Spikes of a presynaptic neuron j
are described as Dirac §-pulses which are fed directly into the postsynaptic
neuron i. Thus a(s) = d(s). The total input current to unit i is then

Tit)y=> ey Y. ot —ti). (1.41)

jeli  fheg;

As before, the factor ¢;; is a measure of the strength of the connection from
j to i. In case of (1.41), ¢;; can be identified with the charge deposited on
the capacitor C by a single presynaptic pulse of neuron j.

More realistically, the synaptic current o should have some finite width.
In Fig. (15) we have sketched the situation where a(s) consists of a simple
exponentially decaying pulse

als) =+ exp (__) for s> 0 (1.42)

and zero otherwise. (1.42) is a first approximation to the low-pass charac-
teristics of a synapse.

The exponential pulse (1.42) can be considered to be the result of some
synaptic dynamics described by a first-order linear differential equation.
Let us set y

ro Lilt) = =T + ey Y e—t). (1.43)

J€li  4Der;
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Integration of the differential equation (1.43) yields (1.39) with a(s) given
by (1.42).

In (1.42) the synaptic current has a vanishing rise time which is not very
realistic. More generally, we may assume a double exponential which sets
in after a transmission delay A**. For s < A®* we therefore have a(s) = 0.
For s > A** we set

a(s) = — [exp (—ﬂ> — exp (—ﬂﬂ (1.44)

Ts — Tr Ts Tr

Here 7, is a synaptic time constant in the millisecond range and 7, with
7 < 75 is a further time constant which describes the rise time of the
synaptic current pulse.

In the limit of 7. — 75, (1.44) yields (for s > A®¥)

a(s) = 2% exp (—ﬂ> (1.45)

T2 Ts

In the literature, a function of the form z exp(—z) such as (1.45) is often
called an a-function. While this has motivated our choice of the symbol «
for the synaptic input current, a(.) in (1.39) may stand for any form of an
input current pulse. As mentioned before, a yet more realistic description
of the synaptic input current would include a reversal potential for the
synapse as defined in (1.40).

4.8 Spike Response Method (2): Reset as Current Pulse

The basic equation of the integrate-and-fire model, Eq. (1.29), is a linear
differential equation. It can therefore be integrated in a straightforward
manner. Due to the threshold and reset conditions, Eqgs. (1.30) and (1.31),
the integration process is not completely trivial. In fact, there are two dif-
ferent ways of integrating (1.29). The first one treats the reset as a current
pulse, the second one as an initial condition. We discuss both methods in
turn. In this subsection we focus on the first method and describe the reset
as an additional current.

Let us consider for the moment a short current pulse ZP"* = —qd(t)
applied to the RC circuit of Fig. 15. It removes a charge ¢ from the capacitor
C and lowers the potential by an amount Au = —q/C. Thus a reset of
the membrane potential from a value of v = ¢ to a new value u = u,
corresponds to a negative current pulse which removes a charge ¢ = C (¥ —
ur). Such a reset takes place at the firing time tgf ). The total reset current
is therefore

() = ~C (9 —u,) Y. ot — ) (1.46)

tgf)efi
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where the sum runs over all firing times. Formally, we may add the output
current (1.46) on the right-hand side of (1.29)

dui

—p = i) + RL(1) + RT(t). (1.47)

Tm

Here

=Y Y at—t) + 1) (1.48)

i€l DegF,

is the total input current to neuron ¢, generated either by presynaptic spike
arrival or by external stimulation Z§**(¢). Since (1.47) is a linear equation,
it may be integrated. As an initial condition we take u(—o00) = 0. The
integration yields

ui(t) = C/ exp (——) [Z°%(t — s) + Z;(t — s)] ds
- ¥ /0 9 — u,) exp (—%) 5t — ) — 5)ds

ter "
s (f)
+Z Z / —ep(—a> alt —t;" —s)ds
JETi i e,
C’/ exp( ) I (t — s) ds (1.49)
Let us define for s > 0
) = -0-uw) e (-2) (1.50)
o0 !
eo(s) = / exp <—S—) a(s —s')ds' (1.51)
0 Tm
(s = L _s 1.52
e (152)

and 10(s) = €o(s) = €p(s) = 0 for s < 0. With the above definitions, (1.49)
may be rewritten in the form

w(t) = > m—t)+ Y wy Y et -t

ter; J€Li  DegF;
o0
+/ Eo(s) IE'(t — s) ds. (1.53)
0

with weights w;; = ¢;;/C. Eq. (1.53) is the main result of this subsection.
The kernel 79(s) defined by (1.50) is shown in Fig. 18.
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FIGURE 18. The kernel 7o of the integrate-and-fire model with membrane time
constant 7, = 10 ms.

We emphasize that the firing times tgf ) which appear implicitly in (1.49)
have to be calculated as before from the threshold condition u;(t) = ¢. In
[GVHC96], the ‘Spike Response Model’ has been defined by (1.53). Note
that, in contrast to (1.15), we still have a sum over past spikes of neuron i
on the right-hand-side of (1.53).

4.3.1 Examples of ¢p-kernels

If a(s) is given by (1.42), then the integral on the right-hand side of (1.51)
can be done and yields (s > 0)

o0 = e 7 ()~ ()] o

This is the € kernel shown in Fig. 19a. If a(s) is the Dirac d-function, then
we find simply €p(s) = exp(—s/7,) as shown in Fig. 19b.

Note that «(s) is the synaptic current. Integration of the synaptic cur-
rent yields the postsynaptic potential eq(s). If the synapse is excitatory, €
is called the excitatory postsynaptic potential (EPSP). For an inhibitory
synapse, €y describes the inhibitory postsynaptic potential (IPSP).

4.3.2 Short-term memory approximation

To keep the discussion transparent, let us set Z¢** = 0. Eq. (1.53) is then

wity= 3 mt—t)+ 3wy Y et —t1). (1.55)

tgf)efi Jer: tgf)efj

On the right-hand side of (1.55), there is a sum over all past firings of
neuron ¢ which does not appear in (1.15), the equation we are aiming for.

According to (1.50) the effect of the no-kernel decays with a time constant
Tm- In realistic spike trains, the interval between two spikes is typically
much longer than the membrane time constant 7,,,. Hence the sum over the
1o terms is usually dominated by the most recent firing time tgf ) < tof
neuron i. We therefore make a truncation and neglect the effect of earlier
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FIGURE 19. a) e-kernel of the integrate-and-fire model (top) with exponential
synaptic input current a (bottom). b) If the synaptic input is pulse-like (bottom),
then the e-kernel is a simple exponential.

spikes

Z no(t — tz('f)) —s mo(t — t;) (1.56)
WD,

where #; is the last firing time of neuron i. The approximation (1.56) is good
if the mean firing rate of the neuron is low, i.e., if the intervals between
two spikes are much longer than 7,,,. Loosely speaking, we may say that
the neuron remembers only its most recent firing. (1.56) may therefore be
called a ‘short-term memory approximation’ [GvHC96]. The final equation
is

wilt) =mo(t — &) + Y wy Y et — ). (1.57)

jer; tg_f)ej:j

This is exactly the equation for the model SRMy, defined in (1.20). Note
that we have kept, on the right-hand side of (1.57), the sum over all presy-
naptic firing times ¢, Only the sum over the 7’s has been truncated.

Eq. (1.57) can be seen as an approximation to the integrate-and-fire
model or else as a model in its own rights. The advantage of SRMy is
that many network results can be derived in a rather transparent manner
[Ger95, GvHC96, Ger00]. Moreover questions of computation and coding
with spiking neurons can be analyzed in the context of SRM, [Maa96,
Maa98, Ger98|.
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4.4 Spike Response Method (3): Reset as Initial Condition

In this section, we discuss a method of integration which gives a direct
mapping of the integrate-and-fire model

du, (1)) 4 7ext
Tm H+R Y e Y, alt—t))+ It (1.58)

Jeli D,

to the Spike Response Model (1.15). As in (1.36) we integrate (1.58) from
t; to t with u(fi) = u, as an initial condition. The result is

wt) = u exp(—t_fi)

Tm
c t—t; s
+Z Z ”/ exp( ) (t—tg-f)—s')ds'
JEL D e,
t—i;
/ exp ( ) Ie<(t — s') ds' (1.59)
C’
We may now define kernels
. t—1;
n(t—t) = wu,exp (— ) (1.60)
Tm
R tfii Sl
et —t;,s) = / exp (——) a(s —s')ds' (1.61)
0 Tm
- - 1 S N
€t —t;,s) = —= exp (——) H(t —t; — s) (1.62)
C T

and the synaptic efficacy w;; = ¢;;/C. As usual, 7(x) denotes the Heaviside
step function which vanishes for z < 0 and has a value of one for z > 0.
The kernels (1.60) - (1.61) allow us to rewrite (1.59) in the form

i€t fDer;
o0 ~
+/ &t —1;,8) I (t —s)ds  (1.63)
0

which is identical to (1.15) except for some minor changes of notation. We
emphasize that the n-kernel defined in (1.60) is not the same as the one
defined in (1.50). In particular, the n-kernel (1.60) vanishes if u, = 0.

4.4.1 Examples of € kernels

In order to calculate the € kernels (1.61) and (1.62) explicitly, it is con-
venient to distinguish two cases. First we consider the case, that the last
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output spike occurred before presynaptic spike arrival (£; < t;f )). Therefore
t—t; > t—t;f) = s. Since a(s—s") vanishes for s—s’ < 0 we may extend the
upper boundary in (1.61) to infinity without introducing an error. Hence,
for tg-f) > t;, we have e(t — t;,t — tg.f)) = et — t;f)) where ¢ has been
defined in (1.51).

The situation is different, if #; > t;.f ), i.e., if the last output spike has
occurred after presynaptic spike arrival. In this case only that part of the
synaptic current which arrives after ¢; contributes to the present postsy-
naptic potential and

t o
e(t—fi,t—tg.f)):/ exp (-t t) a(t' — ) (1.64)

t; Tm
To be specific, we take a(s) as defined in (1.42), viz.,
as) = 77 exp (—s/7s) H(s). (1.65)

Let us set # = ¢ — #;. The integration of (1.61) yields [Ger95]

cas) = = - Hexp (-%) _ exp (-5)] H(s) H(z — ) (1.66)

Tm

o (222) () o ()] )

The Heaviside functions H(z — s) in the first line of (1.66) picks out the
case tg-f) > t; or z > 5. The second line contains the factor H(s — z) and

applies to the case tg-f) < t; or & < s. See Fig. 20 for an illustration of the
result.

4.4.2 Transformation of the € kernel

What is the relation between the e kernel derived in (1.61) and the ¢
introduced in (1.51)? We will show in this paragraph that

c(a,5) = afe) —exp (~) ol =) (1.67)

Tm

holds. To see how this comes about we start from (1.61). We set =t — #;
and y = s — s’ and find

e(,5) = /S;exp (-S_y) ay) dy (1.68)

Tm

= /_soo exp (—%> a(y)dy — /_:”” exp (‘%) a(y) dy
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FIGURE 20. The kernel e(t — f,t — t](-f)) as a function of t for two different
situations. If tg-f) > f, then e(t — £,t — tg-f)) =eo(t — t](-f)) is the standard EPSP
(thick solid line). If tg-f) < £, the amplitude of the EPSP for ¢ > £ is much smaller

(thin solid line) since the time course of the EPSP is ‘reset’ to zero at t = #
(marked by the long arrow). The time couse for ¢ < ¢ is indicated by the dashed
line.

In the first term on the right-hand side of (1.68) we may transform back
to the variable s’ = s — y, in the second term we set s’ = s — 2 — y. This
yields

e(z,s) = /Oooexp (—:—m> als — ') ds’

o0 !
—exp (—%) / exp (—j—) a(s —x —s')ds
m 0 m

= eo(s) —exp (_i) cols — ). (1.69)

Tm

The last equality follows from the definition of € in (1.51).
By a completely analogous sequence of transformations it is possible to

show that

&(z, 5) = &(s) — exp (—i> Eols — 7). (1.70)

Tm

The total postsynaptic potential hpsp defined in (1.17) can therefore be
expressed via the input potential h; [Ger00]

hosp (t[E) = ha(t) — exp (—t - t") hi(h:) (L.71)

Tm

As it should be expected, the reset at #; has an influence on the total
postsynaptic potential. We emphasize that the expressions (1.69) - (1.71)
hold for the integrate-and-fire model only. For a general Hodgkin-Huxley
type dynamics the transformations discussed in this paragraph would not
be possible.
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4.4.3 Relation between the two integration methods

In order to better understand the relation between the two integration
methods outlined in sections 4.3 and 4.4, we compare the 7-kernel in (1.60)
with the no-kernel defined in (1.50):

n(s)

I
<
s
@
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/|\
\‘
e
N——

(1.72)
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Hence with (1.71), the potential is

uz(t) = n(t — Ltl) + hpsp(tﬁi)
_ fl

Tm

~

= olt — £3) + h(t) — [h(F:) — 9] exp (—t

). am

The truncation in (1.56) is therefore equivalent to neglecting the last term
in (1.73).

4.5 Discussion

The second of the two integration methods shows that it is possible to
map the integrate-and-fire model exactly to the spike response equation
(1.15). The disadvantage of that method is that the € kernels look somwhat
more complicated. This is, however, no real drawback since the dynamics
of a population of spiking neurons can be discussed for arbitrary response
kernels 7 and e [Ger95, Ger00]. The integrate-and-fire model is therefore a
special case in the general framework of the spike response model.

With the first method of integration, the mapping of the integrate-and-
fire model to (1.15) is only approximate. The approximation is good if the
typical interspike interval is long compared to the membrane time con-
stant 7,,,. The main advantage of the approximation is that the € kernels
do not depend on the state of the postsynaptic neuron. Therefore the in-
put potential h;(¢) can be nicely separated from the effects of reset and
refractoriness; cf. (1.26) and (1.27). The resulting model SRMj allows us
to discuss dynamic effects in a transparent graphical manner; see, e.g.,
[GVHC96, Ger98, Maa96, Maa98].

The basic integrate-and-fire model is, of course, a rather simple descrip-
tion of neuronal firing. In particular, the neuron has no spatial structure
and firing is given by an explicit threshold condition. In the following sec-
tion we will extend the framework (1.15) to neuron models with spatial
structure.
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FIGURE 21. Compartmental neuron model. Dendritic compartments with mem-
brane capacitance C* and resistance R" are coupled by a longitudinal resistance
r”#. Each compartment receives an input Z*. The soma (p = 1) emits an output
current pulse Q(t), if the membrane potential reaches the threshold 9.

5 Multi-compartment model

5.1 Definition of the model

In this section, the integrate-and-fire model introduced in section 4 is gen-
eralized in two respects. First, we allow for some spatial structure and
consider a neuron consisting of several compartments. Second, we refine
the reset procedure and include, at the somatic compartment, additional
spike currents which generate an action potential.

5.1.1 Linear dendritic tree

We consider a model with n — 1 dendritic compartments 2 < ¢ < n and a
threshold unit at the soma (u = 1); cf. Fig. 21. Membrane resistance and
capacity are denoted by R* and C*, respectively. The longitudinal core
resistance between compartment g and a neighboring compartment v is
r*¥. We assume a common time constant R*C* = 1y for all compartments
1 < p < n. The above specifications define the standard model of a linear
dendrite [Ral89].

Each compartment 1 < p < n receives input I#(t) from some presy-
naptic neurons. At the soma, there is an additional current Q(t) due to
action potential generation. The change of the membrane potential V# of
compartment p is

d VH VHE Vv
o Evu:_ﬁ+27+f“(t)—6“lﬂ(t) (1.74)

v

where the sum runs over all neighbors of compartment p.
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5.1.2 Synaptic input

The input I*(t) in (1.74) is due to spikes of those presynaptic neurons
with synapses on compartment g of neuron i. The set of these neurons is
denoted by T'“. As before in (1.39), we assume that each spike evokes a
current pulse of standard form a(t — tg.f)) with a(s) = 0 for s < 0. The
amplitude of the current pulse is scaled by c¢;; where ¢ is the index of the
postsynaptic neuron. The total input to compartment p of neuron 1 is

=Y i > at-tY (1.75)

jers t;.f)e]-}
Choices for a(s) have already been discussed in section 4.2.

5.1.3 Spike currents

Neuron ¢ fires, if the somatic membrane potential V;!(¢) reaches a threshold
9. More precisely, a firing time t ) is defined by the conditions V! (t(f )) )

and LV (tgf )) > 0. Each firing consists of a short current pulse (¢t — tgf ))
at the soma [Abe91, GvHC96, SNS95]. The total ‘output’ current of neuron

i1is
() =- Y At-t). (L.76)
tgf)efi

Due to causality, v(s) vanishes for s < 0.

The pulse y(s) describes the typical time course of sodium and potassium
currents (and possibly calcium currents) during and after an action poten-
tial. Typically, v(s) is large and positive during the rise time of the spike
and 7(s) is non-positive thereafter. In principle, v(s) may also contain an
additional phase of late depolarizing calcium currents. In general, the time
course of sodium, potassium, and calcium currents depends on the stimu-
lation before and after action potential generation. In the approximation of
(1.76), this dependence is neglected and we assume a standard current pulse
with identical time course for each firing. This is the central assumption
of our approach. As we have seen in (1.46), the reset in integrate-and-fire
units is equivalent to the emission of a current pulse y(s) = —qd(s) where
0(s) is the Dirac d-function.

5.1.4 Example of spike currents

Let us study a specific example. We consider the case of two current sources
v(s) = Ina(s) + Ix(s) (1.77)

which contribute to the action potential. We take

Ina(s) = qNaTL exp (— ° > (1.78)

Na TNa
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FIGURE 22. Action potential. Integration of the integrate-and-fire model with a
spike current y(s) given by (1.77) yields the time course of an action potential.

1

wocow () L-ep(ra] (79)

with 7nya = 0.1 ms, 7x = 1 ms and y = 5/ms, gna = 100, gk = —133. For the
sake of simplicity, we consider the somatic compartment only. Integration
of Tpdu/dt = —u + R~(t) with initial condition u(0) = ¢ with R = 1,
¥ =1, 7, = 10ms yields the action potential shown in Fig. (22). Note
that the current time constant 7y, = 0.1 ms and 7¢ = 1 ms are extremely
short. These are heuristic values which have been chosen so as to yield
upon integration a nice shape similar to a real action potential; see [Abe91,
SNS95] for related examples.

5.2 Spike Response Method -(/)

Eq. (1.74) is a system of linear differential equations. It can be integrated
either for a finite number of compartments [Tuc88, BT94] or in the contin-
uum limit [Tuc88, AFG91]. As initial conditions we take V#(—o0) =0 for
all compartments 1 < g < n. The result of the integration is of the form

C#Z/ ds'GP (') [17(t — ') — 67 Q(t — )] . (1.80)

An explicit expression for the Greens function G*¥(s) for arbitrary geom-
etry can be found in [AFG91, BT94]. In order to proceed further we use
Eqgs. (1.76) and (1.75) and find

vey = 3 b=t 3 N wy Y e —-).  (181)

tPer; v jerr ter;

with

e"(s) = C”/ G" (s")a(s — s")ds' (1.82)
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nt(s) = % /000 GM (s")y(s — s')ds'. (1.83)

The kernel e*¥(s) describes the effect of an input spike to compartment
v as seen at compartment p. Similarly, n*(s) describes the response of
compartment p to an output spike at the soma.

To proceed further, we note that firing depends on the somatic membrane
potential only. We define u; = V', no(s) = n'(s) and, for j € TV, we set
€;; = €'¥. This yields

ui(t) = Z 1o (t — tgf)) + Zwij Z Eij(t — tg-f)). (1.84)

tVer; J ter;

As in (1.56), we now make a short-term memory approximation and trun-
cate the sum over the n-terms. The result is

wilt) = ot —1t)+Y wiy > eyt —t). (1.85)

ter;

where #; is the last firing time of neuron i. Thus, the multi-compartment
model has been reduced to the single-variable model of Eq. (1.20). The
approximation is good, if the typical interspike interval is long compared
to the neuronal time constants.

5.2.1 Improvement of the approximation

Note that the steps taken in the previous paragraph correspond to the first
of the two integration methods discussed in section 4. The second method
which yields an improved mapping to the spike response model can be used
as an alternative. In order to apply the second method, we must take care
to correctly include the initial conditions V*(#;) for all compartments. Only
at the soma, an explicit initial condition V' (#;) = ¥ is available. In analogy
to (1.69), we aim for an expression for the kernels e(t —#;, t — t;f)) in terms
of the kernel ¢g.

Let us start the integration of the voltage at the somatic compartment
(U,i = Vl) at time ¢t = Ltl

uit) = /tGll(t—t’)y(t’—fi)dt’+ 3 /tG“(t—t’)y(t’—tEf))dt’

t; ii

t) <4,
t
+>N / Gt —t)at — ) ar
v jer, ’ti
+V1 (Ltl) Gll(t - Ltl) + Z V“(Ai) Gl‘u(t — Ltl) . (186)

w2
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The terms in the last line of (1.86) are the initial conditions for the com-
partment voltages. For the somatic compartment, we use V' (#;) = ¢. For
© > 2 we may formally use (1.81) evaluated at ¢ = ;. The sum in the
first line on the right-hand side of (1.86) vanishes if the spike currents have
stopped before the next spike occurs — as it is trivially the case for a re-

set current y(s) = —¢d(s). In the following we will therefore neglect these
terms.
We now define
n(t—ti) =no(t — ) + 9 G (t — 1) (1.87)

and, for j €T,

eij(t — it —t) = et —ty — G —f) (i — 1) (1.88)

We use G™(z +y) = ), G'"(x) G*(y) in the Greens function in the
second line of (1.86). With (1.87) and (1.88) we find after some calculation:

wit) = nlt—f)+> wy > Gij(t—fat_ty))
j

ter;

+3 G-ty 3 g —t)). (1.89)

pz2 9 <t

In order to get a mapping to (1.15) we need to suppress the terms in the
second line of (1.89). These are terms which describe the effect of previous
output spikes of neuron i on the dendritic compartment v and which cause
now for ¢ > #; some feedback onto the soma.

Note the close analogy between (1.88) and (1.69). The Greens function
G is the generalization of the exponential term in (1.69). Similarly, the
n-kernel (1.87) is the generalization of (1.72). We emphasize that for a
single-compartment model, the sum in the last line of (1.89) vanishes. The
mapping between the integrate-and-fire model and the spike response model
(1.15) is then exact, as we have seen in section 4.4. For a multi-compartment
model the mapping to (1.15) is not exact. The approximation derived in
this paragraph is, however, better than the truncation that is necessary to
get (1.85).

5.2.2 Example: Two-compartment integrate-and-fire model

We illustrate the Spike Response Method by a simple model with two
compartments and a reset mechanism at the soma. The two compartments
are characterized by a somatic capacitance C' and a dendritic capacitance
C? = a C"'. The membrane time constant is 7o = R'C' = R?>C? and the
longitundinal time constant 7, = r'2 % The neuron fires, if V1 = 9.
After each firing the somatic potential is reset to V! = u,.. This is equivalent
to a current pulse

V(s) = —qd(s) (1.90)
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FIGURE 23. Two-compartment integrate-and-fire model. (a) Response kernel 7(s)
of a neuron with two compartments and a fire-and-reset threshold dynamics.
The response kernel is a double exponential with time constants 712 = 2ms and
70 = 10 ms. The spike at s = 0 is indicated by a vertical dash. (b) Response kernel
€(s) for excitatory synaptic input at the dendritic compartment with a synaptic
time constant 7 = 1 ms. The response kernel exhibits the typical time course of
an excitatory postsynaptic potential. (y-axis: voltage in arbitrary units.)

where ¢ = C' [ — u,] is the charge lost during the spike. The dendrite
receives spike trains from other neurons j and we assume that each spike
()

evokes a current pulse a(t — t;

;7) with time course

1 t
a(s) = —exp(——). (1.91)

TS TS
For the two-compartment model it is straightforward to integrate the equa-
tions and derive the response kernels 7(s) and €(s); cf. [Tuc88, BT94, RL93].

We find
o (s) - 29 ?;3 exp (-Tio) [1 +a exp (—%)] (1.92)

1

() 1 s 1—e 018 s 1— e %8
€o(s exp|—— | |———exp|— | ————
0 (1+0,) P T0 T3(51 p T12 7'352
with 0; = 771 — 75 and 6 = 77" — 75" — 75 In Fig. 23 we show the two
response kernels for the parameters 79 = 10 ms, 72 = 2 ms, and a = 10.
The synaptic time constant is 7, = 1 ms. The kernel eg(s) describes the
voltage response of the soma to an input at the dendrite. It shows the
typical time course of an excitatory or inhibitory postsynaptic potential.
The time course of the kernel 7(s) is a double exponential and reflects
the dynamics of the reset in a two-compartment model. In Fig. 23a, the
moment of spike firing at ¢t = 0 has been marked by a vertical bar for the
sake of better visibility.

6 Extensions and Discussion

The strict application of the spike response method requires a system of
linear differential equations combined with a threshold process - such as
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in the integrate-and-fire model in section 4. Naturally the question arises
how well real neurons fit into this framework. As an example of a more
complicated neuron model we have discussed the effects of a linear dendritic
tree. We have also seen in section 2 that, for the Hodgkin-Huxley model,
spike generation can be replaced approximatively by a threshold process.
In this section we want to continue our discussion and hint to possible
extensions and modifications. To check the validity of the approach, we
discuss the two basic assumptions, viz., threshold process and linearity.

6.1 Threshold process

The dynamics of spike generation can be desribed by nonlinear differential
equations of the type proposed by Hodgkin and Huxley [HH52]. Spikes are
generated by a voltage-instability of the conductivity. Since the opening and
closing of Na and K channels are described by three variables with three
different time constants, the threshold depends not only on the present
voltage, but also on the voltage in the recent past. In other words, there
is no sharp voltage threshold [RE89, KpBD95]. This is most easily seen in
a scenario with arbitrary time-dependent input. Let us suppose that, for
some ion-based neuron model, there exists a voltage threshold . Even if
the potential were already slightly above the formal threshold, there could
arrive, in the next moment, a very strong inhibitory current which pulls the
potential back below threshold. Thus spiking could still be stopped even
though the action potential was already initiated. This consideration points
to the general limitations of the threshold concept in the context of time-
dependent stimulation. Strictly speaking there can be neither a voltage nor
a current threshold if we allow for arbitrary input.

Nevertheless, an improvement over the simple voltage threshold is pos-
sible. The spike response method does not rely on a specific interpretation
of the variable u(t). In principle, it can be any relevant variable, e.g., a
current [Rot94, KpBD95], a voltage, or some combination of current and
voltage variables. To be specific, we may take

u(t) = /000 f(8) Vit —s)ds = fx V! (1.93)

where V! is the voltage at the soma and f some linear filter with normaliza-
tion fooo f(s)ds = 1. Since everything is linear, the response kernels derived
in the preceding sections can be transformed ¢ — fx*e and n — fx*n and
we are back to the standard form (1.15). Application of the linear operator
f on the voltage u in (1.8) before it is passed through a threshold would, for
example, allow us to match the boundaries in the phase diagram of Fig. 5¢
more closely to that of the Hodgkin-Huxley model in Fig. 5b.

We emphasize that the formal threshold is constant in our approach. A
dynamic threshold 9(t) which is increased after each spike [MO74] may
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always be treated as an additional contribution to the respone kernel 7(s)
as discussed in (1.27).

6.2 Adaptation

In all the discussion above we have assumed that only the last output spike
of the neuron is relevant. This is, of course, an over-simplification of reality.
For most neurons, adaptation plays an important role. If a constant input
is switched on at ty, the interspike interval between the first and second
spike is usually shorter than the one between the 10th and eleventh.

How can adaptation be included in the above framework? One possibility
is to make a systematic expansion so as to include the effect of earlier spikes

ui(t) = m(l)(t—tgl))ﬁLZwij > 6511')(75451),75—’5?))

jeti  Der;

+ Pt et S wy Y e -t -2 1)
jer; t;f)E]:j

+ . (1.94)
il) is the most recent firing of neuron ¢, tz(?) the second last firing,
and so forth. If too many terms are necessary, then the approach outlined
in (1.94) is not very handy. On the other hand, we may assume that the

major contribution comes from the term (®, n(® ... and neglect the terms
2) (1)

i

Here t(

€ ... Moreover, we may assume, for the sake of simplicity, that n

772(2) = 771(3): ... = n. In fact, adaptation and even bursting can quickly be

incorporated if we use a description of the form

wit)= Y -t + Y wy S -tV e -1y (1.95)

WD e, e WDer,

For the kernels n we may choose a time-course with a long-lasting contri-
bution which could arise due to, e.g, slow calcium-dynamics [GvHC96]. An
example is shown in Fig. 24. The neuron is driven with a constant input
current. The n(s)-kernel has a phase of after-depolarization. As a result,
a first spike at s = 0 makes a second spike around s ~ 5ms more likely.
A late phase of hyperpolarization in the n-kernel turns firing off after a
couple of spikes. The results is, for constant input, a bursting behavior as
in Fig. 24b.

6.3 Nonlinearities

We can distinguish at least three types on nonlinearities of neuronal dy-
namics. First, there is the nonlinear dynamics of spike generation. These
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FIGURE 24. Bursting neuron. Constant stimulation of a neuron model with the
n-kernel shown in (a) generates the spike train in (b). Taken from [GvHC96].

nonlinearities are replaced by the output current (s) which is trigerred
by a threshold process as explained above. Second there are shunting ef-
fects on the dendrite due to the ion reversal potential, and finally there
are potential sources of active currents on the dendrite. The last issue has
been a subject of intensive discussion recently. There are indications for
dendritic spikes [SS94], but it is unclear whether this is a generic feature
of all neurons. In our approach, all active dendritic currents are neglected.

In the following we concentrate on the influence of the reversal potential.
In sections 4 and 5 \(V(; have assumed that each input induces a standard
£

current pulse a(t — ;')- In more detailed models, however, the input cur-

rent is due to a conductivity change g(t — t;f )) at the synapse and the
amplitude of the current depends on the present value of the membrane
potential; see section 4.2. Specifically, in the context of a compartmental
neuron model, the input to compartment p is

=3 Y lwe —VEO gt~ 1) (1.96)

Jer P e,

where u;ey is the reversal potential and w;; = 1 for the sake of simplicity.

For a further analysis of (1.96) we write trey — VH# = (tpey — V) — (VF =V)
and set a(s) = (urev—V) g(s). For the potential V we take some appropriate
value between the equilibrium potential V; and the threshold 9, e.g., V =
(¢ — Vb)/2. This yields

ZZ{ (t—t'f L)VV (t -t (1.97)

jern Urev

As long as |[V# — V| < |urey — V|, the second term can be treated as a
small perturbation.

Except for periods of very strong excitation or inhibition, the compart-
mental voltages stay roughly in the range between V4 and 4. Let us look at
some values. The threshold ¥ is about 10 to 30 mV above resting potential.
The reversal potential of excitatory synapses is more than 50 mV above
threshold. The second term in (1.97) yields therefore a small correction
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only. For inhibitory synapses, the reversal potential is approximately 20
mV below resting potential, and the prefactor of the second term in (1.97)
is again small. Thus we are allowed to make a perturbation expansion?.

To proceed with the perturbation expansion, we replace V* on the right-
hand side of (1.97) by the expression given in (1.53) and introduce u =
V1(t). This yields

u() = Yot =)+ wiet — i) +
f

af

+ 0y Zwijnj(t_tg'f):t_tgf))'*‘Zwijwikﬁijk(t_tg'f),t_tggf))
£ L -k
o (1.98)

The second order kernels are for inputs j € I'* and k € T'*

! 1
ntt ==t = gy [ @G et -t -

/ds'GM(s')a(t—t;f') —s—s") = V| (1.99)

! 1
Wj(t_tgf):t_tgf)) = m/dsGl"(s)a(t—tg)—S)

/ ds' G (s")y(t— ) —s—s") — V| (1.100)

Nonlinear effects at the synapses, e.g., due to calcium influx or Magne-
sium block removal, can be treated similarly. The role of nonlinearities for
dendritic computation is discussed in [Mel94, Koc97].

6.4 Conclusions

We have presented a framework for a systematic analysis of spiking neuron
models in terms of spike response kernels. As long as there are no active
currents in the dendrite, the linear kernels dominate the expansion. We have
demonstrated that an approach with linear response kernels is flexible and
allows a phenomenological description of various types of neuron behavior
including Hodgkin-Huxley dynamics. Previously, collective network states
have been analyzed and stability criteria in terms of the response kernels
have been derived [GvH93, Ger95, GvHC96, Cho98, Ger00]. Moreover the
computational complexity of networks of spiking neurons has been analyzed
in the framework of the spike response model [Maa96, Maa98]. The present

2For shunting inhibition, the reversal potential would be close to the resting
potential and the expansion (1.98) is not helpful
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paper provides a link between detailed models of neuronal dynamics and
the simplified models appropriate for analytical network studies.
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