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Rapid Phase Locking in Systems of Pulse-Coupled Oscillators with Delays
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The dynamical evolution of a system of integrate-and-fire units with delayed excitatory coupling is
analyzed. The connectivity is arbitrary except for a normalization of the total input to each unit. It
is shown that the system converges to a periodic solution where all units are phase locked but do not
necessarily fire in unison. In the case of discrete and uniform delays, a periodic solution is reached
after a finite time. For a delay distribution with finite support, an attractor is, in general, only reached
asymptotically.

PACS numbers: 87.10.+e, 05.20.-y, 64.60.Ht

Networks of pulse-coupled oscillators have attracted an We consider a network @¥ integrate-and-fire units <
increasing amount of interest [1-6]. Theoretical results = N. Each unit is described by a scalar variahle
on synchronization and phase locking have been appliedhich increases, in the case of no interaction, at a constant
to a wide range of phenomena including synchronouslyate. Without loss of generality, we sét;/dt = 1. To
flashing fireflies [7], biological clocks [8], oscillating neu- be specific, we can think of; as the membrane potential of
ronal activity [9], and earthquake cycles [10]. Most of thea neuron without leakage driven by a constant input current
analytical studies [1,2] have focused on fully connectedy = 1. In the alternative interpretation of a stick-slip
networks where mean-field methods can be applied. Imodel of an earthquake fauli; is the accumulated stress
a different line of research aiming at an understanding obr friction force of uniti in a network of interconnected
self-organized criticality, networks with local connectionsblocks which are pulled over a rough surfaceu;lfeaches
have been studied [4—6]. Recently, it has been shown that thresholdd = 1, a pulse is generated. This defines a
homogeneous networks of integrate-and-fire units with arfiring time r/. In a neuronal interpretation, firing refers

bitrary, local or long-ranged, connectivity and no leakageo the emission of an action potential; in an earthquake
are amenable to mathematical analysis whenever the tenodel, firing corresponds to the sliding of a single block.
tal input to each unit is normalized [3]. In the model Firing has two effects. First, it causes a sharp drop of the
network presented below we use this general class aftate variable:; due to an internal reconfiguration pulse
connectivity. —yi(t — t/). Second, other unité receive, after some
In systems of identical integrf_ite-and_-fire ur_lits Withoutde|ay’ a positive signal pulsh; ay;(t — t'if)- The factor
leakage, many degenerate cyclic solutions with the samg ; s a measure of the effectivity of signal transmission
period can coexist [3—5]. The convergence time to the Setom ; to k. To account for causality, we have;(s) =
of periodic solutions is short. More precisely, a periodic,,.(s) = ¢ for s < 0. '
solution is reached as soon as every unit has fired once [3]. The full dynamics of a uniti in a network of N
This result, however, is limited to networks with delaylessqggijlators is given by
interaction and instantaneous reset of the state variablg f f
after each firing. Naturally, the question arises whether— ui(t) = 1 — > y;(t = t/) + > > Jiay(t — 17),
fast phase locking is specific for the delayless situation or ! i f 1)
generic in the sense that it holds for a broader class of f .
oscillator models. where #; denotes the times Wher_e,: rea_ches 1 fr(}m
In this paper, oscillator networks with delayed excita-b(,elow;c Ihe sum runs over all firing _tlmeé. or 1
tory interaction and partially delayed reset are studiedVith f7.#; <1 and, respectively, all unitd = j = N.
Such systems can be considered as extremely simpIifiifY,JthoUt loss of generality we assume a normalization
a;j(s)ds = [y vi(s)ds = 1foralll =i,j = N.

models of neural networks or earthquake faults [3]. There'0 : , .

are several questions concerning the dynamics of such Equation (1). deflngs the dynamlcs of a netwo_rl_< of
systems. Are there periodic solutions? If so, what is theift€drate-and-fire units under quite general conditions.
period? What is the asymptotic system behavior? Howh the fqllowmg, We Impose a number of requirements
fast is an attractor reached? These questions are addresgé’gcemmg the coupling parametefs and the function
below. It is shown that all attractors are periodic. As in?i s) anda;;(s). First, as in [3], we require that none of
the delayless case, units are phase locked but not necess.@@ couplings/;; |_s_negat|ve(J,»j = 0) and that the total
ily in synchrony. Furthermore, the attractors are reachel{1Put t0 every unit is normalized

after a_finite time, i_f delay_s are discrete and shorter than ZJ”. =A<1 foralliwithl=i<N. (2
the period of a cyclic solution. T
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Second, the functiona;; andy; should be pulselike and We assume that there have been no firing events in an
positive. Specifically, we require far;;(s) interval of lengthA precedingt = 0. We would like to
aij(s) = 0; aij(s) =0 fors=A (3)  understand the asymptotic network behavior. How fast is
an attractor reached? If there are periodic limit cycles,
what is the period? The above questions are answered by
the theorem stated below.
yi(s) = 0; yi(s) =0 fors=A, (4) We focus on the interva?, = 1, "' — ¢/ between two
where y; is of the form yi(s) = y° 8(s) + y(s) with ~ consecutive pulses of a unit Since all couplings/;;
y? > A and y/(s) decreasings(-) denotes the Dirag  are positive, the intervaP; is always shorter than the
function. The termy!8(s) ensures that the firing times of interval P, = 1 of the free oscillator. In particular, in a
each unit are separated by finite intervals. In a neurondime window of length2P,, each oscillator emits at least
interpretation;y! can be related to absolute refractoriness!W0 pulses. In the following, it will be shown that the
Similarly, the contributiony (s) describes relative refrac- 1ongest interval that can be found in a search window
toriness. In the stick-slip model of interconnected blocks[! — 2Po.7] is always decreasing. More precisely, we
¥ corresponds to instantaneous apl to slow stress defin@Pma () = Py for 1 < 2Py and
release. Since conditions (2)—(4) are fairly abstract, wePy.x(t) = ma>q<,f{t{+1 - t£ |t — 2Py = tf,tf“ =1t}
present two illustrations. 7)
(I) As a first example, let us consider a fully connected
network of integrate-and-fire units (1) with; = 0 and  for z = 2Po. _
homogeneous coupling; = Jo/(N — 1) for j # i with T_heorem—Assume that a n_e'Fvyork defined by (1)-
0<Jy<1. If ui(tr) reaches the threshold = 1 at (4) is started at = 0 with the initial valuesu;(0) and

- t,-f, the state variable is reset to lim.o ui(t,-f + ) = that there are no firings in the time windofwA, 0].

0. The reset is equivalent to a reconfiguration puIseThen the following holds:  (i)Pm.x(r) as defined in (7)

vi(s) = 8(s), that is, 7’ = 1 and y! = 0. Due to the IS non_in_creasing. (i) iMoo Prax(2) = 1 - A. This is
the minimum interval between consecutive pulses. (iii)
If Pnax(f) stays constant during a timg =t <1 + A
with 1y = 2Py, then a periodic solution has been reached
andPoax (o) = 1 — A.
An application of the theorem to the above examples

with a maximum delayA < 1 — A. Similarly, we re-
quire

firing event at; , all other units receive an identical signal
pulsea;;(s) = a(s). To be specific, we assume that the
signal is a square pulse of duratidy = 1 — Jy which
arrives with zero delay. Thus,

a(s) = Ay 6(s) (Ao — 5), (5)  yields the following
whered(s) denotes the Heaviside step functiéts) = 0 Corollary.—In the network of example (Il), a periodic
fors = 0andé(s) = 1 for s > 0. Such a network meets solution with periodl — A is reached in a time shorter
the requirements (2)—(4). than 2Py + (n) + 1)(n® + 1)A. In a network as in

(I As a second, and more interesting, example, leexample (I), a periodic solution is, however, in general
us consider a two-dimensional lattice of integrate-andonly reached asymptotically.
fire units with finite-range couplings. As before we have SinceP (1) is non-negative, statement (i) implies that
yi(s) = 8(s), but there are now two different types of Pmax(?) is @ Lyapunov function of the network dynamics.
signals],;,- a;j(s). First, there is strong input from a group From (ii) we conclude that on an attractor, all units fire
G, of n'V units around unit. The pulses from neighbors With the same period — A. Note that there are many
ie ¢ arrive with adelay\) and have a strength; = different periodic solutions consistent with this condition,
i.e., units can fire synchronously or in some fixed order
depending upon the initial conditions. Statement (iii) is
JD"and longer delaya® > A(.” Assuming negligible a simple criterion to decide whether an attractor has been
: reached. It can be used to derive the upper bound for the
pulse width, we have . L . '
B o ) (m) convergence time to an attractor which is stated in the first
aij(s) = &(s — A™)forj € G;™, (6) part of the corollary. A generalization to other connection
wherem = 1,2. As long as the numbers? andn® are  topologies with more than two groups of neighbors is
identical for all unitsl = i = N, condition (2) holds with  straightforward. We note that with zero delay, a periodic
A=nDJ0 + 5@ 7@ We required < 1 andA® <  solution is always reached before the ti?®,. In fact,
1 — A. The network also meets the other requirementstor delayless interaction, an attractor is reached as soon as
The above examples illustrate that conditions (2)—(4) holdvery unit has fired once [3].
for a large class of model systems including locally and We emphasize that, for pulses;(s) of finite width a
globally coupled networks. periodic solution is, in general, only reached asymptoti-
We are interested in the global dynamics of a systentally. To illustrate this point, let us consider a simple net-
of coupled oscillators defined by (1)—(4). The system iswork of two units with pulsesr(s) andy(s) as in exam-
started at = 0 with a set of initial value® = u;(0) < 1.  ple (l). The interaction is given by (5) withp=1 — A

JM > 0. Asecond grougs” farther apart containg®
neighbors; with weaker coupling/®? with 0 < J@ <
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and strength/, =J,1=A and J;; =J»=0. The ini- let us consider the shortest intervel that has occurred
tial conditions are:;(0) = uy with 0 < uy <1 andu,(0) = before time ¢, Ppn(?) = minkf{t',f+ — t‘,f |0 = tkf <

0. A stralghtforward calculation shows that the first few; =1} We choose a unitand a firing timef ! < ¢
pulses occur arf =1 — 1o, tl =1 — Auy and tf = such thats! ™' — tf = Pnin(r). Since firing requires

no+ (1= A) (1 + Aup), ?2 f2++ (1 = A1+ A%up). u; (tf) = 1 |mmed|ately before pulse emission, it follows

1
The following intervalsP;, = 1, — t,’: are given by the  thatu;(sf ") — u;(:) = 0. Using Eq. (9), we find
equation
f+1

Pl" - Pl =1 -a)[P[ -1 -] @® 0= Pain(t) = Ami + D JyjAey,  (10)
wherek = 1,2 andf = 1. Thus a periodic solution with /
P, =1 — Ais only reached asymptotically. Moreover, With
the typical numbey of firings per unit which are needed to Fl 7 F 7
reduce the distance = P, — (1 — A) from the attractor Am; zz[ni(ti ) =il — g )]’ (11)
by a factor of1/e diverges asA — 1. Nevertheless, /
the time scale of (asymptotic) convergence to the periodic A€ :Z[EU(IFJA _ t.]/f) _ 6ij(tlF _ tf)] (12)
solution, defined ag = f (1 — A) = (1 + A)~! remains ,
bounded and is of order 1, whatevar In this sense, Reordering of the terms yields
there can be rapid phase locking even for networks with

— F+1
interaction pulses of finite width. An; = nz(t —1f)
We stress that the theorem applies to networks with (1 f F f
excitatory coupling only. For inhibitory connections or + Z[ =) il )]~ (13)

mixtures of excitation and inhibition, the situation can
be quite different. As a simple example, we considerSincen;(s) is increasing, we findn; = 7;(Ppyin). Sim-
a network with inhibitory coupling of strength ; J;; = ilarly,
A < 0and|A| < 1, where all connections have the same Ae
long delaya;;(s) = 6(s — A)with1 < A <1 — A;6(")
denotes the Diraé function, and we assume instantaneous F+1 fr1 F f
resety;(s) = 8(s). If all units are started with identical * Z[eij(ti o)~ e ')}’ (14)
initial conditions, they remain synchronous thereafter. A
straightforward consideration shows that the interspikevith tF“ = t, + Prin andtf ! tf + P.in. Because
intervals do not approach a constant value but alternate;;(s) is increasing, the second term is nonpositive. The
between 1 and — 2A. Thus, in contrast to the excitatory first term is bounded by one and this;; = 1. Using
case, the final state has the minimal peribl — A), these results in Eq. (10), we find
and P, (1) as defined in (7) oscillates. The oscillation Poin = 1:(Puin) — A (15)
of interspike intervals is due to a generic instability of min = it min '
inhibitory systems: A unit which has received a first Since, due to condition (4), ligao 7;(8) > A, 7;(A) =
inhibitory input needs more time to reach the threshold and with A < 1 — A, and d*n;/ds* < 0, it follows that
is therefore prone to receiving even more inhibition. Puin = 1 — A.

After these remarks, let us now turn to the proof of the Step 3—We show that if P« () as defined in (7)
theorem. It proceeds in five steps and takes the rest of thiecreases at a time, it eitherincreases farther at a later

€ij = El}(tF+1 - tjl)

paper. time ¢/ with * < ¢/ < t* + Py or we haveP,x(t") =
Step 1—Integration of (1) yields 1 — A. Let us assume tha®,,, increases at a time*
f and does not mcrease afterwards Thls |mpI|es that there
wi(t) =1+ u;(0) = > it — 17) is a uniti with 7' = ¢ and f*! — tf = P (")
f andFPmax(t) < Poax (1) for ¢ > t*. Slnce w;(eF Y —
+ ZJ” Z €t — t;)’ 9) u;(t; ) = 0, we have with (11) and (12)
with 7:(s) = €;j(s) =0 for s=0 and n(s) = 0= Puax(17) = Am; + ;JijAfiﬁ (16)

Jovi(shds', e€ij(s) = [oaii(sds’ for s >0. The .
summation overf runs over all firing times with \We derive bounds foAn; andAe;;. Because all argu-
0= t,f < tando = tf < 1, respectively. Due to condi- ments on the right-hand side of (11) are not smaller than

tions (3) and (4), bot, ande;; are increasing functions. | ~ 4 andn;(1 — A) = 1, Eq. (11) yieldsAn; = 1. In

Furthermore, because of the normalizatioregf and y;, order E‘O find a lower bound for (12), we split the firing

we haven;(s) = €;;(s) = 1 fors = A. timest; of a given unitj into two groups. The flrstgroup
Step 2—We show that the minimum interval between T’y contalns firings before/ — A, ie., I'| = {t [0 =

two pulses is longer than or equal to— A. To do so, t,f = — A} Sincee;;(s) = 1 for s > A [cf. (3)], we
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havee;;(rf — t{) = e,/ — t{) — 1 for all t{ er,. asymptotically. If there is a finite number of discrete de-
Thus, the sum in (12) taken over firing£ €T, van- lays, as in example (Il), then the attractor is reached after
ishes. It follows that the sum on the right-hand side ofa finite time. Thus phase locking is completed rapidly.
(12) can be restricted to firingg, = {t.;‘ |1 > £ — Al Rapid phage chklng could be an important mechanism
SinceP o, is the maximal interval that can occur in group fOF computation in neuronal systems [3,9,11]. We em-
I, each neuron must fire at least once in the intervaPh@size that, on the attractor, units are phase locked but
[F — A,/F*" — A]. We repeat the same arguments ado not necessarlly' fire in unison and Fhat many different
in (14) and findAe;; = 1 for each unitj. The sum over solutions are possible, similar to the situation without de-
jin (16) yields !ays [_3—5]. _So far our results are restricted to systems of
identical oscillators without leakage terms, but we expect

Py (1) = 1 — A. (A7) that our analysis can be used as a starting point for situa-
Thus, if Pna.x (1) increases once, it must either increasetions with a richer structure.
further or P .« (¢) is bounded from above by — A. It is a great pleasure to thank Andreas Herz for many

Step 4—We show that an increasinB.x(z) is not  useful discussions and his generous hospitality. The stay
possible. Since intervals cannot be longer tiRyy an  at Oxford was supported by the EU under Grant No. ERB
increasingP ,.x (f) must converge to alimiP; = P,. On  CHRX-CT92-0063.
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