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The dynamical evolution of a system of integrate-and-fire units with delayed excitatory coupli
analyzed. The connectivity is arbitrary except for a normalization of the total input to each un
is shown that the system converges to a periodic solution where all units are phase locked but
necessarily fire in unison. In the case of discrete and uniform delays, a periodic solution is re
after a finite time. For a delay distribution with finite support, an attractor is, in general, only rea
asymptotically.
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Networks of pulse-coupled oscillators have attracted
increasing amount of interest [1–6]. Theoretical resu
on synchronization and phase locking have been app
to a wide range of phenomena including synchronou
flashing fireflies [7], biological clocks [8], oscillating neu
ronal activity [9], and earthquake cycles [10]. Most of t
analytical studies [1,2] have focused on fully connec
networks where mean-field methods can be applied.
a different line of research aiming at an understanding
self-organized criticality, networks with local connectio
have been studied [4–6]. Recently, it has been shown
homogeneous networks of integrate-and-fire units with
bitrary, local or long-ranged, connectivity and no leaka
are amenable to mathematical analysis whenever the
tal input to each unit is normalized [3]. In the mod
network presented below we use this general class
connectivity.

In systems of identical integrate-and-fire units witho
leakage, many degenerate cyclic solutions with the s
period can coexist [3–5]. The convergence time to the
of periodic solutions is short. More precisely, a perio
solution is reached as soon as every unit has fired once
This result, however, is limited to networks with delayle
interaction and instantaneous reset of the state vari
after each firing. Naturally, the question arises whet
fast phase locking is specific for the delayless situation
generic in the sense that it holds for a broader clas
oscillator models.

In this paper, oscillator networks with delayed exci
tory interaction and partially delayed reset are stud
Such systems can be considered as extremely simp
models of neural networks or earthquake faults [3]. Th
are several questions concerning the dynamics of s
systems. Are there periodic solutions? If so, what is th
period? What is the asymptotic system behavior? H
fast is an attractor reached? These questions are addr
below. It is shown that all attractors are periodic. As
the delayless case, units are phase locked but not nece
ily in synchrony. Furthermore, the attractors are reac
after a finite time, if delays are discrete and shorter t
the period of a cyclic solution.
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We consider a network ofN integrate-and-fire units1 #

i # N. Each unit is described by a scalar variableui

which increases, in the case of no interaction, at a cons
rate. Without loss of generality, we setduiydt ­ 1. To
be specific, we can think ofui as the membrane potential o
a neuron without leakage driven by a constant input curr
I0 ­ 1. In the alternative interpretation of a stick-sli
model of an earthquake fault,ui is the accumulated stres
or friction force of uniti in a network of interconnected
blocks which are pulled over a rough surface. Ifui reaches
a thresholdq ­ 1, a pulse is generated. This defines
firing time t

f
i . In a neuronal interpretation, firing refer

to the emission of an action potential; in an earthqua
model, firing corresponds to the sliding of a single bloc
Firing has two effects. First, it causes a sharp drop of
state variableui due to an internal reconfiguration puls
2gist 2 t

f
i d. Second, other unitsk receive, after some

delay, a positive signal pulseJkiakist 2 t
f
i d. The factor

Jki is a measure of the effectivity of signal transmissio
from i to k. To account for causality, we haveaijssd ­
gissd ­ 0 for s # 0.

The full dynamics of a uniti in a network of N
oscillators is given by
d
dt

uistd ­ 1 2
X
f

gist 2 t
f
i d 1

X
j

X
f

Jijaijst 2 t
f
j d ,

(1)

where t
f
i denotes the times whereui reaches 1 from

below. The sum runs over all firing timest
f
i or t

f
j

with t
f
i , t

f
j , t and, respectively, all units1 # j # N.

Without loss of generality we assume a normalizatiR
`

0 aijssdds ­
R`

0 gissdds ­ 1 for all 1 # i, j # N.
Equation (1) defines the dynamics of a network

integrate-and-fire units under quite general conditio
In the following, we impose a number of requiremen
concerning the coupling parametersJij and the function
gissd andaijssd. First, as in [3], we require that none o
the couplingsJij is negativesJij $ 0d and that the total
input to every unit is normalizedX

j

Jij ­ A , 1 for all i with 1 # i # N . (2)
© 1996 The American Physical Society 1755
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Second, the functionsaij andgi should be pulselike and
positive. Specifically, we require foraijssd

aijssd $ 0; aijssd ­ 0 for s $ D (3)

with a maximum delayD , 1 2 A. Similarly, we re-
quire

gissd $ 0; gissd ­ 0 for s $ D , (4)

where gi is of the form gissd ­ g
0
i dssd 1 g

1
i ssd with

g
0
i . A and g

1
i ssd decreasing;ds?d denotes the Diracd

function. The termg
0
i dssd ensures that the firing times o

each unit are separated by finite intervals. In a neuro
interpretation,g0

i can be related to absolute refractorine
Similarly, the contributiong1

i ssd describes relative refrac
toriness. In the stick-slip model of interconnected bloc
g

0
i corresponds to instantaneous andg

1
i to slow stress

release. Since conditions (2)–(4) are fairly abstract,
present two illustrations.

(I) As a first example, let us consider a fully connect
network of integrate-and-fire units (1) withJii ­ 0 and
homogeneous couplingJij ­ J0ysN 2 1d for j fi i with
0 , J0 , 1. If uistd reaches the thresholdq ­ 1 at
t ­ t

f
i , the state variable is reset to limd°!0 uist

f
i 1 dd ­

0. The reset is equivalent to a reconfiguration pu
gissd ­ dssd, that is, g

0
i ­ 1 and g

1
i ­ 0. Due to the

firing event att
f
i , all other units receive an identical sign

pulseajissd ­ assd. To be specific, we assume that th
signal is a square pulse of durationD0 # 1 2 J0 which
arrives with zero delay. Thus,

assd ­ D21
0 ussd usD0 2 sd , (5)

whereussd denotes the Heaviside step functionussd ­ 0
for s # 0 andussd ­ 1 for s . 0. Such a network meet
the requirements (2)–(4).

(II) As a second, and more interesting, example,
us consider a two-dimensional lattice of integrate-a
fire units with finite-range couplings. As before we ha
gissd ­ dssd, but there are now two different types o
signalsJij aijssd. First, there is strong input from a grou
G

s1d
i of ns1d units around uniti. The pulses from neighbor

j [ G
s1d
i arrive with a delayDs1d and have a strengthJij ­

Js1d . 0. A second groupG
s2d
i farther apart containsns2d

neighborsj with weaker couplingJs2d with 0 , Js2d ,

Js1d and longer delaysDs2d . Ds1d. Assuming negligible
pulse width, we have

aijssd ­ dss 2 Dsmdd for j [ G
smd
i , (6)

wherem ­ 1, 2. As long as the numbersns1d andns2d are
identical for all units1 # i # N, condition (2) holds with
A ­ ns1d Js1d 1 ns2d Js2d. We requireA , 1 and Ds2d ,

1 2 A. The network also meets the other requiremen
The above examples illustrate that conditions (2)–(4) h
for a large class of model systems including locally a
globally coupled networks.

We are interested in the global dynamics of a syst
of coupled oscillators defined by (1)–(4). The system
started att ­ 0 with a set of initial values0 # uis0d , 1.
1756
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We assume that there have been no firing events in
interval of lengthD precedingt ­ 0. We would like to
understand the asymptotic network behavior. How fas
an attractor reached? If there are periodic limit cycl
what is the period? The above questions are answere
the theorem stated below.

We focus on the intervalP
f
k ­ t

f11
k 2 t

f
k between two

consecutive pulses of a unitk. Since all couplingsJkj

are positive, the intervalP
f
k is always shorter than th

interval P0 ­ 1 of the free oscillator. In particular, in a
time window of length2P0, each oscillator emits at leas
two pulses. In the following, it will be shown that th
longest interval that can be found in a search wind
ft 2 2P0, tg is always decreasing. More precisely, w
definePmaxstd ­ P0 for t , 2P0 and

Pmaxstd ­ maxk,fhtf11
k 2 t

f
k j t 2 2P0 # t

f
k , t

f11
k # tj

(7)

for t $ 2P0.
Theorem.—Assume that a network defined by (1)

(4) is started att ­ 0 with the initial valuesuis0d and
that there are no firings in the time windowf2D, 0g.
Then the following holds: (i)Pmaxstd as defined in (7)
is nonincreasing. (ii) limt°!` Pmaxstd ­ 1 2 A. This is
the minimum interval between consecutive pulses. (
If Pmaxstd stays constant during a timet0 # t , t0 1 D

with t0 $ 2P0, then a periodic solution has been reach
andPmaxst0d ­ 1 2 A.

An application of the theorem to the above examp
yields the following

Corollary.—In the network of example (II), a periodi
solution with period1 2 A is reached in a time shorte
than 2P0 1 sns1d 1 1dsns2d 1 1d D. In a network as in
example (I), a periodic solution is, however, in gene
only reached asymptotically.

SincePmaxstd is non-negative, statement (i) implies th
Pmaxstd is a Lyapunov function of the network dynamic
From (ii) we conclude that on an attractor, all units fi
with the same period1 2 A. Note that there are man
different periodic solutions consistent with this conditio
i.e., units can fire synchronously or in some fixed ord
depending upon the initial conditions. Statement (iii)
a simple criterion to decide whether an attractor has b
reached. It can be used to derive the upper bound for
convergence time to an attractor which is stated in the
part of the corollary. A generalization to other connecti
topologies with more than two groups of neighbors
straightforward. We note that with zero delay, a perio
solution is always reached before the time2P0. In fact,
for delayless interaction, an attractor is reached as soo
every unit has fired once [3].

We emphasize that, for pulsesaijssd of finite width, a
periodic solution is, in general, only reached asympto
cally. To illustrate this point, let us consider a simple n
work of two units with pulsesassd andgssd as in exam-
ple (I). The interaction is given by (5) withD0 ­ 1 2 A
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and strengthJ12 ­ J21 ­ A and J11 ­ J22 ­ 0. The ini-
tial conditions areu1s0d ­ u0 with 0 , u0 , 1 andu2s0d ­
0. A straightforward calculation shows that the first fe
pulses occur att1

1 ­ 1 2 u0, t1
2 ­ 1 2 Au0 and t2

1 ­
t1
1 1 s1 2 Ad s1 1 Au0d, t2

2 ­ t1
2 1 s1 2 Ad s1 1 A2u0d.

The following intervalsP
f
k ­ t

f11
k 2 t

f
k are given by the

equation

P
f11
k 2 P

f
k ­ 2s1 2 A2d

h
P

f
k 2 s1 2 Ad

i
, (8)

wherek ­ 1, 2 andf $ 1. Thus a periodic solution with
P

f
k ; 1 2 A is only reached asymptotically. Moreove

the typical numberf of firings per unit which are needed t
reduce the distancex ­ P

f
k 2 s1 2 Ad from the attractor

by a factor of 1ye diverges asA °! 1. Nevertheless,
the time scale of (asymptotic) convergence to the perio
solution, defined ast ­ f s1 2 Ad ~ s1 1 Ad21 remains
bounded and is of order 1, whateverA. In this sense,
there can be rapid phase locking even for networks w
interaction pulses of finite width.

We stress that the theorem applies to networks w
excitatory coupling only. For inhibitory connections o
mixtures of excitation and inhibition, the situation ca
be quite different. As a simple example, we consid
a network with inhibitory coupling of strength

P
j Jij ­

A , 0 and jAj , 1, where all connections have the sam
long delayaijssd ­ dss 2 Dd with 1 , D , 1 2 A; ds?d
denotes the Diracd function, and we assume instantaneo
resetgissd ­ dssd. If all units are started with identica
initial conditions, they remain synchronous thereafter.
straightforward consideration shows that the intersp
intervals do not approach a constant value but altern
between 1 and1 2 2A. Thus, in contrast to the excitator
case, the final state has the minimal period2 s1 2 Ad,
and Pmaxstd as defined in (7) oscillates. The oscillatio
of interspike intervals is due to a generic instability
inhibitory systems: A unit which has received a fir
inhibitory input needs more time to reach the threshold a
is therefore prone to receiving even more inhibition.

After these remarks, let us now turn to the proof of t
theorem. It proceeds in five steps and takes the rest o
paper.

Step 1.—Integration of (1) yields

uistd ­ t 1 uis0d 2
X
f

hist 2 t
f
i d

1
X

j

Jij

X
f

eijst 2 t
f
j d , (9)

with hissd ­ eijssd ­ 0 for s # 0 and hissd ­Rs
0 giss0dds0, eijssd ­

Rs
0 aijss0dds0 for s . 0. The

summation over f runs over all firing times with
0 # t

f
i , t and0 # t

f
j , t, respectively. Due to condi

tions (3) and (4), bothhi andeij are increasing functions
Furthermore, because of the normalization ofaij andgi ,
we havehissd ­ eijssd ­ 1 for s $ D.

Step 2.—We show that the minimum interval betwee
two pulses is longer than or equal to1 2 A. To do so,
,

ic
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r

e

s

A
e
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f
t
d

e
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let us consider the shortest interval that has occur
before time t, Pminstd ­ mink,fhtf11

k 2 t
f
k j 0 # t

f
k ,

t
f11
k # tj. We choose a uniti and a firing timetF11

i # t
such that tF11

i 2 tF
i ­ Pminstd. Since firing requires

uist
f
i d ­ 1 immediately before pulse emission, it follow

thatuistF11
i d 2 uistF

i d ­ 0. Using Eq. (9), we find

0 ­ Pminstd 2 Dhi 1
X

j

JijDeij , (10)

with

Dhi ­
X
f

h
histF11

i 2 t
f
i d 2 histF

i 2 t
f
i d

i
, (11)

Deij ­
X
f

h
eijstF11

i 2 t
f
j d 2 eijstF

i 2 t
f
j d

i
. (12)

Reordering of the terms yields

Dhi ­ histF11
i 2 tF

i d

1

F21X
f­1

h
histF11

i 2 t
f
i d 2 histF

i 2 t
f
i d

i
. (13)

Sincehissd is increasing, we findDhi $ hisPmind. Sim-
ilarly,

Deij ­ eijstF11
i 2 t1

j d

1
X
f­1

h
eijstF11

i 2 t
f11
j d 2 eijstF

i 2 t
f
j d

i
, (14)

with tF11
i ­ tF

i 1 Pmin andt
f11
j . t

f
j 1 Pmin. Because

eijssd is increasing, the second term is nonpositive. T
first term is bounded by one and thusDeij # 1. Using
these results in Eq. (10), we find

Pmin $ hisPmind 2 A . (15)

Since, due to condition (4), limd°!0 hisdd . A, hisDd ­
1 with D , 1 2 A, and d2hiyds2 # 0, it follows that
Pmin $ 1 2 A.

Step 3.—We show that ifPmaxstd as defined in (7)
increases at a timetp, it either increases farther at a late
time t0 with tp , t0 , tp 1 P0 or we havePmaxstpd #

1 2 A. Let us assume thatPmax increases at a timetp

and does not increase afterwards. This implies that th
is a unit i with tF11

i ­ tp and tF11
i 2 tF

i ­ Pmaxstpd
and Pmaxstd # Pmaxstpd for t . tp. Since uistF11

i d 2

uistF
i d ­ 0, we have with (11) and (12)

0 ­ Pmaxstpd 2 Dhi 1
X

j

JijDeij . (16)

We derive bounds forDhi and Deij . Because all argu-
ments on the right-hand side of (11) are not smaller th
1 2 A andhis1 2 Ad ­ 1, Eq. (11) yieldsDhi ­ 1. In
order to find a lower bound for (12), we split the firing
timest

f
j of a given unitj into two groups. The first group

G1 contains firings beforetF
i 2 D, i.e., G1 ­ htf

j j 0 #

t
f
j # tF

i 2 Dj. Sinceeijssd ­ 1 for s . D [cf. (3)], we
1757
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haveeijstF
i 2 t

f
j d ­ eijstF11

i 2 t
f
j d ­ 1 for all t

f
j [ G1.

Thus, the sum in (12) taken over firingst
f
j [ G1 van-

ishes. It follows that the sum on the right-hand side
(12) can be restricted to firingsG2 ­ htf

j j t
f
j . tF

i 2 Dj.
SincePmax is the maximal interval that can occur in grou
G2, each neuron must fire at least once in the inter
ftF

i 2 D, tF11
i 2 Dg. We repeat the same arguments

in (14) and findDeij $ 1 for each unitj. The sum over
j in (16) yields

Pmaxstpd # 1 2 A . (17)

Thus, if Pmaxstd increases once, it must either increa
further orPmaxstd is bounded from above by1 2 A.

Step 4.—We show that an increasingPmaxstd is not
possible. Since intervals cannot be longer thanP0, an
increasingPmaxstd must converge to a limitP1 # P0. On
the attractor, at least one unit must assume the maxim
interval P1, and this value is approached from below.
this case, we can use the arguments of step 3 in orde
show thatP1 # 1 2 A. On the other hand,1 2 A is the
minimum interval. ThereforeP1 cannot be approache
from below. It follows that Pmaxstd cannot increase
and this proves part (i) of the theorem. More genera
the preceding arguments show that on every perio
solution Pmaxstd ­ 1 2 A. This proves assertion (ii) o
the theorem.

Step 5.—We prove part (iii) of the theorem. Le
us assume thatPmaxstd decreases att ­ t0 and stays
constant during a timet0 # t # t0 1 D. This is possible
only if at some pointt0 with t0 # t0 # t0 1 D, there
is a unit i with firings tF

i , tF11
i in the search window

ft0 2 2P0, t0g such thattF11
i 2 tF

i ­ Pmaxst0d and tF
i $

t0 2 2P0 1 D. Thus, tF
i is not at the beginning, but in

the interior of the search interval. In this case, we c
apply the arguments of steps 3 and 4 in order to der
the boundPmaxst0d # 1 2 A. Thus a periodic solution
with Pmaxstd ; Pmin has been reached as soon asPmaxstd
stays constant for a timeD.

Finally, we prove the first part of the Corollary. In th
situation of example (II), each unit receives connectio
from ns1d 1 ns2d other units. Between two firings o
an oscillator i, ks1d # ns1d signals of strengthJs1d and
ks2d # ns2d signals of strengthJs2d may arrive. In this
case, the interval of uniti is P0 2 ks1d Js1d 2 ks2d Js2d.
More generally, the interval takes one out of at mo
sns1d 1 1d sns2d 1 1d discrete values. SincePmaxstd must
decrease at least once during a timeD, a periodic solution
must be reached before2P0 1 sns1d 1 1d sns2d 1 1d ? D.
This finishes the proof.

To summarize, we have shown that a broad class
pulse-coupled oscillator networks with excitatory co
plings converge to periodic solutions where every unit fir
with a period1 2 A. This holds for arbitrary distributions
of delays as long as the maximum delay is shorter th
1 2 A. For a delay distribution with finite support, as i
example (I), a periodic solution is, in general, only reach
1758
f

l
s

m

to

,
ic

n
e

s

t

f

s

n

d

asymptotically. If there is a finite number of discrete d
lays, as in example (II), then the attractor is reached a
a finite time. Thus phase locking is completed rapidly.

Rapid phase locking could be an important mechani
for computation in neuronal systems [3,9,11]. We em
phasize that, on the attractor, units are phase locked
do not necessarily fire in unison and that many differe
solutions are possible, similar to the situation without d
lays [3–5]. So far our results are restricted to systems
identical oscillators without leakage terms, but we expe
that our analysis can be used as a starting point for sit
tions with a richer structure.
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