Files

Abstract

Exploiting local stability we show what neuronal characteristics are essential to ensure that coherent oscillations are asymptotically stable in a spatially homogeneous network of {\em spiking\/} neurons. Under standard conditions, a necessary and in the limit of a large number of interacting neighbors also sufficient condition is that the postsynaptic potential is increasing in time as the neurons fire. If the postsynaptic potential is decreasing, oscillations are bound to be unstable. This is a kind of locking theorem and boils down to a subtle interplay of axonal delays, postsynaptic potentials, and refractory behavior. The theorem also allows for mixtures of excitatory and inhibitory interactions. On the basis of the locking theorem we present a simple geometric method to verify existence and local stability of a coherent oscillation.

Details

Actions

Preview