Towards P2P-Based Semantic Web Service
Discovery with QoS Support*

Le-Hung Vu, Manfred Hauswirth, and Karl Aberer

School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland
{lehung.vu, manfred.hauswirth, karl.aberer}@epfl.ch

Abstract. The growing number of web services advocates distributed
discovery infrastructures which are semantics-enabled and support qual-
ity of service (QoS). In this paper, we introduce a novel approach for
semantic discovery of web services in P2P-based registries taking into
account QoS characteristics. We distribute (semantic) service advertise-
ments among available registries such that it is possible to quickly iden-
tify the repositories containing the best probable matching services. Ad-
ditionally, we represent the information relevant for the discovery process
using Bloom filters and pre-computed matching information such that
search efforts are minimized when querying for services with a certain
functional/QoS profile. Query results can be ranked and users can pro-
vide feedbacks on the actual QoS provided by a service. To evaluate
the credibility of these user reports when predicting service quality, we
include a robust trust and reputation management mechanism.

1 Introduction

The increasing number of web services demands for an effective, scalable, and
reliable solution to look up and select the most appropriate services for the re-
quirements of the users. This is specifically complicated if numerous services
from various providers exist, all claiming to fulfill users’ needs. To solve these
problems, a system basically has to provide expressive semantic means for de-
scribing web services including functional and non-functional properties such as
quality of service (QoS), semantic search capabilities to search distributed reg-
istries for services with a certain functional and QoS profile, and mechanisms for
allowing users to provide feedbacks on the perceived QoS of a service that can
be evaluated by the system regarding their trustworthiness.

In this paper we present our approach to address these issues. It is based on
requirements from a real-world case study of virtual Internet service providers

* The work presented in this paper was (partly) carried out in the framework of
the EPFL Center for Global Computing and was supported by the Swiss National
Funding Agency OFES as part of the European project DIP (Data, Information,
and Process Integration with Semantic Web Services) No 507483. Le-Hung Vu is
supported by a scholarship of the Swiss federal government for foreign students.

C. Bussler et al. (Eds.): BPM 2005 Workshops, LNCS 3812, pp. 18{31] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards P2P-Based Semantic Web Service Discovery with QoS Support 19

(VISP) in one of our projectd]. In a nutshell, the idea behind the VISP busi-
ness model is that Internet Service Providers (ISPs) describe their services as
semantic web services, including QoS such as availability, acceptable response
time, throughput, etc., and a company interested in providing Internet access,
i.e., becoming a VISP, can look for its desired combination of services taking
into account its QoS and budgeting requirements, and combine them into a new
(virtual) product which can then be sold on the market. At the moment this
business model exists, but is done completely manually.

Since many ISPs can provide the basic services at different levels and with
various pricing models, dishonest providers could claim arbitrary QoS properties
to attract interested parties. The standard way to prevent this is to allow users of
the service to evaluate a service and provide feedbacks. However, the feedback
mechanism has to ensure that false ratings, for example, badmouthing about
a competitor’s service or pushing own rating level by fake reports or collusion
with other malicious parties, can be detected and dealt with. Consequently, a
good service discovery engine would have to take into account not only the
functional suitability of the services but also their prospective quality offered
to end-users regarding to the trustworthiness of both providers and consumer
reports. According to several empirical studies [I5,[11], this issue of evaluating
the credibility of user reports is one of the essential problems to be solved in the
e-Business application area.

To achieve the high scalability, in our work we focus on developing a de-
centralized discovery approach and for improved efficiency we use a structured
overlay network as the decentralized service repository system. In the following
we assume that web services are being described semantically including QoS
properties, for example, using WSMOH, service descriptions can be stored in
distributed registries, and users can provide feedbacks on the experienced QoS.
Based on these realistic assumptions we will devise a framework for P2P-based
distributed service discovery with QoS support.

Regarding the semantic characterization of Web Services several properties
can be considered, of which the most obvious are the structural properties of
the service interface, i.e., the input and output parameters of a service. Another
important aspect, in particular for distinguishing services with equivalent func-
tional properties, relates to QoS characteristics. In our approach we intend to
support both aspects. As described above, for QoS it is of interest to compare the
announced with the actual service performance, for which we take a reputation-
based trust management approach. Other characteristics of Web Services, in
particular the process structure of the service invocation also have been consid-
ered, e.g., Emekci et al [14], but we consider these as less important, since they
are difficult to use in queries and unlikely to be the primary selection condition
in searches, and thus not critical in terms of indexing. However, we may expect
that the service interface will be usually used as a search condition with good se-
lectivity among a large number of web services. In order to support these queries

! http://dip.semanticweb.org/
2 |http:/ /www.wmso.org/

http://dip.semanticweb.org/
http://www.wmso.org/

20 L.-H. Vu, M. Hauswirth, and K. Aberer

we have to index unordered key sets (corresponding to a service interface), where
the keys are usually taken from a (shared) domain ontology. To the best of our
knowledge, although the issue of indexing semantic data in structured overlay
networks has already been mentioned somewhere, e.g., [6L[12,29], none of them
have taken into account the structural properties of web services while indexing
semantic service descriptions for the benefits of service discovery.

The major contribution of this paper is the proposal of a new distributed
service discovery framework which is expected to be scalable, efficient and reli-
able. With the use of structured peer-to-peer overlays as the service repository
network, the system is highly scalable in terms of the number of registries and ser-
vices. Our approach uses multiple unordered key sets as index terms for semantic
web service descriptions, thus make it possible to quickly identify the registries
containing most likely matched services according to user requests. The local
semantic service matchmaking at a specific registry can also be performed effi-
ciently thanks to the combination of the ontology numerical encoding scheme [§]
with the pre-computation of the matching levels between service advertisements
and possible user queries [28] to reduce the time-consuming reasoning steps. In
addition, our search algorithm exploits the generalization hierarchy of the un-
derlying ontology for approximate matching and will use QoS information to
rank the search results according to preferences of users. Our QoS-based service
selection and ranking algorithm also takes into account the issue of trust and
reputation management sufficiently, thereby returning only the most accurate
and relevant results w.r.t. user requirements.

2 Related Work

Our framework uses a novel ontology-based approach to distribute service ad-
vertisements appropriately among a P2P network of registries. This method is
different from that of METEOR-S [31] and HyperCup [25] as we do not base
it on a classification system expressed in service or registry ontologies. In these
approaches, the choosing of a specific registry to store and search for a service
advertisement depends on the type of the service, e.g., business registry is used
for storing information of business-related services. In fact, these proposals is
good in terms of organizing registries to benefit service management rather than
for the service discovery itself. Although publishing and updating service de-
scription information based on their categories is relatively simple, it would be
difficult for users to search for certain services without knowing details of this
classification, and it would be hard to come up with such a common service
or registry ontology. To some extent our approach is similar to WSPDS [I7],
but our methods are specifically targeted at structured P2P overlay networks in
order to support more efficient service publishing and discovery. We use our P-
Grid P2P system [I] as the underlying infrastructure, which at the time of this
writing, is among the very few P2P systems which support maintenance and
updating of stored data. [26] indexes service description files (WSDL files) by a
set of keywords and uses a Hilbert-Space Filling Curve to map the n-dimensional

Towards P2P-Based Semantic Web Service Discovery with QoS Support 21

service representation space to an one-dimensional indexing space and hash it
onto the underlying DHT-based storage system. However, the issue of charac-
terizing a semantic service description as a multi-key query in order to support
semantic discovery of services has not yet been mentioned in this work. As afore-
mentioned, Emekci et al [I4] suggest to search services based on their execution
paths expressed as finite path automata which we consider less important since
this is difficult to use as primary selection condition in queries as user would
need to know and describe the execution flow of their required services.

Regarding QoS, although the traditional UDDI registry model does not refer
to quality of web services, many proposals have been devised to extended the
original model and describe web services’ QoS capabilities, e.g., QML, WSLA
and WSOL [I3]. The issue of trust and reputation management in Internet-
based applications as well as in P2P systems has also been a well-studied prob-
lem [111[15]. However, current QoS provisioning models have not sufficiently con-
sidered the problem of evaluating the credibility of reporting users. The existing
approaches either ignore this issue totally [3L[7,[16LB0] or employ simple methods
which are not robust against various cheating behaviors [I4[18]. Consequently,
the quality of ranking results of those systems will not be assured if there are dis-
honest users trying to boost the quality of their own services and badmouthing
about the others. [I0] suggests augmenting service clients with QoS monitoring,
analysis and selection capabilities. This is a bit unrealistic as each service con-
sumer would have to take the heavy processing role of both a discovery and a
reputation system. Other solutions [20,121}[23],[24] use mainly third-party service
brokers or specialized monitoring agents to collect performance of all available
services in registries, which would be expensive in reality.

An advanced feature of our architecture is that we perform the service discov-
ery, selection and ranking based on the matching level of service advertisements
to user queries both in terms of functionality and QoS as well as taking into
account trust and reputation adequately. Our QoS provisioning model is devel-
oped from [7,[16L[I8] using concepts of integrating QoS into service description
by [24] and [30]. The trust and reputation management mechanism originally
combines and extends ideas of [2L[9,[19] and is the first solution to address the
most important issues sufficiently.

3 A Model for P2P-Based Web Service Discovery with
QoS Support

Fig. [l shows the conceptual model of our distributed service discovery frame-
work.

Service advertisements with embedded QoS information are published in P2P-
based registries by various providers (1), and users can query for services with
certain functionalities and required QoS levels (2) using any registry peer as their
access point. The P2P-based registries then take care of routing the request to

3 lhttp://uddi.org/pubs/uddi-v3.0.2-20041019.htm

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

22 L.-H. Vu, M. Hauswirth, and K. Aberer

7. Collusive cheating

5. Invoke

6.Q05
Feedback: 2. Query

.
0
"

- \1. Publish ;
Fegistry peer 1 | Service
Provider
3. Forward
queries
/ Return
results Registry peer n 8. QoS reports Trusted
agents
- P2P Network
\-ﬂ

Fig. 1. Framework model

the peer(s) that can answer it (3). The results will be returned to the user (4)
and this user may invoke one of the found services (5). Additionally, users can
express feedbacks on the QoS they could obtain from a service to the registry
peers managing that service (6).

The evaluation of QoS reports by the registry peers has to account for mali-
cious reporting and collusive cheating of users (7) to get a correct view of the
QoS properties of a service. Additionally, we also allow trusted agents in the
model to provide QoS monitoring for certain services in the system (8). These
well-known trusted agents always produce credible QoS reports and are used
as trustworthy information sources to evaluate the behaviors of the other users.
In reality, companies managing the service searching engines can deploy special
applications themselves to obtain their own experience on QoS of some specific
web services. Alternatively, they can also hire third party companies to do these
QoS monitoring tasks for them. In contrast to other models [20,21],[23,[24,30] we
do not deploy these agents to collect performance data of all available services
in the registries. Instead, we only use a small number of them to monitor QoS
of some selected services because such special agents are usually costly to setup
and maintain.

Fig. @l shows the internal architecture of a registry peer.

The communication module provides an information bus to connect the other
internal components; interacts with external parties, i.e., users, trusted agents,
and service providers, to get service advertisements, QoS data, and feedbacks;
and provides this information to the internal components. Additionally, it is the
registry peer’s interface to other peers (query forwarding, exchange of service

Towards P2P-Based Semantic Web Service Discovery with QoS Support 23

Registry peer 1
‘_' Matchmaker =
Service management
Query l module
pri ing
module QoS-support
Module
1 Registry peer 2
Communication module
Service query
Service results
Service Service | QoS Evaluated
query E QoS data ert | query QoS

User User Trusted Service
agents Providers

Fig. 2. Registry Peer Structure

registrations and QoS data) and for the user to submit queries and receive re-
sults. The query processing module analyzes a semantic web service query into
user’s required functionality and the corresponding QoS demand of the needed
service and then forwards them to the matchmaker. The matchmaker compares
the functional requirements specified in a query with the available advertise-
ments from the service management module to select the best matching services
in terms of functionality. The list of these services is then sent to the QoS support
module, which performs the service selection and ranking, based on QoS infor-
mation provided in the service advertisements and QoS feedback data reported
by the users, so that the result contains the most relevant web services according
to user request. Providers are also able to query the evaluated QoS of their own
services and decide whether they should improve their services’ performance or
not.

4 Service Description, Registration, and Discovery

A semantic service description structure stored in a peer registry includes:

— a WSDL specification of the service.

— service functional semantics in terms of service inputs, outputs, pre-conditions,
post-conditions and effects, which is described by WSMO ontology concepts
using the techniques proposed by [27]]

— optional QoS information with the promised QoS for the service.

During operation of the system this information will be matched against se-
mantic queries which consist of:

— functional requirements of user in terms of service inputs, outputs, pre-
conditions, post-conditions and effects, also expressed in WSMO concepts.

24 L.-H. Vu, M. Hauswirth, and K. Aberer

— optional user’s QoS requirements provided as a list of triples {g;,n;, v;},
where g¢; is the required QoS parameter, n; is the order of importance of ¢;
in the query (as user preference) and v; is the user’s minimal required value
for this attribute.

Quality properties of web services are described by concepts from a QoS
ontology and then embedded into the service description file using techniques
suggested by Ran [24] and WS-QoS [30]. In our work, the value of a quality
parameter of a web service is supposed to be normalized to a non-negative real-
valued number regarding service-specific and call-specific context information
where higher normalized values represent higher levels of service performance.
For instance, a web service with a normalized QoS parameter value for reliability
of 0.99 will be considered as more reliable to another one with a normalized
reliability value of 0.90. In this case the normalized reliability is measured as its
degree of being capable of maintaining the service and service quality over a time
period T'. For experimental evaluations, we have developed a QoS ontology for
the VISP use-case using WSMO. This QoS ontology includes the most relevant
quality parameters for many applications, i.e., availability, reliability, execution
time, price, etc. We currently assume that users and providers share a common
ontology to describe various QoS concepts. However, this could be relaxed with
the help of many existing ontology mapping frameworks. The QoS provisioning
model is described in details in [32].

4.1 A Closer Look at Semantic Service Descriptions

In our architecture, a semantic service description, i.e., a service advertisement
or a service query, will be associated with a multi-key vector, which we call the
the characteristic vector of the service. Based on this vector service advertise-
ments are assigned to peer registries. Similarly, discovery of registries containing
services relevant to a user query is also based on the characteristic vector of the
query itself.

First, all ontological concepts representing inputs and outputs of a web service
advertisement /service request will be categorized into different Concept Groups
based on their semantic similarity. This similarity between two concepts is com-
puted based on the distance between them in the ontology graph and their num-
ber of common properties as proposed by previous work, e.g., [5]. Each group has
a root concept defined as the one with the highest level in the ontology graph,
i.e., the most general concept, among all member concepts.

A semantic service description, i.e., a service advertisement or a service query,
is then characterized by the concept groups to which the service’s inputs and
outputs belong. According to [8], ontological concepts can be mapped into nu-
merical key values in order to support semantic reasoning efficiently. Therefore,
we can utilize keys to represent concepts and a group of similar concepts can be
associated with a Bloom key built by applying & hash functions hq, hs, - -, hg to
the key of each concept member, allowing us to quickly check the membership
of any concept to that group [4]. For each input I; (or output O;) of a service,

Towards P2P-Based Semantic Web Service Discovery with QoS Support 25

we firstly find the concept group C'G; that it belongs to. As the order of in-
puts/outputs of a service generally has no sense in determining its functionality,
we define a total ordering of various concept groups as in Definition [l so that
service queries/advertisements with similar interfaces would have the same char-
acteristic vector regardless the differences in the order of their parameters. The
characteristic vector of this service description is then represented by the list of
corresponding Bloom keys of all C'G;s, sorted in the descending order of C'G;.

Definition 1. A concept group CG, is considered as having higher order (>)
than another group CG, iff:

1. The level of CG, in the ontology graph is higher than the level of CG, or:
2. Both CG,; and CG, have the same level and C'G; is in the left of CG,, in
the ontology graph.

The partitioning of ontological concepts is illustrated in Fig. Flwhere C; is
an ontological concept and C'G; is a concept group. The task of fragmenting
the ontology graph is similar to that of relational and semi-structured data-
base systems, which could be performed semi-automatically by the system with
additional user support.

In Fig. Bl the root concepts of CG1, CGy, CG3, CGy, CGs and CGg are Co,
Cs, Cy4, C5, Cg and Cy, respectively. The total ordering of all concept groups
is CG1 > CGy > CG3 > CGy > CG5 > CGg. As an example, let us assume
that we have a service description S; with inputs C7, C14, C1p and outputs
C12, C16 which belong to concept groups CGi, CGg, CGe and CGy4, CG3,

CGs

Fig. 3. Ontology graph partitioning

26 L.-H. Vu, M. Hauswirth, and K. Aberer

respectively. Regarding the above ordering relation, this service description is
then represented by the characteristic vector V. = {ki, ka, ke, kq, k3, ks }, where
k; is CG;’s Bloom key and kg is a dump value to separate Si’s inputs and
outputs.

Although we are using only inputs and outputs of a service in its multiple-key
representation, we believe that the extension of this idea to other features in a
semantic service description, e.g., pre-conditions, post-conditions, effects, could
be done in a similar fashion. The strategy used for partitioning the ontological
graph will not affect the correctness but mainly the efficiency of the discovery
algorithm. For instance, although it is tempting to allow a concept to belong to
more than one group while partitioning, this increases the discovery time because
we need to contact different registries to search for all possibly matching services.
Therefore, we prefer to have only one group for each concept. For simplicity, we
currently assume that all registries agree on one ontology of concepts, but this
restriction will be relaxed soon with our on-going work.

4.2 Mapping of Service Advertisements to Registries

Each registry peer is responsible for managing certain web services that operate
on a certain set of concepts. The mechanism to assign these sets to peers works
as follows:

1. Each vector V; = {ki1, ki, ..., kin}, where k;; (j = 1..n) is a group’s Bloom
key or dump value kg4, is mapped to a combined key K; using a special
function H, that includes all features of each individual member key &;;.

2. Using the existing DHT-based searching mechanism of the underlying P-
Grid network [I], we can easily find the identifier RP; of the registry peer
corresponding to the index key Kj;.

3. The registry peer RP; is responsible for storing the description of those
services with the same characteristic vector V.

This assignment of services to registries during the publishing phase will help
us to quickly identify the registry(-ies) most likely to contain the semantic web
service descriptions matching with a service request during the discovery time.
Using Bloom filters, the step of checking the membership of a concept in certain
concept groups can be done fast and with very high accuracy level. Therefore,
the computation of the characteristic vector of a service request can be done
efficiently. Eventually, the question of searching for the registry(-ies) most likely
to store a matched services becomes the problem of finding the peers capable
of answering a multi-keyword query which corresponds to this characteristic
vector in the P2P network. This problem can be solved by using one of the two
following approaches. The first one is to simply concatenate all k;;s together
and then use this as the index/search key in the underlying P2P network. The
second possibility is to deploy another type of peers in the network as index peers
to keep identifiers of those registries that manage keywords related to various
combination of k;;s. Of course, there is another naive method in which we can

Towards P2P-Based Semantic Web Service Discovery with QoS Support 27

search for all peers storing each concept term and then intersect all partial
matches to get the final results. However, we reason that this approach would
be inefficient due to the following reason. As the semantics of the parameters in
a service interface are generally different from each other, a registry containing
service advertisements with only one satisfactory parameters does not necessarily
store service descriptions with the full interface as user requires. This means it
would be costly to forward the service query to many (distributed) registries and
wait for all semantic matchmaking in these repositories to terminate and get the
final results.

We have decided to use the first method because in this way, the keyword
generating function H,. will generate similar keys K;s for services with simi-
lar characteristic vectors {k;1, ki2, . . ., kin }. Since P-Grid uses prefiz-based query
routing as its search strategy, services corresponding to similar K;s, which are
likely to offer comparable functionalities, will be assigned to registries adjacent
to each other (P-Grid clusters related information). This is important as with
the very high number of registries and published services, the query for services
will only need to be forwarded to a small number of adjacent peers. Otherwise,
we will have to wait for the results to be collected from a lots of widely distrib-
uted registries, making the searches become highly inefficient. Moreover, this is
advantageous for the exchanges of QoS reports and user reputation information
among neighboring registries during the QoS predicting process later.

Regarding Fig. Bl supposed that we have three services: S operating on two
concepts Cy,C3 and producing Cy, So operating on two concepts Cs, Cy and
producing Ch4, S3 operating on two concepts Cs, Cy and producing Ci5. The
characteristic vectors of Sy will be {ki, k2, kq, k3} whereas S3, S3 will have the
same characteristic vector as {k1, ke, kq, ks }, with k1, ko, k3, ke is the Bloom key
of the concept groups CG1,CGs, CGs, CGg and kg is a dump key, respectively.
According to our way of distributing service descriptions, S; will be assigned
to one registry peer P; with index key K; = ki||ka|kq||ks and Sa, S5 will be
assigned to another peer P, with another index entry Ko = ki ||ks]|kal 6.

4.3 Pre-computation of Service Matching Information to Support
Semantic Service Discovery

Since the publishing task usually happens once and is not a computationally
intensive process, we can devote more time in this stage to reduce later discovery
time, as suggested by Srinivasan et al [28]. However, their proposed approach
is not scalable since it requires to store the matching information of all services
which match each concept ¢; in the ontology, thus producing much redundant
information. Hence, we improve their method by observing that if a concept ¢;
of a group CG;, is similar to another concept ¢; (also belonging to this group),
then both of them should have approximately the same distance, i.e., the same
level of semantic similarity, to the root concept of CG;.

Accordingly, for each CG;, we store a matching list containing semantic dis-
tances from each parameter of each service to C'G;’s root concept. For example,
assuming that we have a registry peer responsible for managing those services

28 L.-H. Vu, M. Hauswirth, and K. Aberer

which operate on the list of concept groups CG1, CGs,..., CGg. Then in the
matching table of this registry, we store for each group CG;, i = 1..k, a list Ldst;
of records {[Si1,d1], [Si2,d2], - -, [Sin,dn]}, where S;; represents a web service,
d; € [0,1] is the semantic similarity between the concept represented by one
parameter of S;; with the root concept of CG;, j = 1..n, n is the number of
services in this registry.

A query for a service is first submitted to a registry peer. At this entry point
the characteristic vector of the query is computed as in Section [£]] and Sec-
tion 4.2l Using the combined key of this characteristic vector as a search key, the
query is then forwarded by P-Grid’s routing strategy to a registry most possibly
containing matching services. For each service query’s parameter ¢; belonging to
group C'G;, the discovery algorithm at this registry computes its matching level
d; with CG;’s root concept rc;. Afterward, it finds the list L; of those services
S;js each of which has (at least) one parameter with an approximate matching
level d;; with rc;, i.e., d;; = d;, by browsing the matching list Ldst; of each rc;.
We then intersect all L;s to get the list L. of possibly matching services. Note
that if ¢;; and ¢;2 have the same matching level d; with C'G;’s root concept, we
can only conclude that ¢;; and ¢;o are possibly similar. Consequently, simply in-
tersecting all L;s does not help us in finding the services which accurately match
the query as in [28]. However, they do allow us to select the list of all possible
matches and filter out non-related services, which really reduces the searching
time in case the number of registered services is high. Finally, we utilize another
service semantic matchmaking algorithm, e.g. [22], to further select from L. the
list L of most suitable services in terms of functionality.

For supporting queries with QoS requirements, we use another table to store
the matching information for frequently accessed QoS attributes. With each
QoS attribute g; in this QoS matching table, we have a list Lgos; of records
{Sij, wij, predicted;; }, in which S;; identifies a service, w;; is a weight depending
on the semantic similarity between ¢; and the QoS attribute g;; supported by S;;,
and predicted;; is the value of ¢;; predicted by our QoS-based service selection
and ranking engine. Apparently, we only store in Lgos; information of those
Si;s with w;;s greater than a specific threshold. The idea behind is that we will
give higher ranks for services which offer the most accurate QoS concepts at
the higher levels compared to the ones required by users. Note that although it
is possible to use QoS properties as ranking criteria for service queries without
explicit QoS requirements, we have not yet employed this in our current study.
Therefore, the QoS-based service selection and ranking phase will be performed
only if users provide their QoS requirements explicitly in corresponding queries.

Given the list L of services with similar functionalities, the discovery engine
performs the QoS-based service selection and ranking as in Algorithm [I1

To facilitate the discovery of services with QoS information, we must evaluate
how well a service can fulfill a user query by predicting its QoS from the service’s
past performance reported in QoS feedbacks. In our model, we apply time se-
ries forecasting techniques to predict the quality values from various information
sources. Firstly, we use the QoS values promised by providers in their service ad-

Towards P2P-Based Semantic Web Service Discovery with QoS Support 29

Algorithm 1 QosSelectionRanking(ServiceList L, ServiceQuery Q)

1: Derive the list of QoS requirements in Q: Lq = [q1, n1, V1], -, [¢s, Ts, Vs]
2: Initialize QosScore[S;] = 0.0 for all services in L;

3: for each quality concept ¢; € Ly do

4 for each service S; € L do

5 Search the list Lqos of g; for Si;

6: if S; is found then

7 predicted;j —v;

8

PartialQosScore = wi; — ;
J
QosScore|S;] = QosScore[S;] + "flj PartialQosScore;

>
9: else
10: Remove S; from L;
11: end if
12: end for
13: end for

14: Return the list L sorted in descending order by QosScore[S;] s;

vertisements. Secondly, we collect consumers’ feedbacks on QoS of every service.
Thirdly, we use reports produced by trusted QoS monitoring agents. In order
to detect possible frauds in user feedbacks, we use reports of trusted agents as
reference values to evaluate behaviors of other users by applying a trust-distrust
propagation method and a clustering algorithm. Reports that are considered as
incredible will not be used in the predicting process. Through various experi-
ments, this proposed service selection and ranking algorithm is shown to yield
very good results under various cheating behaviors of users, which is mainly due
to the fact that the use of trusted third parties monitoring QoS of a relatively
small fraction of services can greatly improve the detection of dishonest behav-
ior even in extremely hostile environments. The detail of this QoS-based service
selection and ranking phase as well as various experimental results are presented
in [32].

5 Conclusions and Future Work

In this paper we proposed a new P2P-based semantic service discovery approach
which uses a natural way of assigning service descriptions to registry peers. Also,
we presented a service selection and ranking process based on both functional
and QoS properties. In order to support flexible queries we index unordered key
sets where the keys are taken from a shared domain ontology. This problem of
indexing of web service descriptions in structured overlay networks to support
service discovery has not been addressed so far in the literature. The QoS model
includes a user feedback mechanism which is resilient against malicious behaviors
through the application of a trust and reputation management technique that
allows us to discover a variety of cheating attempts by providers and service
users. As we use a P2P system as the underlying infrastructure, our system scales
well in terms of number of registries, search efficiency, number of properties in
service descriptions, and number of users.

30 L.-H. Vu, M. Hauswirth, and K. Aberer

We already implemented the QoS-based service selection and ranking algo-
rithm with trust and reputation evaluation techniques as a QoS support module
in our framework. Many experiments were also performed to prove the effec-
tiveness of our trust and reputation approach under various situations. In the
next stage, we will implement the matchmaker based on the work initiated by
Paolucci et al [22] and the service management module based on the UDDI
standard. The existing implementation of the P-Grid system, Gridella@, is used
as the basis for the communication module. The next step would be to extend
our model such that registry peers are able to manipulate with heterogeneous
and distributed ontologies. Also, it would be beneficial to extend the indexing
scheme to include service pre-conditions, post-conditions, effects, etc., in seman-
tic service description structures. Moreover, further work should be done on the
use of QoS properties as ranking criteria for service queries without explicit QoS
requirements. In addition, we are studying the possibility of developing and uti-
lizing a caching mechanism to exploit the locality and frequency of service usages
in the system.

References

1. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt: P-Grid: a self-organizing structured P2P system,
SIGMOD Rec., 32(3):29-33, 2003.

2. K. Aberer and Z. Despotovic: Managing trust in a peer-2-peer information system,
Proceedings of CIKM’01, USA, 2001.

3. A. S. Bilgin and M. P. Singh: A DAML-based repository for QoS-aware semantic
web service selection, Proceedings of ICWS’04, USA, 2004.

4. B. H. Bloom: Space/Time trade-offs in hash coding with allowable errors, Commaun.
ACM, 13(7):422-426, 1970.

5. S. Castano, A. Ferrara, S. Montanelli, and G. Racca: Matching techniques for re-
source discovery in distributed systems using heterogeneous ontology descriptions,
Proceedings of ITCC’04, USA, 2004.

6. S. Castano, A. Ferrara, S. Montanelli, and D. Zucchelli: Helios: a general framework
for ontology-based knowledge sharing and evolution in p2p systems, Proceedings
of DEXA’03, USA, 2003.

7. Z. Chen, C. Liang-Tien, B. Silverajan, and L. Bu-Sung: UX - an architecture
providing QoS-aware and federated support for UDDI, Proceedings of ICWS’03.

8. I. Constantinescu and B. Faltings: Efficient matchmaking and directory services,
Proceedings of WI'03, USA, 2003.

9. F. Cornelli, E. Damiani, S. C. Vimercati, S. Paraboschi, and P. Samarati: Choosing
reputable servents in a P2P network, Proceedings of WWW’02, USA, 2002.

10. J. Day and R. Deters: Selecting the best web service, Proceedings of CASCON’04,
2004.

11. Z. Despotovic and K. Aberer: Possibilities for managing trust in P2P networks,
Technical Report 1C200484, Swiss Federal Institute of Technology at Lausanne
(EPFL), Switzerland, Nov. 2004.

* lhttp://www.p-grid.org/Software.html

http://www.p-grid.org/Software.html

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Towards P2P-Based Semantic Web Service Discovery with QoS Support 31

H. Ding, I. T. Solvberg, and Y. Lin: A vision on semantic retrieval in p2p network.
Proceedings of AINA’04, USA, 2004.

G. Dobson: Quality of Service in Service-Oriented Architectures. http://digs.
sourceforge.net /papers/qos.html, 2004.

F. Emekci, O. D. Sahin, D. Agrawal, and A. E. Abbadi: A peer-to-peer framework
for web service discovery with ranking. Proceedings of ICWS’04, USA, 2004.

A. Jgsang, R. Ismail, and C. Boyd: A survey of trust and reputation systems for
online service provision, Decision Support Systems, 2005 (to appear).

S. Kalepu, S. Krishnaswamy, and S. W. Loke: Reputation = f(user ranking, com-
pliance, verity), Proceedings of ICWS 04, USA, 2004.

F. B. Kashani, C.-C. Chen, and C. Shahabi: WSPDS: Web services peer-to-peer
discovery service. Procs. of International Conference on Internet Computing, 2004.
Y. Liu, A. Ngu, and L. Zheng: QoS computation and policing in dynamic web
service selection. Procs of WWW Alt. Conf., USA, 2004.

E. Manavoglu, D. Pavlov, and C. L. Giles: Probabilistic user behavior models,
Proceedings of ICDM’03.

E. M. Maximilien and M. P. Singh: Reputation and endorsement for web services,
SIGecom Exch., 3(1):24-31, 2002.

M. Ouzzani and A. Bouguettaya: Efficient access to web services, IFEFE Internet
Computing, p.p. 34—44, March/April 2004.

M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara: Semantic matching of
web services capabilities, Proceeding of ISWC’02, UK, 2002.

C. Patel, K. Supekar, and Y. Lee: A QoS oriented framework for adaptive manage-
ment of web service based workflows, Proceeding of Database and Expert Systems
2003 Conf., p.p. 826835, 2003.

S. Ran: A model for web services discovery with QoS, SIGecom Exch., 4(1):1-10,
2003.

M. Schlosser, M. Sintek, S. Decker, and W. Nejdl: A scalable and ontology-based
P2P infrastructure for semantic web services, Proceeding of P2P’02, USA, 2002.
C. Schmidt and M. Parashar: A peer-to-peer approach to web service discovery,
Proceeding of WWW Conf., 2004.

K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller: Adding semantics to web
services standards, Proceedings of ICWS’03.

N. Srinivasan, M. Paolucci, and K. P. Sycara: Adding OWL-S to UDDI, imple-
mentation and throughput, Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition, USA, 2004.

C. Tang, Z. Xu, and S. Dwarkadas: Peer-to-peer information retrieval using self-
organizing semantic overlay networks, Proceedings of ACM SIGCOMM’03, USA,
2003.

M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller: A concept for QoS
integration in web services, Proceedings of WISEW’03, Italy, 2003.

K. Verma, K.Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller:
METEOR-S WSDI: A scalable P2P infrastructure of registries for semantic pub-
lication and discovery of web services, Inf. Tech. and Management, 6(1):17-39,
2005.

L-. H. Vu, M. Hauswirth, and K. Aberer: QoS-based service selection and ranking
with trust and reputation management, Proceedings of OTM’05, R. Meersman
and Z. Tari (Eds.), LNCS 3760, p.p. 466-483, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

