Files

Action Filename Description Size Access License Resource Version
Show more files...

Abstract

Inspired by the combinatorial denoising method {\tt DUDE} \cite{WOSVW04}, we present efficient algorithms for implementing this idea for arbitrary contexts or for using it within subsequences. We also propose effective, efficient denoising error estimators so we can find the best denoising of an input sequence over different context lengths. Our methods are simple, drawing from string matching methods and radix sorting. We also present experimental results of our proposed algorithms.

Details

Actions