
Tashkent+: Memory-Aware Load Balancing and
Update Filtering in Replicated Databases

Sameh Elnikety Steven Dropsho Willy Zwaenepoel

School of Computer and Communication Sciences
EPFL

Switzerland

ABSTRACT
We present a memory-aware load balancing (MALB) technique
to dispatch transactions to replicas in a replicated database. Our
MALB algorithm exploits knowledge of the working sets of
transactions to assign them to replicas in such a way that they
execute in main memory, thereby reducing disk I/O. In support
of MALB, we introduce a method to estimate the size and the
contents of transaction working sets. We also present an
optimization called update filtering that reduces the overhead of
update propagation between replicas.

We show that MALB greatly improves performance over other
load balancing techniques – such as round robin, least
connections, and locality-aware request distribution (LARD) –
that do not use explicit information on how transactions use
memory. In particular, LARD demonstrates good performance
for read-only static content Web workloads, but it gives
performance inferior to MALB for database replication as it
does not efficiently handle large requests. MALB combined
with update filtering further boosts performance over LARD.

We build a prototype replicated system, called Tashkent+, with
which we demonstrate that our MALB and update filtering
techniques improve performance of the TPC-W and RUBiS
benchmarks. In particular, in a 16-replica cluster and using the
ordering mix of TPC-W, MALB doubles the throughput over
least connections and improves throughput 52% over LARD.
MALB with update filtering further improves throughput to
triple that of least connections and more than double that of
LARD. Our techniques exhibit super-linear speedup; the
throughput of the 16-replica cluster is 37 times the peak
throughput of a standalone database due to better use of the
cluster’s memory.

Categories and Subject Descriptors
H.2.4 [Systems] – distributed databases, concurrency.

General Terms
Measurement, Performance, Design.

Keywords
Database replication, Load balancing.

1. INTRODUCTION
Database replication on a cluster of servers is a cost-effective
approach for scaling databases. Recent research prototypes
[ACZ03-2, DS06, EDP06, LKPJ05, PA04, PJKA05, ZP06]
show promise for high scalability using tens of database
replicas.

With conventional database replication on a cluster, client
requests are intercepted by a load balancer which hides the
replicated nature of the cluster and distributes transactions to
the database replicas using a load balancing strategy such as
round robin or least active connections. These strategies balance
the load well, but, as we will show, they can introduce memory
contention, which causes the system to perform poorly.

To reduce memory contention in static content clustered Web
servers, content-aware load balancing techniques have been
introduced, such as LARD (Locality-Aware Request
Distribution) [PAB+98]. LARD biases dispatching of requests
to replicas at which the same requests were last served, in the
expectation that content recently served is still memory
resident.

LARD has proven very effective for read-only static content
Web workloads, which consist of mostly small files. As we will
show in this paper, LARD can cause poor performance for
workloads, such as database transaction workloads, in which
requests with large working sets occur more frequently.
Furthermore, having been designed for read-only workloads,
LARD has no provision for efficiently handling updates.

In this paper we introduce the notion of memory-aware load
balancing. A memory-aware load balancer explicitly uses
information about the size and the contents of the working set
of transactions to assign them to replicas in such a way that they
execute in memory. A memory-aware load balancer faces two
challenges: how to estimate the working set size and contents of
transactions, and how to use this information to favor in-
memory execution.

Many memory-aware load balancing algorithms are possible,
differing in the way they meet these challenges. In Section 2 we
present one such algorithm, MALB-SC, and demonstrate that it
has good performance on database workloads resulting from e-
commerce applications. Such workloads are memory-intensive.
We assume the database application has a fixed-set of
parameterized transaction types. Many e-commerce database
applications map to this model to enforce the business logic; ad-
hoc access to the database is restricted and the database is
accessed through a pre-defined set of interactions.

While the working set of an arbitrary process is difficult to
predict, the working sets of database transactions are dominated
by the tables and indices needed for processing. By discovering
the tables and indices referenced, and how they are accessed
from the database query execution plan, MALB-SC estimates

the working set size and contents for different transaction types.
Using the working set estimates, MALB-SC creates transaction
groups whose combined working sets fit in main memory so
they can efficiently share replicas. Roughly speaking, each
transaction group is assigned a sufficient number of replicas to
handle its load.

For updates, we present update filtering to reduce the overhead
of update propagation in the replicated system. MALB-SC
dynamically assigns each replica a subset of the transaction
types. If the system configuration and workload characteristics
are stable, the replica can drop tables not needed for its subset
of transaction types. As a result, the replica does not receive
updates for those tables.

We build Tashkent+, a prototype write-anywhere database,
replicated on a LAN cluster. We demonstrate performance
improvements using the TPC-W and RUBiS benchmarks across
a range of workloads. In particular, running the update-
intensive ordering mix of the TPC-W benchmark on a 16-
replica cluster, our experiments show that MALB-SC doubles
(105% improvement) the throughput compared to least
connections and provides 52% more throughput than LARD.
MALB-SC with update filtering improves throughput to triple
(202% improvement) that of the least connections — another
full factor of improvement over just MALB-SC alone — and
more than doubles (126% improvement) that of LARD. Thus,
with the ordering mix, our techniques show a super-linear
speedup of 37x over a single system due to better use of the
cluster’s memory.

The contributions of this paper are the following:

1. We identify and explain why LARD algorithms do not
handle large requests well. We introduce memory-aware
load balancing, and we demonstrate that it handles such
requests better.

2. Memory-aware techniques require working set
information. We propose a number of methods to estimate
the working set size and contents of database queries.

3. We compare different degrees of how aggressively to pack
transaction types on the replicas. We show that memory-
aware techniques are effective even when the working set
information is approximate, but that there is a danger in
being overly aggressive in packing different transaction
types on to the same replica.

4. We propose the update filtering optimization in which
update propagation is selectively filtered to greatly reduce
the consistency load on the system and improve scalability.

5. We implement all of the above techniques, and show their
effects using the TPC-W and RUBiS benchmarks on a 16-
replica cluster.

The rest of the paper is organized as follows. Section 2 contains
a detailed description of the MALB-SC algorithm. In Section 3
we present update filtering. In Section 4 we discuss the
implementation of Tashkent+ and the experimental
environment. In Section 5 we present our experimental
evaluation. In Section 6 we discuss related work. We present
our conclusions in Section 7.

2. MALB-SC ALGORITHM
2.1 Overview
Here we present an instance of a memory-aware load balancing
algorithm we call MALB-SC. Other implementations and
improvements are certainly possible, however, our

implementation details many of the issues any memory-aware
algorithm must address.

The properties of a good memory-aware load balancing
algorithm are the following :

1. Dispatch transactions to replicas such that they fit together
in memory, avoiding memory contention.

2. Dynamically allocate more replicas to transaction types
that require more resources.

3. Respond to changes in the workload by rebalancing replica
allocation accordingly.

Our implementation, MALB-SC, uses estimates of the working
sets in order to create transaction groups such that each group
fits in the main memory of a database replica. Then, MALB-
SC dynamically allocates replicas to transaction groups.

The state of the database is continuously monitored to create
up-to-date estimates of the working sets using queries on
metadata for the tables. If changes in the working sets (i.e.,
growth/shrinkage) require re-grouping the transactions, new
transaction groups are formed. Throughout, replica allocation
continuously adjusts to the groupings and the needs of the
workload mix. Demanding groups get more replicas, while less
demanding groups give up excess replicas or even merge with
other lightly loaded groups to improve the efficiency of the
overall system. Next, we discuss how to estimate the working
sets, followed by creating transaction groups and dynamic
allocation of replicas.

2.2 Estimating Working Set Information
We use the execution plan as well as metadata from the
database to generate the working set estimate for each
transaction type. The load balancer requests from the database
the execution plan of the transaction type. The execution plan
contains the tables and indices used and how the database
accesses them. The load balancer uses this information to
compute estimates on the transaction’s use of memory, i.e., its
working set.

The following four categories of information represent an
increasing level of detail about transactions.

Transaction Type. The application provides the transaction
type to the load balancer when it requests a connection to start a
new transaction. Thus, when a request arrives, the load balancer
knows its type and uses the type information in its dispatching
decisions.

Working Set Size. The working set for processing a transaction
is dominated by the tables and indices referenced. Therefore, a
practical estimate on the working set size is the sum of the sizes
of the tables and indices referenced in the query execution plan.

Working Set Content. Knowing which tables and indices are
referenced is important when two or more transaction types
execute on a replica. The working sets of two transaction types
overlap when that they access common tables or indices. Shared
content is not double counted when estimating the combined
working set of transaction types.

Working Set Access Pattern. When a table or index is linearly
scanned, all its pages are brought to memory. In contrast, each
random access to a table likely only touches a handful of pages.
The working set differs considerably between the two access
styles. Taking the access pattern from the query execution plan
into account provides better estimates on the working set size

for a transaction instance. However, if many instances of a
transaction type with different parameters execute on a replica,
then the aggregate effect of many random accesses may result
in accessing all pages. We explore this topic in our experiments.

2.3 Creating Transaction Groups
With the working set information, we use a bin packing
heuristic to group transaction types so that their combined
working sets fit into available memory. We investigate the
following range of methods that use progressively more
information to construct groups.

Method MALB-S (Size only). We choose the well-known Best
Fit Decreasing (BFD) [L99] bin packing algorithm using only
the size of the working sets, not their contents. In BFD, the
largest objects (i.e., biggest transaction types) are greedily fit
first into the bins (i.e., memory) with the smaller objects fit in
last. Overlap of the working sets is not considered here. For
example, if transaction type T1 uses tables A and B, and T2
uses tables B and C, then the estimate of the memory needed to
pack T1 and T2 together is (|A| + 2 |B| + |C|).

Method MALB-SC (Size+Content). A more accurate estimate
is to avoid recounting shared content (e.g., shared tables). In the
prior example, T1 and T2 share table B. When considering
content in the estimate, the size shrinks to (|A| + |B| + |C|). The
BFD algorithm is modified to account for overlap. A
transaction type is added to the bin for which (1) the non-
overlap component fits in the available free space and (2) there
is maximal overlap. Because overlap reduces the sum of
combining working sets, this method packs groups more
efficiently than MALB-S and produces a better estimate on a
group’s aggregate working set size.

Method MALB-SCAP (Size+Content+Access Pattern).
Using all the referenced tables and indices as in MALB-S and
MALB-SC likely over-estimates the working set. We consider a
lower bound estimate made up of only the heavily used tables
and indices in the query plan. We define the heavily used tables
as those that are linearly scanned. The packing algorithm is the
same as for MALB-SC but the input is just the list of scanned
tables and indices for each transaction type and their sizes. In
general, fewer groups are generated. The working set may be
under-estimated which can result in over-packing of transaction
types into a single group (i.e., the group’s memory needs may
exceed the memory capacity of the replicas).

Overflow Transactions. Transaction types whose working set
estimates are larger than main memory are considered overflow
transaction types. Each overflow transaction type is assigned its
own group.

2.4 Replica Allocation
Load balancing requires some method of estimating the load on
each replica. The common technique of using outstanding
connections is too coarse when the complexity of transactions
varies greatly across the mix. In our system, the load balancer
continuously receives replica load information on the CPU and
the disk I/O channel utilization from lightweight daemons
running on each of the replicas. The key features of the re-
allocation process using this information are the following:

Group Load Calculation. The load balancer calculates the
load for each transaction group by averaging the (smoothed)
CPU and disk utilizations of all replicas assigned to that group.
For example, if a group is assigned three replicas having (CPU,
disk) utilizations (in %) of (45, 10), (40, 8), and (53, 9), the load
balancer would summarize the load as (46, 9) for the group.

Comparing Loads. To compare loads between groups — some
of which may be CPU-bound and others that may be I/O-bound
— we use MAX(CPU, disk) as the load function to indicate the
utilization of the bottleneck resource. Thus, we consider I/O-
bound transactions and CPU-bound transactions as equally
significant in their ability to limit the throughput of the system.
Other weighted functions could be used, but we find that the
simple MAX function works well.

Replica Allocation. We allocate additional replicas to the most
loaded group from the least loaded group. Instead of using the
current load statistics to determine the least loaded group, the
load balancer calculates via simple linear extrapolation what the
future load of each group would be if one of its replicas were
removed. In the prior illustration of three replicas having an
average load factor of 46, if one replica were removed the
estimate for the future average load would be 46 x 3/2 = 69, i.e.,
the same total load but distributed over two replicas.

Using an estimate of the future load accommodates naturally
the higher sensitivity to re-allocations of groups having just a
few replicas. For example, consider two groups, one with two
replicas and an average utilization factor of 20 and another with
six replicas and an average utilization factor of 25. The future
average load of each group if one replica were removed would
be 40 and 30, respectively. Thus, it is better to re-allocate one
from the group with six replicas rather than the from the group
of two replicas even though the current load factor is lower in
the latter.

Finally, because load measures are somewhat noisy, we add
hysteresis by restricting re-allocations unless the most loaded
group (to which a replica would be added) has a utilization of at
least 1.25 times that of the (future) least loaded group (from
which the replica would be taken).

Fast Re-allocation. If the workload characteristics change
dramatically, re-allocating only one replica at a time could
result in poor performance while the system slowly
reconfigures. Faster convergence on reconfiguration is done by
solving a simple set of simultaneous equations on the estimate
of the total resource needs of each group. We estimate a group’s
total resource needs by multiplying its average utilization by the
number of replicas allocated to it. For example, a system with
two groups, a group M having three replicas at 70% utilization
and another group N with seven replicas at 10% utilization
would have the balance equations:

(0.70 x 3) / m = (0.10 x 7) / n

m + n = 10

The solution is m=7.5 and n=2.5 which, if rounded
conservatively, is m=7 and n=3. Thus, the allocation changes
quickly by, at once, removing 4 replicas from group N and
giving them to group M. Future adjustments fine tune the
allocation, but the bulk of the resources are correctly deployed
quickly to minimize the time operating in a less efficient
configuration during the transition.

Merging Low Utilization Transaction Groups. It is possible
that the load of a transaction group is so low that even a single
replica allocated to it is underused. Such groups should not tie
up a replica and keep it drastically under-utilized. However,
sharing the replica with another group is likely to generate a
higher degree of memory contention, precisely the event
MALB-SC is designed to avoid. If there are two such
transaction groups, each lightly utilizing its single replica, then
we assign one replica to the two groups and reclaim a replica
for allocation elsewhere. By restricting sharing to groups that

substantially under-utilize their single replicas, MALB-SC
minimizes the chance that memory contention creates a
bottleneck in the system.

If significant memory contention occurs such that the newly
shared replica becomes the most loaded system then dynamic
re-allocation is triggered. In this case, instead of allocating
another replica, the two transaction groups are split and a
separate machine is allocated to each group. This method stops
the memory contention, if that indeed were occurring.

3. UPDATE FILTERING
Update filtering is an optimization to reduce the overhead of
reflecting updates system-wide. In a replicated database,
updates must be reflected at all copies in the system to maintain
consistency. While the aggressiveness on when and how these
updates are propagated varies depending on the consistency
model being used, work must be done eventually at all replicas
to update all copies of changed items. This update propagation
overhead to change all copies is a fundamental scalability
bottleneck. Update filtering targets this overhead.

The MALB-SC algorithm partitions transaction groups across
replicas. Under stable workload characteristics, this partitioning
can be made permanent by the load balancer. Since each replica
receives only a subset of the transaction types, any tables not
used at a replica can be dropped or allowed to go out-of-date.
Updates to these unused tables do not have to be processed by
the replica, i.e., their remote updates can be filtered.

Recovery of a replica is not affected by update filtering. If a
replica crashes and later restarts, standard recovery is used. For
example, the database can be restored from other copies in the
cluster or by the persistent log at the certifier [EDP06]. We
limit the discussion here to ensuring availability in the presence
of update filtering, where the system ensures a minimum level
of redundancy for every transaction type and table in the
system.

There are two constraints that must be met by the load balancer
to ensure a target level of availability, in contrast to a replicated
system without update filtering. The first constraint is to ensure
transaction type availability, i.e., each transaction type must
have a minimum number of replicas upon which it can run.
Even if the transaction’s group requires only a single replica for
performance reasons, the load balancer ensures that additional
replicas have up-to-date state to run the transaction if needed.
For every transaction group, the number of replicas serving its
transactions at runtime is dictated by the load.

The second constraint is to ensure table availability in the
presence of update filtering. Ensuring enough copies of tables
and indices are available is a separate concern from transaction
type availability. However, table availability is automatically
addressed if transaction type availability is provided.

4. IMPLEMENTATION
We have built a prototype system called Tashkent+ that
embodies the main ideas in this paper. Tashkent+ is an
extension of our Tashkent replicated database system [EDP06].
We give an overview of transaction processing in Tashkent and
then we outline the changes implemented for Tashkent+.
Finally, we describe the experimental environment.

4.1 Overview of Tashkent
Tashkent [EDP06] is a high-performance replicated database
system. Tashkent represents the base system to which we
compare the benefits of MALB-SC and update filtering.

Figure 1: Tashkent replicated database design

Tashkent uses generalized snapshot isolation (GSI) [EPZ05] for
concurrency control. GSI extends the well-known snapshot
isolation (SI) protocol to replicated databases. The design
consists of two main logical components both of which are
replicated: (1) the database replica and (2) the certifier. Replicas
are symmetric in that any replica can process any client request,
whether read or write.

Under the GSI concurrency protocol, replicas process read-only
transactions entirely locally. When a replica receives an update
transaction it executes it locally, except the commit operation
which requires certification to detect write-write conflicts.
Replicas communicate only with the certifier component, not
directly with each other. The certifier certifies update
transactions from all replicas and gives them a global commit
order.

The Tashkent design is pure replication middleware. As shown
in Figure 1, attached to each replica is a transparent proxy that
intercepts requests to perform the replication functionality. The
proxy appears as the database to clients, and appears as a client
to the database. The proxies and certifiers constitute the
replication middleware. The proxy performs admission control
to prevent bursts from overloading the database using the
Gatekeeper algorithm [ENTZ04].

In Tashkent, database replicas are replicated mainly for
performance, whereas the certifier is replicated mainly for
availability. In this study, we simply assume a separate certifier
component which is replicated, though our conclusions apply to
other configurations. For example, the certifier component
could be implemented via an atomic broadcast mechanism
incorporated into the proxy at every replica [LKPJ05, WK05].

Data consistency is maintained across replicas by propagating
modifications at a replica to all other replicas using writesets. A
writeset is the core information required to reflect the effects of
an update transaction’s changes [KA00].

Processing read-only transactions is straightforward. Each read-
only transaction is processed against an assigned snapshot.
Processing update transactions is illustrated in Figure 2 and
includes the following steps.

Certification. When an update transaction attempts to commit,
the proxy at the replica sends to the certifier a request to certify
the writeset. The certifier processes the writeset to detect write-

write conflicts by comparing table and field identifiers for
matches against writesets from recently committed update
transactions. Successfully certified writesets (i.e., without
conflicts) are recorded in a persistent log, thus creating a global
order. The state of any replica is always a consistent prefix of
the certifier’s log.

Responding to replicas. The certifier responds to the replica
with the result of the requested certification test and any remote
writesets from intervening update transactions at other
replicas. The middleware proxy at the replica applies the
remote writesets to the database before it commits the local
update. This broadcast of writesets to all replicas is essential to
maintaining consistency. Applying the writesets is a
fundamental scalability limit since all updates system-wide
must be processed by every replica.

Update propagation. Updates are propagated as a side effect
of certification requests. In addition, Tashkent uses two
mechanisms to trigger update propagation. First, the proxy pulls
new updates periodically (every 500 msec) from the certifier if
the replica has not issued certification requests recently.
Second, the certifier sends short notification messages to
replicas that are behind (e.g., if a replica missed 25 commits) to
prod them to make a request for updates.

Durability. The Tashkent design employs the novel method of
combining durability and ordering in the middleware [EDP06].
Doing so avoids a serious disk I/O bottleneck that arises when
durability is performed in the databases but commit ordering is
decided in the middleware. When ordering and durability are
not combined, the bottleneck occurs because the certifier
determines the global order of commits, but proxies must
commit update transactions and remote writesets serially to
ensure the same order is followed at each replica.

Since Tashkent unites ordering and durability, its database
replicas have a very efficient I/O subsystem: replicas do not
need to issue an fsync() call to commit local or remote update
transactions (durability is guaranteed in the middleware). This
makes Tashkent a challenging environment for our study since
MALB-SC and update filtering improve performance by
reducing stress on the disk I/O channel. Since the Tashkent
design already makes very efficient use of its disk I/O channel,
we expect the MALB-SC and update filtering techniques to be
of even greater benefit if durability and ordering are not united.

4.2 Tashkent+ Implementation
4.2.1 Load Balancer Implementation
The load balancer is implemented in Java as a JDBC driver. It
contains the different load balancing algorithms as well as
support for update filtering. The load balancer is light-weight.
Forwarding all database requests takes less than 5% of the CPU
in our experiments.

Fault-Tolerance. We use a Primary-Backup scheme for
availability. The load balancer has only soft state that can be
reconstructed from the replicas. When the primary load
balancer fails, clients fail over to the backup load balancer and
all active transactions are aborted and retried. The backup load
balancer starts by querying the replicas to re-construct its soft
state.

Consistency Guarantees. Tashkent+ provides Generalized
Snapshot Isolation (GSI) [EPZ05] with Session Consistency
[DS04]. All workloads discussed in this paper run serializably
under GSI [EPZ05, F05, FLO+96].

4.2.2 Obtaining Working Set Information
Here we describe the specific mechanisms the load balancer
uses to determine transaction types and the details of the
working sets when using the PostgreSQL [PG] database:

1. The application provides the transaction type with each
request for a JDBC database connection. However, this
can be automated with static analysis or dynamic sniffing
at the load balancer [ENTZ04, BCD+06].

2. The load balancer retrieves the database schema to find all
tables and their associated indices.

3. For each table or index, its size in pages is determined by
the PostgreSQL query: “SELECT relpages FROM pg_class
WHERE relname=’<tablename>’ ”. Each page is 8KB.

4. To retrieve the transaction execution plan, the load
balancer sends an instance of each transaction type to
PostgreSQL prefixed with the EXPLAIN command.
PostgreSQL returns the execution plan of each query. The
load balancer processes the plan and records all tables and
indices accessed as well as how they are accessed.

4.2.3 Update Filtering Implementation
When update filtering is enabled, the load balancer sends to
each proxy the list of tables for which the replica receives
remote writesets. The proxy stores this information in the
database and only forwards the writesets for those tables to the
replica.

We disable dynamic replica allocation when update filtering is
enabled. Therefore, in this paper update filtering is used only
when the workload characteristics are stable. In future work, we
plan to study strategies that enable the load balancer to combine
dynamic replica allocation with update filtering.

4.3 Baseline Load Balancing Algorithms
We use the following two load balancing algorithms as a
baseline for comparison with MALB-SC and update filtering.

LeastConnections: LeastConnections uses no information
about the transaction type. The number of outstanding requests
at a replica is used as a measure for balancing load.
LeastConnections is a form of weighted round robin.

LARD: The algorithm knows only the transaction type and
dispatches a transaction to a replica where instances of the same

Figure 2: Processing of update transactions in

Tashkent

transaction type have recently run [PAB+98, ZBCS99]. It has
no information about the working set, neither its size nor its
contents. Rather, the technique relies on locality-aware request
distribution to re-use data in memory from a prior executions of
transactions of the same type.

4.4 Experimental Environment
The replicated database system is the Tashkent+ prototype
described in Section 4.2 with the load balancer modified to
implement the various policies. Our primary performance
metric is throughput, which is the number of transactions
completed per second. We measure the performance of a single
standalone database and determine the number of clients needed
to generate 85% of the peak throughput. In the following
experiments, we use that number of clients per replica to load
the system.

System specification. Each machine in our cluster runs the
2.6.11 Linux kernel on a single Intel Xeon 2.4GHz CPU with
1GB ECC SDRAM, and a 120GB 7200pm disk drive. The
machines are connected through a switched 1Gbps Ethernet
LAN. We monitor the system load with a modified version of
the Mercury server management system [HCG+06]. For the
certifier, we use a leader and two backups for fault tolerance.
We use the PostgreSQL 8.0.3 database configured to run
transactions at the snapshot isolation level (which is the strictest
isolation level in PostgreSQL and called the “serializable
transaction isolation level”). Unless otherwise specified, there
are 16 database replicas in the system.

The amount of available memory used as input to the bin
packing algorithm is reduced by 70 MB to account for the
memory usage of the operating system, PostgreSQL processes,
the proxy processes, and monitoring daemons as well as for
processing remote writesets during update propagation.

TPC-W Benchmark. TPC-W is a benchmark from the
Transaction Processing Council [TPC] designed to evaluate e-
commerce systems. It implements an on-line bookstore and has
three workload mixes that differ in the relative frequency of
each of the transaction types. We report results from all three
mixes using an open source implementation of TPC-W
[ACC+02]. The ordering mix workload has 50% updates, the
shopping mix workload has 20% updates, and the browsing mix
workload has 5% updates. In update propagation, the average
writeset size is 275 bytes.

In Section 5.6 we explore a range of the problem space by
varying the size of the database, the transaction mix, and the
available memory at each replica. The goal is to highlight how
system parameters interplay with our techniques. We focus on
TPC-W and scale the database via its EBS parameter and
experiment with a small database of 100 EBS (0.7 GB), a
medium database of 300 EBS (1.8 GB), and a large database of
500 EBS (2.9 GB) for each of the three TPC-W mixes. In
addition, we vary memory as 256 MB, 512 MB, and 1024 MB.
To restrict memory use, at each replica we run a side process
that locks down a specified number of pages via the system call
mlock() before we run experiments. For example, to run with
756 MB of available memory, we lock out 256 MB of the
available 1 GB RAM. For the initial discussion, we use the
middle point in our configuration space: middle database size
(1.8 GB) and middle memory size (512 MB).

RUBiS Benchmark. RUBiS [OW] is a benchmark from Rice
University that emulates an on-line auction site modeled after
eBay. In our experiments, the RUBiS database has 10,000
active items, 1M users, 500,000 old items and is 2.2 GB. There

are two workload mixes, a browsing mix that is read-only and a
bidding mix having 15% updates. The bidding mix is the main
mix in RUBiS. We implemented a transactional version of the
benchmark with primary key indices as the original benchmark
does not support transactions [ACC+02]. The average writeset
size is 272 bytes.

5. PERFORMANCE EVALUATION
5.1 Objectives
We perform an experimental evaluation using the Tashkent+
prototype to answer the following questions:

• What are the benefits of using working set
information in load balancing?

• How do the different methods of constructing
transaction groups by packing working sets into
available memory differ?

• Does replica allocation have to be dynamic? How
well does the load balancer cope with significant
changes in the workload mix?

• What is the benefit of update filtering?

• Under which environments are MALB-SC and
update filtering effective?

5.2 Exploiting Working set Information
The throughput of least connections (LeastConnections) versus
MALB-SC (size+contents overlap) is shown in Figure 3. The
throughput of LeastConnections is 37 tps with a response time
of 2.2 sec. For perspective, the standalone database has a peak
throughput of 3 tps with a response time of 2.6 sec. Thus, on 16
replicas, LeastConnections scales well to 12 times the
performance of a single system.

MALB-SC doubles the throughput of LeastConnections to 76
tps with a response time of 0.81 sec. Thus, MALB-SC has a
super-linear speedup of 25 over a single system. Super-linear
speedup is observed, among other circumstances, when systems
transition from being disk-bound to being memory-bound,
reflecting more efficient use of the aggregate memory of the
cluster.

The locality-aware algorithm LARD supports 50 tps throughput
(with 1.4 sec response time), an improvement over
LeastConnections, but MALB-SC is still 52% higher in
performance. The performance differences can be explained by
looking at the amount of disk I/O in the three systems, shown in
Table 1. LeastConnections performs on average 84 KB of disk
I/O per transaction, of which 72 KB is for reading data and 12
KB are writes from updates. LARD reduces read activity to 57
KB, but MALB-SC creates the greatest reduction to 20 KB. The
reduced read disk activity means there is less memory
contention in MALB-SC. Table 2 shows the groupings settled
on by MALB-SC, as well as the number of replicas assigned to
each group in this experiment.

For RUBiS in Figure 4, we see the same pattern, with MALB-
SC out performing both LeastConnections and LARD by 39%
and 26%, respectively. MALB-SC reduces the amount of disk
I/O from reads significantly, as shown in Table 3. From the
groupings in Table 4, we see that the transaction AboutMe is a
demanding transaction that receives 9 of the 16 replicas.
AboutMe is a large, frequent transaction that reads from almost
all the tables in the database.

3

37

50

76

0

20

40

60

80

Single LeastCon LARD MALB-SC

tra
ns

ac
tio

ns
/s

ec
on

d

Figure 3: TPC-W comparison of methods.
MidDB 1.8GB, RAM 512 MB, 16 replicas, Ordering

(Single is standalone single database)

3

31
34

43

0

10

20

30

40

50

Single LeastCon LARD MALB-SC

tra
ns

ac
tio

ns
/s

ec
on

d

Figure 4: RUBiS comparison of methods.
DB 2.2GB, RAM 512 MB, 16 replicas, Bidding

(Single is standalone single database)

Table 1: TPC-W Average Disk I/O per Transaction

Method Write Read Read Fraction to
LeastConnections

LeastConnections 12 KB 72 KB 1.00
LARD 12 KB 57 KB 0.79
MALB-SC 12 KB 20 KB 0.28

 Table 3: RUBiS Average Disk I/O per Transaction

Method Write Read Read Fraction to
LeastConnections

LeastConnections 11 KB 162 KB 1.00
LARD 11 KB 149 KB 0.92
MALB-SC 11 KB 111 KB 0.69

Table 2: TPC-W MALB-SC groupings

Transaction types Replicas
[BestSeller] 2
[AdminRespo] 4
[BuyConfirm] 7
[BuyRequest, ShopinCart] 1
[ExecSearch, OrderDispl, OrderInqur,
ProducDet]

1

[HomeAction, NewProduct, SearchRequ,
AdmiRqust]

1

 Table 4: RUBiS MALB-SC groupings

Transaction types Replicas
[AboutMe] 9
[PutBid, StoreComment, ViewBidHistory,
ViewUserInfo]

4

[Auth, BrowseCategories, BrowseRegions,
BuyNow, PutComment, RegisterUser,
SearchItemsByRegion, StoreBuyNow]

1

[RegisterItem, SearchItemsByCategory,
StoreBid, viewItem]

2

MALB-SC versus LARD. The performance difference
between MALB-SC and LARD deserves special discussion.
Without specific working set information, LARD does not
perform as well as MALB-SC, which does use working set
information. The key insight into this difference is in how
LARD allocates replicas to transactions.

When a large transaction is assigned to a replica, every time it
runs it displaces the pages for other transaction types. Under
LARD, when a large transaction is frequent it competes heavily
with the other transactions for memory space creating
contention and slowing down all transactions on the replica due
to competition for the disk I/O channel. The replica becomes
less productive. This contention results in longer response times
and more open connections which signals to the LARD load
balancer that the replica is heavily loaded (it is, but not with
productive work). This triggers LARD to allocate another
replica to the large transaction, creating memory contention on
yet another machine and getting little if any additional
throughput gains. The process continues until all machines are

heavily utilized and, thus, “turns off” the LARD algorithm from
making further allocations. LARD stabilizes at a sub-optimal
configuration, with a lot of memory contention.

The above scenario does not occur in LARD if the workload is
static content consisting mostly of small files. With small files,
no single request can systematically wipe out large portions of
the memory. If LARD overloads a machine, it occurs gradually
with the many small requests providing fine-grained feedback
for LARD to reconsider its allocations. In contrast, a large
transaction is coarse-grained in that the memory contention it
creates does not arise gradually, but instantaneously and
pronounced.

In contrast, MALB-SC successfully manages large transactions
by isolating their effects on other requests. The performance
impact of making a bad dispatch decision on large transactions
is high. MALB-SC succeeds by avoiding the contention cases.
Having the working set information allows proper grouping of
requests to share resources amicably while avoiding memory
contention.

For the rest of the results we shall focus on TPC-W as it has
greater variety in its transaction mixes, including a wider range
of update activity. We return to RUBiS in Section 5.6.

5.3 Constructing Transaction Groups
We contrast the three methods for utilizing working set
information to form transaction groups. MALB-S (size only)
generates 7 groups. MALB-SC (working set size and contents)
generates 6 groups, since shared tables are not double-counted.
MALB-SCAP (working set size, contents, access pattern)
generates 4 groups when using only heavily scanned items as a
lower estimate of the working set. MALB-S and MALB-SC are
more likely to over-estimate the true size of a working set,
while MALB-SCAP is more likely to under-estimate the size.

Figure 5 shows the performance of the system when using the
different transaction groupings (as well as LeastConnections
and LARD for reference). MALB-SCAP, MALB-S, and
MALB-SC give 57, 73, 76 tps respectively. All have higher
throughputs than that of LeastConnections and LARD.

Even though MALB-SCAP performs better than LARD and
LeastConnections, it does not perform as well as the two other
methods, MALB-S and MALB-SC. MALB-SCAP generates
more disk read I/O than both MALB-S and MALB-SC
indicating some over-packing of transaction groups.

This result may seem surprising, since MALB-SCAP uses more
detailed information to more precisely estimate the working
sets, while MALB-SC uses less information and therefore tends
to over-estimate. The reason for MALB-SCAP’s inferior
performance is that the penalty for under-estimation is high.
Under-estimation and the resulting over-packing of transaction
types in a single transaction group leads to more disk I/O, the
cost of which dwarfs any gain achieved by tighter packing. A
further consideration is that the estimation is inherently
approximate, as demonstrated next.

Experimental Working Set Measurement. We measure the
working set of all transaction types experimentally by
dedicating transaction types to a single machine and adjusting
the amount of free memory until the amount of disk I/O spiked.
We compare the measured working set size to the lower
estimate (as used in MALB-SCAP) and upper estimate (as used
in MALB-SC).

For many transaction types the estimates differ little between
MALB-SC and MALB-SCAP. For example, for the BestSeller
transaction the estimates are 608 and 610 MB, respectively.
These estimates agree well with the measured working set sizes
that range between 600 and 650MB. For other transactions,
however, the difference between the estimates of MALB-SC
and MALB-SCAP are substantial. For example, for the
OrderDisplay transaction MALB-SCAP estimates the working
set size to be 1MB, while MALB-SC arrives at 1600MB,
because it makes random accesses to nearly every table but
scans only one small one. Its true working set size is between
400 and 450 MB. Using the MALB-SCAP estimate would
suggest that OrderDisplay can be packed with any group, but its
true size of over 400 MB means that its working set actually
consumes most of the available 512 MB of main memory.
Therefore, it should be packed separately in a single group.

Merging Groups. To compensate for occasional under-packing
resulting from conservative estimates in MALB-S and MALB-
SC, transaction groups that under-utilize their replicas are
merged. To measure the effect of merging, we disable it and
measure the resulting throughput. The throughput of MALB-S
decreases from 73 to 66 tps, and the throughput of MALB-SC

decreases from 76 to 70 tps. Thus, in these experiments
merging transaction groups on under-utilized replicas
compensates for having many groups, of which some have
infrequent requests.

Summary. We conclude that being conservative in estimating
the working set is safer because it avoids memory contention.
Over-estimating the working sets can result in many transaction
groups of which some may not be able to load a dedicated
replica. Merging groups which have only a single under-utilized
replica mitigates having too many transaction groups.
Furthermore, in the event of memory contention, the MALB-
SC algorithm prioritizes the undoing of merging before
allocating additional replicas. Thus, memory contention of
merged groups may occur in MALB-SC but in a controlled
fashion such that it can also be undone.

5.4 Dynamic Reconfiguration
Should the workload change, the system must adapt to the new
mix of requests. In Figure 6, we change the workload from the
shopping mix to the browsing mix and then back to the
shopping mix. We use these two mixes since the distribution of
replicas across the groups differ the most. For this experiment,
we run the shopping mix for 2000 seconds, then switch to the
browsing mix for 2000 seconds, and then switch back to the
shopping mix for another 2000 seconds. The baseline
performance for the shopping mix is 76 tps. The browsing mix
has a lower baseline performance of 45 tps. We should expect
the system to match these baseline throughputs in the time
intervals during which the corrseponding workload is in effect.

The lighter curve is the number of transactions executed per 30
second interval. The darker curve is the moving average of a
150 second window. The system tunes itself to the shopping
mix and then adjusts to the expected performance for the
browsing mix. The system responds quickly. The slope between
transitions is due to the lag to detect the change in workload and
from averaging over the interval.

The thick bottom line (19 tps) is the throughput of running the
browsing mix with the best static configuration for the shopping
mix. This is the throughput that would occur if the load
balancing could not adapt to the workload. With such a static
algorithm, the throughput of MALB under the browsing mix
(19 tps) is lower than the throughput of LeastConnections under
the browsing mix (37 tps). Using the wrong static configuration

37

50
57

73 76

0

10

20

30

40

50

60

70

80

LeastCon LARD MALB-
SCAP

MALB-S MALB-
SC

tra
ns

ac
tio

n/
se

co
nd

Figure 5: Throughput of grouping methods.
MidDB 1.8GB, RAM 512 MB, 16 replicas,

Ordering

leads to unbalanced replicas; some are overloaded and others
are underloaded. Therefore, a dynamic algorithm is necessary to
get the benefits of MALB when the workload changes.

5.5 Effectiveness of Update Filtering
We enable update filtering after the system stabilizes the
configuration of the database cluster. The results are shown in
Figure 7. For the ordering mix with 50% of its transactions
being updates, MALB-SC with update filtering (MALB-
SC+UpdateFiltering) has a throughput of 113 tps which is 47%
above the performance of just MALB-SC, and 202% above that
of LeastConnections. The average response time for MALB-
SC+UpdateFiltering is 0.349 sec. MALB-SC+UpdateFiltering
shows super-linear speedup, with a throughput of 37 times the
peak throughput of a standalone database.

Table 5 lists the same disk I/O information as Table 1, but with
an additional entry for “MALB-SC+UpdateFiltering”. The
amount of data written to disk has dropped 25% to 9 KB from
12 KB (at a higher throughput rate) due to filtering. The
relatively large performance boost comes from update filtering
removing competition for the disk channel on replicas with
transactions that need data from disk. The slight reduction in
read activity is because filtering updates also reduces memory
pressure somewhat.

The magnitude of the performance improvement resulting from
update filtering may seem surprising. The writesets average 275
bytes each, so 76 tps in the ordering mix (50% updates)
generates 38 writesets per second, or less than 10K bytes per
second. A paltry 10 KB/sec should not add much stress to the
disk I/O channel, but it appears to do so because update filtering
improves performance by 50% over just MALB-SC. However,
Table 5 reveals that the total amount of data actually written to
disk by MALB-SC is 76 tps * 12 KB per transaction, or 912
KB/sec. Thus, the small updates being propagated are
apparently creating significant disk activity.

What is happening is that the 10 KB of updates are actually
distributed throughout the database and touch many pages.
Since a database page (8KB in our system) must be written
completely to disk whether one byte is dirty or all 8KB are
dirty, the randomness of the writes greatly impacts the amount
of disk I/O activity generated.

5.6 Different Database and Memory Sizes
The relative sizes of the database and memory, as well as the
transaction workload mix, impact the dynamics of the MALB-
SC algorithm. We explore this space in TPC-W and vary the
memory size, the database size, and the workload mixes.

Figure 10 has nine plots representing 81 experiments using
different combinations. The top row is LargeDB of 500 EBS
(2.9 GB); the middle row is MidDB of 300 EBS (1.8 GB)
database; and the bottom row is SmallDB of 100 EBS (0.7 GB).
The workload mixes vary across the columns, the first being the
ordering mix (50% updates), the second the shopping mix (20%
updates), and the third the browsing mix (5% updates). Within
each chart, the memory is varied, at values of 256 MB, 512
MB, and 1024 MB. The configuration space covered is
summarized graphically in Figure 9. Finally, the three
techniques compared are LeastConnections, MALB-SC, and
MALB-SC with update filtering (MALB-SC+UpdateFiltering).
LeastConnections is used as a base comparison to highlight
when a simple load balancing approach suffices. For context,
the results of Figure 7 map to the middle set of bars in chart
MidDB-Ordering (middle row, first column).

0

25

50

75

100

0 2000 4000 6000

Time (sec)

Th
ro

ug
hp

ut
 (t

ps
)

Shopping Shopping

Browsing

Perf. Of Browsing Mix with Shopping Config.

Figure 6: Dynamic reconfiguration: TPC-W workload
mix switches from Shopping to Browsing to Shopping.
X-axis is time (sec). Y-axis is tps. MidDB 1.8GB, RAM

512 MB, 16 replicas.

3

37
50

76

113

0

20

40

60

80

100

120

Single LeastCo n LA RD M A LB -
SC

M A LB -
SC +

filtering

tra
ns

ac
tio

ns
/s

ec
on

d

Figure 7: TPC-W throughput of MALB-
SC+UpdateFiltering. MidDB 1.8GB, RAM 512 MB,

16 replicas, Ordering.

Table 5: TPC-W Average Disk I/O per Transaction

Method Write Read
LeastConnections 12 KB 72 KB
LARD 12 KB 57 KB
MALB-SC 12 KB 20 KB
MALB-SC + UpdateFiltering 9 KB 18 KB

The chart LargeDB-Ordering at 256 MB shows there is little
benefit with MALB-SC when the database is large and the
memory is small. This corresponds in Figure 9 to the region
where the working set is too big for memory. Under these
conditions, the transactions run from disk, regardless of the
partitioning (or grouping) of transactions. However, as memory
is increased to 1 GB the benefits of partitioning become
pronounced, improving performance from 39 tps to 110 tps, and
further to 147 tps with update filtering. The benefit of update
filtering decreases in charts LargeDB-Shopping and LargeDB-
Browsing because of the lower update rates; there are fewer
updates to filter.

Charts SmallDB-Ordering, SmallDB-Shopping, and SmallDB-
Browsing at 1 GB RAM show the other extreme, a small

database with large memory. Here, even LeastConnections
performs well on all mixes since the full database fits entirely
into memory. MALB-SC and update filtering help when
memory is small (256 MB) as MALB-SC fits the working sets
in the replicas’ main memories.

The middle column showing the shopping mix displays a nice
range of behavior as the database size is increased. In chart
SmallDB-Shopping, 256 MB appears to be just a bit too small
for the working sets and MALB-SC helps. For the MidDB-
Shopping, both the 256 MB and 512 MB configurations benefit.
For LargeDB-Shopping, all three memory sizes see benefits
from MALB-SC. The 20% update rate is not high enough for
update filtering to have much effect.

One graph for the RUBiS benchmark running the bidding mix
is shown in Figure 8. MALB-SC helps improve performance
below 1 GB of memory, but the working sets fit in 1 GB so
LeastConnections performs as well as MALB-SC. Update
filtering shows little help as the 15% update rate of the bidding
mix is too low for filtering to be of advantage.

In summary, MALB-SC and update filtering improve
performance significantly when working sets of transaction
groups fit into the available memory, but the combined sum
across all transaction groups exceeds available memory. If the
memory is too small or too large, then MALB-SC is of little
help. However, even if there is no additional benefit from
MALB-SC, in our experiments the MALB-SC algorithm still
generates configurations whose performance is at least as high
as LeastConnections.

5.6.1 Update Filtering
Here we discuss in more detail the effects of using update
filtering to reduce the system-wide overhead of update
propagation. We focus on the ordering mix with 50% updates,
i.e., the leftmost column.

From the three graphs of this column, the pattern that emerges
is that when MALB-SC enhances performance then update
filtering tends to also add significant improvements. However,
when MALB-SC adds little benefit then update filtering does
not appear to help much either.

MALB-SC improves performance by reducing the amount of
data “pulled” from disk. In contrast, update filtering helps by
reducing the amount of data “pushed” to disk and competing
with reads for disk I/O. Both techniques reduce disk channel
activity.

If the database is “small” and the memory “large” such that the
database essentially fits in memory, then there is little data
being “pulled” from disk. Thus, there is little activity for
MALB to reduce. This also implies (1) there is plenty of buffer
space to hold dirty database pages and (2) there is plenty of
spare disk channel bandwidth for the write back of dirty pages
from update propagation. Hence, update filtering offers little
benefit.

Conversely, if the database is “large” and memory is “small”,
such that all transactions generate disk I/O, then MALB is
unable to reduce memory contention. The system is I/O-bound,
throughput is relatively low and, thus, update activity is also
low, so filtering can only have minimal impact.

6. RELATED WORK
We focus on related work in two areas: replicated databases and
load balancing in server systems.

6.1 Replicated Databases
Many database systems use a front-end to perform request
scheduling and load balancing [ACZ03-1, ACZ03-2, PA04,
ZP06]. In general, they use load balancing algorithms that do
not exploit working set information. For example, conflict-
aware scheduling [ACZ03-1] is content-aware in that the
application provides to the scheduler the tables that are accessed
so requests are scheduled to copies that are up-to-date. The
emphasis is on correctness; no provision is made for ensuring
working sets fit in memory. In distributed versioning [ACZ03-
2], the scheduler increases concurrency to scale the
performance of replicated databases. Another form of conflict-
aware scheduling [ZP06] is used to reduce aborts, and
consequently increase system performance. Again, working set
size and memory contention issues are not addressed.

Partial replication [RT04] partitions data across replicas. In
contrast, Tashkent+ is essentially fully replicated design and
MALB-SC partitions transaction types, not data, across
replicas. Update filtering reduces the overhead of update
propagation, which is also reduced in partial replication. In
Tashkent+, every transaction is fulfilled by the replica to which
it is dispatched. Complex queries in partial replication may
require distribution across many replicas simultaneously.

The P*TIME system [CS04] is not a replicated database but it
uses a shared memory design emphasizing parallel disk I/O
channels for writes and fast recovery. Our work reduces disk
I/O through better memory use and is intended for memory-
intensive rather than update-intensive workloads.

6.2 Load Balancing
Here we discuss three systems LARD [PAB+98], HACC
[ZBCS99], and FLEX [CP00]. LARD uses locality-aware load
balancing for serving static web pages. FLEX and HACC use a
notion of the size of requests in load balancing. In both, the size
of the returned content from the set of instances seen thus far is
parsed from the log files and used as the estimate for the
working set. The authors of FLEX term this content-aware
load balancing. However, when serving dynamic content, the
size of the returned data is not a good measure of the total
memory needed to process requests (in TPC-W the difference
can be many orders of magnitude). Estimating working set size
as in Tashkent+ provides (1) a safe estimate and (2) enables
assigning an efficient configuration once a single instance for
each request type occurs.

18

31

42

23

43 44

24

44 44

0

10

20

30

40

50

256 512 1024

tra
ns

ac
tio

ns
/s

ec
on

d

Figure 8: RUBiS bidding mix with update filtering.
DB 2.2 GB, RAM 256, 512, 1024 MB, 16 replicas

W
or

ki
ng

 S
et

 T
oo

B
ig

 fo
r M

em
or

y

Part
itio

nin
g &

 Filte
rin

g

Im
pro

ve
 Perf

orm
an

ce

D
at

ab
as

e
S

iz
e

Figure 9 : The space of database size versus memory size

17 24
39

19
42

110

21

56

147

0

50

100

150

200

256 512 1024

10

22

51

15

35

60

15

36

61

0

20

40

60

80

256 512 1024

5

16

27

7

19

27

7

19

27

0
5

10
15
20
25
30

256 512 1024

LargeDB-Ordering LargeDB-Shopping LargeDB-Browsing

20
37

114

29

76

169

30

113

194

0

50

100

150

200

250

256 512 1024

16

54

93

26

76

93

26

79
93

0

20

40

60

80

100

256 512 1024

11

37

51

19

45
51

19

46
51

0
10
20
30
40
50
60

256 512 1024

MidDB-Ordering MidDB-Shopping MidDB-Browsing

101

212
247

130

211

257

156

217

257

0
50

100
150
200
250
300

256 512 1024

267

339 341

278

340 343
311

342 343

0

100

200

300

400

256 512 1024

295 299 295300 299 305300 299 305

0

100

200

300

400

256 512 1024

SmallDB-Ordering SmallDB-Shopping SmallDB-Browsing

Figure 10: TPC-W throughput graphs for different configurations. Y-axis is throughput (tps).
Each graph has three groups of three bars. The groups are RAM sizes (256, 512, 1024 MB).

The three bars are LeastConnections, MALB-SC, and MALB-SC + UpdateFiltering.

Our contributions include the identification of problems for
locality-aware techniques when there are frequent requests with
large working sets and how to estimate the working sets of
database transactions (dominated by tables and indices rather
than simple files). LARD, HACC and FLEX were not designed
for database workloads; none of them addresses updates in the
workload. In other domains, working set information has been
used dispatch independent jobs in a computing cluster [BB97].

In decision support systems, an analytical model [KS00] of the
memory access behavior has been developed. The model is
shown to be effective, but requires a number of parameters that
will not be readily available to a load balancer. Our working set
estimation techniques are simpler yet still effective in MALB-
SC.

7. CONCLUSIONS
This paper presents memory-aware load balancing (MALB) for
replicated databases. MALB uses information on transaction
working sets to dispatch transactions to replicas in a manner
that reduces memory contention. We show that without using
additional information on how transactions use memory,
existing load balancing techniques cannot prevent memory
contention when there are frequent requests with large working
sets as in memory-intensive database workloads. We present a
method to estimate the size and content of transaction working
sets from the query execution plan and metadata from the
database. Using information on memory use, our MALB-SC
algorithm significantly improves performance over other load
balancing methods.

The MALB-SC algorithm distributes transaction types among
replicas in a way that we exploit for a complementary
optimization called update filtering. The update filtering
algorithm specializes each replica to its workload: The replica
applies those updates to the tables and indexes needed to
service its workload, and filters out updates to unused tables.
Update filtering reduces resources needed to propagate the
effects of update transactions, and therefore further boosts
performance.

We build a prototype system, called Tashkent+, to demonstrate
the benefits of MALB and update filtering. On a cluster of 16
database replicas using the ordering mix of TPC-W benchmark,
MALB-SC doubles system throughput compared to least
connections and provides 52% improvement over LARD.
Adding update filtering further improves throughput to triple
that of least connections and more than double that of LARD.

 MALB-SC and update filtering exhibit super-linear speedup;
the throughput of the 16 replica cluster is 37 times the peak
throughput of a standalone database.

8. ACKNOWLEDGMENTS
This research was partially supported by the Swiss National
Science Foundation grant number 200021-107824 and by an
equipment grant from Hasler Foundation. We thank Gustavo
Alonso, Cristiana Amza, Ming-Yee Iu, and the anonymous
reviewers for their many constructive comments.

9. REFERENCES
[ACZ03-1] Cristiana Amza, Alan Cox, and Willy Zwaenepoel.
Conflict-Aware Scheduling for Dynamic Content Applications.
In Proceedings of the Fifth USENIX Symposium on Internet
Technologies and Systems, March 2003.

[ACZ03-2] C. Amza, A. Cox, and W. Zwaenepoel. Distributed
Versioning: Consistent Replication for Scaling Back-end

Databases of Dynamic Content Web Sites. In
ACM/IFIP/Usenix International Middleware Conference, June
2003.

[ACC+02] C. Amza, E. Cecchet, A. Chanda, Alan L. Cox, S.
Elnikety, R. Gil, J. Marguerite, K. Rajamani and W.
Zwaenepoel. Specification and Implementation of Dynamic
Web Site Benchmarks. WWC-5: The 5th Annual IEEE
Workshop on Workload Characterization, Austin, Texas, USA,
November 2002.

[BB97] A. Barak and A. Braverman, Memory Ushering in a
Scalable Computing Cluster, In Proceedings of the IEEE Third
International Conference on Algorithms and Architecture for
Parallel Processing, Melbourne, 1997.

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A Critique of ANSI SQL
Isolation Levels. In Proceedings of the SIGMOD International
Conference on Management of Data, May 1995.

[BCD+06] S. Bouchenak, A. Cox, S. Dropsho, S. Mittal, and
W. Zwaenepoel. Caching Dynamic Web Content: Designing
and Analysing an Aspect-oriented Solution. In Proceedings of
Middleware 2006, Melbourne, Australia, November 2006.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[CP00] L. Cherkasova and S. Ponnekanti: Optimizing a
“Content-Aware” Load Balancing Strategy for Shared Web
Hosting Service. In the Proceedings of the 8th IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS), San Francisco, CA, USA, August 2000.

[CS04] Sang Kyun Cha, Changbin Song. P*TIME: Highly
Scalable OLTP DBMS for Managing Update-Intensive Stream
Workload. In Proceedings of 30nd International Conference on
Very Large Data Bases (VLDB 2004), Toronto, Canada,
August 2004.

[DS04] Khuzaima Daudjee, Kenneth Salem. Lazy Database
Replication with Ordering Guarantees. In Proceedings of the
20th International Conference on Data Engineering (ICDE
2004), Boston, MA, USA, March 2004.

[DS06] Khuzaima Daudjee, Kenneth Salem. Lazy Database
Replication with Snapshot Isolation. . In Proceedings of 32nd
International Conference on Very Large Data Bases (VLDB
2006), Seoul, Korea, September 2006.

[EDP06] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent:
Uniting Durability with Transaction Ordering for High-
Performance Scalable Database Replication. In the Proceedings
of EuroSys, Leuven, Belgium, April 2006.

[ENTZ04] S. Elnikety, E. Nahum, J. Tracey, and W.
Zwaenepoel. A Method for Transparent Admission Control and
Request Scheduling in E-Commerce Web Sites. In the
Proceedings of the 13th International World Wide Web
Conference (WWW2004), New York, NY, USA, May 2004.

[EPZ05] Elnikety, S., F. Pedone, and W. Zwaenepoel, Database
Replication Using Generalized Snapshot Isolation. IEEE
Symposium on Reliable Distributed Systems (SRDS 2005),
Orlando, Florida, October 2005.

[F05] Alan Fekete. Allocating Isolation Levels to Transactions.
ACM Sigmod, Baltimore, Maryland, June 2005.

[F1-99] Alan Fekete. Serialisability and Snapshot Isolation. In
Proceedings of the Australian Database Conference, pages 201–
210, Auckland, New Zealand, January 1999.

[F2-99] L. Frank. Evaluation of the Basic Remote Backup and
Replication Methods for High Availability Databases. Software
Practice and Experience, 29:1339–1353, 1999.

[FLO+96] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil,
Patrick O’Neil, and Dennis Shasha. Making Snapshot Isolation
Serializable. In proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pages 173–
182, June 1996.

[GD03] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng,
and Arun. Iyengar. Application Specific Data Replication for
Edge Services. In Proceedings of the Twelfth International
Conference on the World Wide Web, pages 449–460. ACM
Press, 2003.

[GHOD96] J. N. Gray, P. Helland, P. O’Neil, and D. Shasha.
The Dangers of Replication and a Solution. In Proceedings of
the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal (Canada), June 1996.

[HCG+06] T. Heath, A. P. Centeno, P. George, L. Ramos, Y.
Jaluria, R. Bianchini. Mercury and Freon: Temperature
Emulation and Management for Server Systems. In Proceedings
of Architectural Support for Programming Languages and
Operating Systems (ASPLOS’06), San Jose, CA, October,
2006.

[J95] K. Jacobs. Concurrency Control, Transaction Isolation
and Serializability in SQL92 and Oracle7. Technical report
number A33745, Oracle Corporation, Redwoord City, CA, July
1995.

[KA00] Bettina Kemme and Gustavo Alonso. Don’t be Lazy,
Be Consistent: Postgres-R, a New Way to Implement Database
Replication. In Proceedings of 26th International Conference on
Very Large Data Bases (VLDB 2000), Cairo, Egypt, September
2000.

[KA98] Bettina Kemme and Gustavo Alonso. A Suite of
Database Replication Protocols Based on Group
Communication Primitives. In Proceedings 18th International
Conference on Distributed Computing Systems (ICDCS),
Amsterdam, The Netherlands, May 1998.

[KS00] M. Karlsson, and P. Stenström. An Analytical Model of
the Working-Set Sizes in Decision-Support Systems. In
Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS '00). Santa Clara, CA, USA, June
2000.

[L98] L. Lamport. The Part-time Parliament. ACM
Transactions on Computer Systems, 16(2):133-169, May 1998.

[L99] Andrea Lodi. Algorithms for Two-Dimensional Bin
Packing and Assignment Problems. PhD thesis. Uiversita Degli
Studi di Bologna. 1999.

[LKPJ05] Y. Lin, B. Kemme, M. Patiño-Martínez, R. Jiménez-
Peris. Middleware Based Data Replication Providing Snapshot
Isolation. ACM International Conference on Management of
Data (SIGMOD), Baltimore, Maryland, June 2005.

[OW] ObjectWeb Consortium. Rice University bidding system.
http://rubis.objectweb.org/.

[Ora97] Data Concurrency and Consistency, Oracle8 Concepts,
Release 8.0: Chapter 23. Technical report, Oracle Corporation,
1997.

[P86] Christos Papadimitriou. The Theory of Database
Concurrency Control. Computer Science Press, 1986.

[PA04] Christian Plattner, Gustavo Alonso. Ganymed: Scalable
Replication for Transactional Web Applications. In Proceedings
of the 5th ACM/IFIP/USENIX International Middleware
Conference, Toronto, Canada, October 2004.

[PAB+98] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P.
Druschel, W. Zwaenepoel, and E. Nahum. Locality-Aware
Request Distribution in Cluster-based Network Servers. In
Proceedings of the 8th ACM Conference on Architectural
Support for Programming Languages and Operating Systems,
San Jose, CA, October 1998.

[PG] PostgreSQL, SQL Compliant, Open Source Object-
Relational Database Management System.
http://www.postgresql.org/.

[PJKA05] M. Patiño-Martínez, R. Jiménez-Peris, B. Kemme,
G. Alonso. Consistent Database Replication at the Middleware
Level. ACM Transactions on Computer Systems (TOCS).
Volume 23, No. 4, 2005, pp 1-49.

[PL91] C. Pu and A. Leff. Replica Control in Distributed
Systems: An Asynchronous Approach. SIGMOD Record (ACM
Special Interest Group on Management of Data), 20(2):377–
386, June 1991.

[RS04] Robbert van Renesse, and Fred B. Schneider. Chain
Replication for Supporting High Throughput and Availability.
Sixth Symposium on Operating Systems Design and
Implementation (OSDI '04). USENIX Association, (San
Francisco, California, December 2004).

[RT04] M. Ronström and L. Thalmann. MySQL Cluster
Architecture Overview. MySQL Technical White Paper, 2004.

[Sch90] F. B. SCHNEIDER. Implementing fault-tolerant
services using the state machine approach: a tutorial. In ACM
Computing Surveys. 22 (4):299–319, December 1990.

[TPC] Transaction Processing Performance Council –
http://www.tpc.org/.

[WK05] Shuqing Wu and Bettina Kemme. Postgres-R(SI):
Combining Replica Control with Concurrency Control based on
Snapshot Isolation. In proceedings of International Conference
on Data Engineering (ICDE), April 2005.

[WPS+00] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme,
and G. Alonso. Understanding replication in databases and
distributed systems. In proceedings of 20th International
Conference on Distributed Computing Systems (ICDCS’2000),
Taipei, Taiwan, April 2000.

[ZBCS99] X. Zhang, M. Barrientos, J. B. Chen, and M. Seltzer.
HACC: An Architecture for Cluster-Based Web Servers. In
Proceedings of the 3rd USENIX Windows NT Symposium,
Seattle, WA, July 1999.

[ZP06] V. Zuikeviciute and F. Pedone. Conflict-Aware Load-
Balancing Techniques for Database Replication. USI Technical
Report, 2006.

