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ABSTRACT 
We present a memory-aware load balancing (MALB) technique 
to dispatch transactions to replicas in a replicated database. Our 
MALB algorithm exploits knowledge of the working sets of 
transactions to assign them to replicas in such a way that they 
execute in main memory, thereby reducing disk I/O. In support 
of MALB, we introduce a method to estimate the size and the 
contents of transaction working sets. We also present an 
optimization called update filtering that reduces the overhead of 
update propagation between replicas. 

We show that MALB greatly improves performance over other 
load balancing techniques – such as round robin, least 
connections, and locality-aware request distribution (LARD) – 
that do not use explicit information on how transactions use 
memory. In particular, LARD demonstrates good performance 
for read-only static content Web workloads, but it gives 
performance inferior to MALB for database replication as it 
does not efficiently handle large requests. MALB combined 
with update filtering further boosts performance over LARD.  

We build a prototype replicated system, called Tashkent+, with 
which we demonstrate that our MALB and update filtering 
techniques improve performance of the TPC-W and RUBiS 
benchmarks. In particular, in a 16-replica cluster and using the 
ordering mix of TPC-W, MALB doubles the throughput over 
least connections and improves throughput 52% over LARD. 
MALB with update filtering further improves throughput to 
triple that of least connections and more than double that of 
LARD. Our techniques exhibit super-linear speedup; the 
throughput of the 16-replica cluster is 37 times the peak 
throughput of a standalone database due to better use of the 
cluster’s memory. 

Categories and Subject Descriptors 
H.2.4 [Systems] – distributed databases, concurrency. 

General Terms 
Measurement, Performance, Design. 

Keywords 
Database replication, Load balancing. 

1. INTRODUCTION 
Database replication on a cluster of servers is a cost-effective 
approach for scaling databases. Recent research prototypes 
[ACZ03-2, DS06, EDP06, LKPJ05, PA04, PJKA05, ZP06] 
show promise for high scalability using tens of database 
replicas. 

With conventional database replication on a cluster, client 
requests are intercepted by a load balancer which hides the 
replicated nature of the cluster and distributes transactions to 
the database replicas using a load balancing strategy such as 
round robin or least active connections. These strategies balance 
the load well, but, as we will show, they can introduce memory 
contention, which causes the system to perform poorly. 

To reduce memory contention in static content clustered Web 
servers, content-aware load balancing techniques have been 
introduced, such as LARD (Locality-Aware Request 
Distribution) [PAB+98]. LARD biases dispatching of requests 
to replicas at which the same requests were last served, in the 
expectation that content recently served is still memory 
resident. 

LARD has proven very effective for read-only static content 
Web workloads, which consist of mostly small files. As we will 
show in this paper, LARD can cause poor performance for 
workloads, such as database transaction workloads, in which 
requests with large working sets occur more frequently. 
Furthermore, having been designed for read-only workloads, 
LARD has no provision for efficiently handling updates.  

In this paper we introduce the notion of memory-aware load 
balancing. A memory-aware load balancer explicitly uses 
information about the size and the contents of the working set 
of transactions to assign them to replicas in such a way that they 
execute in memory. A memory-aware load balancer faces two 
challenges: how to estimate the working set size and contents of 
transactions, and how to use this information to favor in-
memory execution. 

Many memory-aware load balancing algorithms are possible, 
differing in the way they meet these challenges. In Section 2 we 
present one such algorithm, MALB-SC, and demonstrate that it 
has good performance on database workloads resulting from e-
commerce applications. Such workloads are memory-intensive. 
We assume the database application has a fixed-set of 
parameterized transaction types. Many e-commerce database 
applications map to this model to enforce the business logic; ad-
hoc access to the database is restricted and the database is 
accessed through a pre-defined set of interactions. 

While the working set of an arbitrary process is difficult to 
predict, the working sets of database transactions are dominated 
by the tables and indices needed for processing. By discovering 
the tables and indices referenced, and how they are accessed 
from the database query execution plan, MALB-SC estimates 

 

 
 



the working set size and contents for different transaction types. 
Using the working set estimates, MALB-SC creates transaction 
groups whose combined working sets fit in main memory so 
they can efficiently share replicas. Roughly speaking, each 
transaction group is assigned a sufficient number of replicas to 
handle its load.  

For updates, we present update filtering to reduce the overhead 
of update propagation in the replicated system.  MALB-SC 
dynamically assigns each replica a subset of the transaction 
types. If the system configuration and workload characteristics 
are stable, the replica can drop tables not needed for its subset 
of transaction types. As a result, the replica does not receive 
updates for those tables. 

We build Tashkent+, a prototype write-anywhere database, 
replicated on a LAN cluster. We demonstrate performance 
improvements using the TPC-W and RUBiS benchmarks across 
a range of workloads. In particular, running the update-
intensive ordering mix of the TPC-W benchmark on a 16-
replica cluster, our experiments show that MALB-SC doubles 
(105% improvement) the throughput compared to least 
connections and provides 52% more throughput than LARD. 
MALB-SC with update filtering improves throughput to triple 
(202% improvement) that of the least connections — another 
full factor of improvement over just MALB-SC alone — and 
more than doubles (126% improvement) that of LARD. Thus, 
with the ordering mix, our techniques show a super-linear 
speedup of 37x over a single system due to better use of the 
cluster’s memory. 

The contributions of this paper are the following: 

1. We identify and explain why LARD algorithms do not 
handle large requests well. We introduce memory-aware 
load balancing, and we demonstrate that it handles such 
requests better. 

2. Memory-aware techniques require working set 
information. We propose a number of methods to estimate 
the working set size and contents of database queries. 

3. We compare different degrees of how aggressively to pack 
transaction types on the replicas. We show that memory-
aware techniques are effective even when the working set 
information is approximate, but that there is a danger in 
being overly aggressive in packing different transaction 
types on to the same replica. 

4. We propose the update filtering optimization in which 
update propagation is selectively filtered to greatly reduce 
the consistency load on the system and improve scalability. 

5. We implement all of the above techniques, and show their 
effects using the TPC-W and RUBiS benchmarks on a 16-
replica cluster. 

The rest of the paper is organized as follows. Section 2 contains 
a detailed description of the  MALB-SC algorithm. In Section 3 
we present update filtering. In Section 4 we discuss the 
implementation of Tashkent+ and the experimental 
environment. In Section 5 we present our experimental 
evaluation. In Section 6 we discuss related work. We present 
our conclusions in Section 7. 

2. MALB-SC ALGORITHM 
2.1 Overview  
Here we present an instance of a memory-aware load balancing 
algorithm we call  MALB-SC. Other implementations and 
improvements are certainly possible, however, our 

implementation details many of the issues any memory-aware 
algorithm must address. 

The properties of a good memory-aware load balancing 
algorithm are the following : 

1. Dispatch transactions to replicas such that they fit together 
in memory, avoiding memory contention. 

2. Dynamically allocate more replicas to transaction types 
that require more resources. 

3. Respond to changes in the workload by rebalancing replica 
allocation accordingly. 

Our implementation,  MALB-SC, uses estimates of the working 
sets in order to create transaction groups such that each group 
fits in the main memory of a database replica. Then,  MALB-
SC dynamically allocates replicas to transaction groups. 

The state of the database is continuously monitored to create 
up-to-date estimates of the working sets using queries on 
metadata for the tables. If changes in the working sets (i.e., 
growth/shrinkage) require re-grouping the transactions, new 
transaction groups are formed. Throughout, replica allocation 
continuously adjusts to the groupings and the needs of the 
workload mix. Demanding groups get more replicas, while less 
demanding groups give up excess replicas or even merge with 
other lightly loaded groups to improve the efficiency of the 
overall system. Next, we discuss how to estimate the working 
sets, followed by creating transaction groups and dynamic 
allocation of replicas. 

2.2 Estimating Working Set Information 
We use the execution plan as well as metadata from the 
database to generate the working set estimate for each 
transaction type. The load balancer requests from the database 
the execution plan of the transaction type. The execution plan 
contains the tables and indices used and how the database 
accesses them. The load balancer uses this information to 
compute estimates on the transaction’s use of memory, i.e., its 
working set. 

The following four categories of information represent an 
increasing level of detail about transactions. 

Transaction Type. The application provides the transaction 
type to the load balancer when it requests a connection to start a 
new transaction. Thus, when a request arrives, the load balancer 
knows its type and uses the type information in its dispatching 
decisions. 

Working Set Size. The working set for processing a transaction 
is dominated by the tables and indices referenced. Therefore, a 
practical estimate on the working set size is the sum of the sizes 
of the tables and indices referenced in the query execution plan. 

Working Set Content. Knowing which tables and indices are 
referenced is important when two or more transaction types 
execute on a replica. The working sets of two transaction types 
overlap when that they access common tables or indices. Shared 
content is not double counted when estimating the combined 
working set of transaction types. 

Working Set Access Pattern. When a table or index is linearly 
scanned, all its pages are brought to memory. In contrast, each 
random access to a table likely only touches a handful of pages. 
The working set differs considerably between the two access 
styles. Taking the access pattern from the query execution plan 
into account provides better estimates on the working set size 



for a transaction instance. However, if many instances of a 
transaction type with different parameters execute on a replica, 
then the aggregate effect of many random accesses may result 
in accessing all pages. We explore this topic in our experiments.  

2.3 Creating Transaction Groups 
With the working set information, we use a bin packing 
heuristic to group transaction types so that their combined 
working sets fit into available memory. We investigate the 
following range of methods that use progressively more 
information to construct groups. 

Method MALB-S (Size only). We choose the well-known Best 
Fit Decreasing (BFD) [L99] bin packing algorithm using only 
the size of the working sets, not their contents. In BFD, the 
largest objects (i.e., biggest transaction types) are greedily fit 
first into the bins (i.e., memory) with the smaller objects fit in 
last. Overlap of the working sets is not considered here. For 
example, if transaction type T1 uses tables A and B, and T2 
uses tables B and C, then the estimate of the memory needed to 
pack T1 and T2 together is (|A| + 2 |B| + |C|). 

Method MALB-SC (Size+Content). A more accurate estimate 
is to avoid recounting shared content (e.g., shared tables). In the 
prior example, T1 and T2 share table B. When considering 
content in the estimate, the size shrinks to (|A| + |B| + |C|). The 
BFD algorithm is modified to account for overlap. A 
transaction type is added to the bin for which (1) the non-
overlap component fits in the available free space and (2) there 
is maximal overlap. Because overlap reduces the sum of 
combining working sets, this method packs groups more 
efficiently than MALB-S and produces a better estimate on a 
group’s aggregate working set size. 

Method MALB-SCAP (Size+Content+Access Pattern). 
Using all the referenced tables and indices as in MALB-S and 
MALB-SC likely over-estimates the working set. We consider a 
lower bound estimate made up of only the heavily used tables 
and indices in the query plan. We define the heavily used tables 
as those that are linearly scanned. The packing algorithm is the 
same as for MALB-SC but the input is just the list of scanned 
tables and indices for each transaction type and their sizes. In 
general, fewer groups are generated. The working set may be 
under-estimated which can result in over-packing of transaction 
types into a single group (i.e., the group’s memory needs may 
exceed the memory capacity of the replicas). 

Overflow Transactions. Transaction types whose working set 
estimates are larger than main memory are considered overflow 
transaction types. Each overflow transaction type is assigned its 
own group. 

2.4 Replica Allocation 
Load balancing requires some method of estimating the load on 
each replica. The common technique of using outstanding 
connections is too coarse when the complexity of transactions 
varies greatly across the mix. In our system, the load balancer 
continuously receives replica load information on the CPU and 
the disk I/O channel utilization from lightweight daemons 
running on each of the replicas. The key features of the re-
allocation process using this information are the following: 

Group Load Calculation. The load balancer calculates the 
load for each transaction group by averaging the (smoothed) 
CPU and disk utilizations of all replicas assigned to that group. 
For example, if a group is assigned three replicas having (CPU, 
disk) utilizations (in %) of (45, 10), (40, 8), and (53, 9), the load 
balancer would summarize the load as (46, 9) for the group.  

Comparing Loads. To compare loads between groups — some 
of which may be CPU-bound and others that may be I/O-bound 
— we use MAX(CPU, disk) as the load function to indicate the 
utilization of the bottleneck resource. Thus, we consider I/O-
bound transactions and CPU-bound transactions as equally 
significant in their ability to limit the throughput of the system. 
Other weighted functions could be used, but we find that the 
simple MAX function works well.  

Replica Allocation. We allocate additional replicas to the most 
loaded group from the least loaded group. Instead of using the 
current load statistics to determine the least loaded group, the 
load balancer calculates via simple linear extrapolation what the 
future load of each group would be if one of its replicas were 
removed. In the prior illustration of three replicas having an 
average load factor of 46, if one replica were removed the 
estimate for the future average load would be 46 x 3/2 = 69, i.e., 
the same total load but distributed over two replicas. 

Using an estimate of the future load accommodates naturally 
the higher sensitivity to re-allocations of groups having just a 
few replicas. For example, consider two groups, one with two 
replicas and an average utilization factor of 20 and another with 
six replicas and an average utilization factor of 25. The future 
average load of each group if one replica were removed would 
be 40 and 30, respectively. Thus, it is better to re-allocate one 
from the group with six replicas rather than the from the group 
of two replicas even though the current load factor is lower in 
the latter. 

Finally, because load measures are somewhat noisy, we add 
hysteresis by restricting re-allocations unless the most loaded 
group (to which a replica would be added) has a utilization of at 
least 1.25 times that of the (future) least loaded group (from 
which the replica would be taken).  

Fast Re-allocation. If the workload characteristics change 
dramatically, re-allocating only one replica at a time could 
result in poor performance while the system slowly 
reconfigures. Faster convergence on reconfiguration is done by 
solving a simple set of simultaneous equations on the estimate 
of the total resource needs of each group. We estimate a group’s 
total resource needs by multiplying its average utilization by the 
number of replicas allocated to it. For example, a system with 
two groups, a group M having three replicas at 70% utilization 
and another group N with seven replicas at 10% utilization 
would have the balance equations: 

(0.70 x 3) / m = (0.10 x 7) / n 

m + n = 10 

The solution is m=7.5 and n=2.5 which, if rounded 
conservatively, is m=7 and n=3. Thus, the allocation changes 
quickly by, at once, removing 4 replicas from group N and 
giving them to group M. Future adjustments fine tune the 
allocation, but the bulk of the resources are correctly deployed 
quickly to minimize the time operating in a less efficient 
configuration during the transition. 

Merging Low Utilization Transaction Groups. It is possible 
that the load of a transaction group is so low that even a single 
replica allocated to it is underused. Such groups should not tie 
up a replica and keep it drastically under-utilized. However, 
sharing the replica with another group is likely to generate a 
higher degree of memory contention, precisely the event  
MALB-SC is designed to avoid. If there are two such 
transaction groups, each lightly utilizing its single replica, then 
we assign one replica to the two groups and reclaim a replica 
for allocation elsewhere. By restricting sharing to groups that 



substantially under-utilize their single replicas, MALB-SC 
minimizes the chance that memory contention creates a 
bottleneck in the system. 

If significant memory contention occurs such that the newly 
shared replica becomes the most loaded system then dynamic 
re-allocation is triggered. In this case, instead of allocating 
another replica, the two transaction groups are split and a 
separate machine is allocated to each group. This method stops 
the memory contention, if that indeed were occurring.  

3. UPDATE FILTERING 
Update filtering is an optimization to reduce the overhead of 
reflecting updates system-wide. In a replicated database, 
updates must be reflected at all copies in the system to maintain 
consistency. While the aggressiveness on when and how these 
updates are propagated varies depending on the consistency 
model being used, work must be done eventually at all replicas 
to update all copies of changed items. This update propagation 
overhead to change all copies is a fundamental scalability 
bottleneck. Update filtering targets this overhead. 

The  MALB-SC algorithm partitions transaction groups across 
replicas. Under stable workload characteristics, this partitioning 
can be made permanent by the load balancer. Since each replica 
receives only a subset of the transaction types, any tables not 
used at a replica can be dropped or allowed to go out-of-date. 
Updates to these unused tables do not have to be processed by 
the replica, i.e., their remote updates can be filtered.   

Recovery of a replica is not affected by update filtering. If a 
replica crashes and later restarts, standard recovery is used. For 
example, the database can be restored from other copies in the 
cluster or by the persistent log at the certifier [EDP06]. We 
limit the discussion here to ensuring availability in the presence 
of update filtering, where the system ensures a minimum level 
of redundancy for every transaction type and table in the 
system. 

There are two constraints that must be met by the load balancer 
to ensure a target level of availability, in contrast to a replicated 
system without update filtering. The first constraint is to ensure 
transaction type availability, i.e., each transaction type must 
have a minimum number of replicas upon which it can run. 
Even if the transaction’s group requires only a single replica for 
performance reasons, the load balancer ensures that additional 
replicas have up-to-date state to run the transaction if needed. 
For every transaction group, the number of replicas serving its 
transactions at runtime is dictated by the load. 

The second constraint is to ensure table availability in the 
presence of update filtering. Ensuring enough copies of tables 
and indices are available is a separate concern from transaction 
type availability. However, table availability is automatically 
addressed if transaction type availability is provided. 

4. IMPLEMENTATION 
We have built a prototype system called Tashkent+ that 
embodies the main ideas in this paper. Tashkent+ is an 
extension of our Tashkent replicated database system [EDP06]. 
We give an overview of transaction processing in Tashkent and 
then we outline the changes implemented for Tashkent+. 
Finally, we describe the experimental environment. 

4.1 Overview of Tashkent 
Tashkent [EDP06] is a high-performance replicated database 
system. Tashkent represents the base system to which we 
compare the benefits of  MALB-SC and update filtering. 

 
Figure 1: Tashkent replicated database design 

Tashkent uses generalized snapshot isolation (GSI) [EPZ05] for 
concurrency control. GSI extends the well-known snapshot 
isolation (SI) protocol to replicated databases. The design 
consists of two main logical components both of which are 
replicated: (1) the database replica and (2) the certifier. Replicas 
are symmetric in that any replica can process any client request, 
whether read or write.  

Under the GSI concurrency protocol, replicas process read-only 
transactions entirely locally. When a replica receives an update 
transaction it executes it locally, except the commit operation 
which requires certification to detect write-write conflicts. 
Replicas communicate only with the certifier component, not 
directly with each other. The certifier certifies update 
transactions from all replicas and gives them a global commit 
order. 

The Tashkent design is pure replication middleware. As shown 
in Figure 1, attached to each replica is a transparent proxy that 
intercepts requests to perform the replication functionality. The 
proxy appears as the database to clients, and appears as a client 
to the database. The proxies and certifiers constitute the 
replication middleware. The proxy performs admission control 
to prevent bursts from overloading the database using the 
Gatekeeper algorithm [ENTZ04]. 

In Tashkent, database replicas are replicated mainly for 
performance, whereas the certifier is replicated mainly for 
availability. In this study, we simply assume a separate certifier 
component which is replicated, though our conclusions apply to 
other configurations. For example, the certifier component 
could be implemented via an atomic broadcast mechanism 
incorporated into the proxy at every replica [LKPJ05, WK05]. 

Data consistency is maintained across replicas by propagating 
modifications at a replica to all other replicas using writesets. A 
writeset is the core information required to reflect the effects of 
an update transaction’s changes [KA00].  

Processing read-only transactions is straightforward. Each read-
only transaction is processed against an assigned snapshot. 
Processing update transactions is illustrated in Figure 2 and 
includes the following steps. 

Certification. When an update transaction attempts to commit, 
the proxy at the replica sends to the certifier a request to certify 
the writeset. The certifier processes the writeset to detect write-



write conflicts by comparing table and field identifiers for 
matches against writesets from recently committed update 
transactions. Successfully certified writesets (i.e., without 
conflicts) are recorded in a persistent log, thus creating a global 
order. The state of any replica is always a consistent prefix of 
the certifier’s log. 

Responding to replicas. The certifier responds to the replica 
with the result of the requested certification test and any remote 
writesets from intervening update transactions at other 
replicas. The middleware proxy at the replica applies the 
remote writesets to the database before it commits the local 
update. This broadcast of writesets to all replicas is essential to 
maintaining consistency. Applying the writesets is a 
fundamental scalability limit since all updates system-wide 
must be processed by every replica. 

Update propagation. Updates are propagated as a side effect 
of certification requests. In addition, Tashkent uses two 
mechanisms to trigger update propagation. First, the proxy pulls 
new updates periodically (every 500 msec) from the certifier if 
the replica has not issued certification requests recently. 
Second, the certifier sends short notification messages to 
replicas that are behind (e.g., if a replica missed 25 commits) to 
prod them to make a request for updates. 

Durability. The Tashkent design employs the novel method of 
combining durability and ordering in the middleware [EDP06]. 
Doing so avoids a serious disk I/O bottleneck that arises when 
durability is performed in the databases but commit ordering is 
decided in the middleware. When ordering and durability are 
not combined, the bottleneck occurs because the certifier 
determines the global order of commits, but proxies must 
commit update transactions and remote writesets serially to 
ensure the same order is followed at each replica. 

Since Tashkent unites ordering and durability, its database 
replicas have a very efficient I/O subsystem: replicas do not 
need to issue an fsync() call to commit local or remote update 
transactions (durability is guaranteed in the middleware). This 
makes Tashkent a challenging environment for our study since  
MALB-SC and update filtering improve performance by 
reducing stress on the disk I/O channel. Since the Tashkent 
design already makes very efficient use of its disk I/O channel, 
we expect the  MALB-SC and update filtering techniques to be 
of even greater benefit if durability and ordering are not united. 

4.2 Tashkent+  Implementation 
4.2.1 Load Balancer Implementation 
The load balancer is implemented in Java as a JDBC driver. It 
contains the different load balancing algorithms as well as 
support for update filtering. The load balancer is light-weight. 
Forwarding all database requests takes less than 5% of the CPU 
in our experiments. 

Fault-Tolerance. We use a Primary-Backup scheme for 
availability. The load balancer has only soft state that can be 
reconstructed from the replicas. When the primary load 
balancer fails, clients fail over to the backup load balancer and 
all active transactions are aborted and retried. The backup load 
balancer starts by querying the replicas to re-construct its soft 
state. 

Consistency Guarantees. Tashkent+ provides Generalized 
Snapshot Isolation (GSI) [EPZ05] with Session Consistency 
[DS04]. All workloads discussed in this paper run serializably 
under GSI [EPZ05, F05, FLO+96]. 

4.2.2 Obtaining Working Set Information 
Here we describe the specific mechanisms the load balancer 
uses to determine transaction types and the details of the 
working sets when using the PostgreSQL [PG] database: 

1. The application provides the transaction type with each 
request for a JDBC database connection. However, this 
can be automated with static analysis or dynamic sniffing 
at the load balancer [ENTZ04, BCD+06]. 

2. The load balancer retrieves the database schema to find all 
tables and their associated indices. 

3. For each table or index, its size in pages is determined by 
the PostgreSQL query: “SELECT relpages FROM pg_class 
WHERE relname=’<tablename>’ ”. Each page is 8KB. 

4. To retrieve the transaction execution plan, the load 
balancer sends an instance of each transaction type to 
PostgreSQL prefixed with the EXPLAIN command. 
PostgreSQL returns the execution plan of each query. The 
load balancer processes the plan and records all tables and 
indices accessed as well as how they are accessed. 

4.2.3 Update Filtering Implementation 
When update filtering is enabled, the load balancer sends to 
each proxy the list of tables for which the replica receives 
remote writesets. The proxy stores this information in the 
database and only forwards the writesets for those tables to the 
replica. 

We disable dynamic replica allocation when update filtering is 
enabled. Therefore, in this paper update filtering is used only 
when the workload characteristics are stable. In future work, we 
plan to study strategies that enable the load balancer to combine 
dynamic replica allocation with update filtering.  

4.3 Baseline Load Balancing Algorithms 
We use the following two load balancing algorithms as a 
baseline for comparison with  MALB-SC and update filtering. 

LeastConnections:  LeastConnections uses no information 
about the transaction type. The number of outstanding requests 
at a replica is used as a measure for balancing load. 
LeastConnections is a form of weighted round robin. 

LARD: The algorithm knows only the transaction type and 
dispatches a transaction to a replica where instances of the same 

 
Figure 2: Processing of update transactions in 

Tashkent 
 



transaction type have recently run [PAB+98, ZBCS99]. It has 
no information about the working set, neither its size nor its 
contents. Rather, the technique relies on locality-aware request 
distribution to re-use data in memory from a prior executions of 
transactions of the same type. 

4.4 Experimental Environment 
The replicated database system is the Tashkent+ prototype 
described in Section 4.2 with the load balancer modified to 
implement the various policies. Our primary performance 
metric is throughput, which is the number of transactions 
completed per second. We measure the performance of a single 
standalone database and determine the number of clients needed 
to generate 85% of the peak throughput. In the following 
experiments, we use that number of clients per replica to load 
the system. 

System specification. Each machine in our cluster runs the 
2.6.11 Linux kernel on a single Intel Xeon 2.4GHz CPU with 
1GB ECC SDRAM, and a 120GB 7200pm disk drive. The 
machines are connected through a switched 1Gbps Ethernet 
LAN. We monitor the system load with a modified version of 
the Mercury server management system [HCG+06]. For the 
certifier, we use a leader and two backups for fault tolerance. 
We use the PostgreSQL 8.0.3 database configured to run 
transactions at the snapshot isolation level (which is the strictest 
isolation level in PostgreSQL and called the “serializable 
transaction isolation level”). Unless otherwise specified, there 
are 16 database replicas in the system. 

The amount of available memory used as input to the bin 
packing algorithm is reduced by 70 MB to account for the 
memory usage of the operating system, PostgreSQL processes, 
the proxy processes, and monitoring daemons as well as for 
processing remote writesets during update propagation. 

TPC-W Benchmark. TPC-W is a benchmark from the 
Transaction Processing Council [TPC] designed to evaluate e-
commerce systems. It implements an on-line bookstore and has 
three workload mixes that differ in the relative frequency of 
each of the transaction types. We report results from all three 
mixes using an open source implementation of TPC-W 
[ACC+02]. The ordering mix workload has 50% updates, the 
shopping mix workload has 20% updates, and the browsing mix 
workload has 5% updates. In update propagation, the average 
writeset size is 275 bytes.  

In Section 5.6 we explore a range of the problem space by 
varying the size of the database, the transaction mix, and the 
available memory at each replica. The goal is to highlight how 
system parameters interplay with our techniques. We focus on 
TPC-W and scale the database via its EBS parameter and 
experiment with a small database of 100 EBS (0.7 GB), a 
medium database of 300 EBS (1.8 GB), and a large database of 
500 EBS (2.9 GB) for each of the three TPC-W mixes. In 
addition, we vary memory as 256 MB, 512 MB, and 1024 MB. 
To restrict memory use, at each replica we run a side process 
that locks down a specified number of pages via the system call 
mlock() before we run experiments. For example, to run with 
756 MB of available memory, we lock out 256 MB of the 
available 1 GB RAM. For the initial discussion, we use the 
middle point in our configuration space: middle database size 
(1.8 GB) and middle memory size (512 MB). 

RUBiS Benchmark. RUBiS [OW] is a benchmark from Rice 
University that emulates an on-line auction site modeled after 
eBay. In our experiments, the RUBiS database has 10,000 
active items, 1M users, 500,000 old items and is 2.2 GB. There 

are two workload mixes, a browsing mix that is read-only and a 
bidding mix having 15% updates. The bidding mix is the main 
mix in RUBiS. We implemented a transactional version of the 
benchmark with primary key indices as the original benchmark 
does not support transactions [ACC+02]. The average writeset 
size is 272 bytes. 

5. PERFORMANCE EVALUATION 
5.1 Objectives 
We perform an experimental evaluation using the Tashkent+ 
prototype to answer the following questions: 

• What are the benefits of using working set 
information in load balancing? 

• How do the different methods of constructing 
transaction groups by packing working sets into 
available memory differ? 

• Does replica allocation have to be dynamic? How 
well does the load balancer cope with significant 
changes in the workload mix? 

• What is the benefit of update filtering? 

• Under which environments are  MALB-SC and 
update filtering effective? 

5.2 Exploiting Working set Information 
The throughput of least connections (LeastConnections) versus 
MALB-SC (size+contents overlap) is shown in Figure 3. The 
throughput of LeastConnections is 37 tps with a response time 
of 2.2 sec. For perspective, the standalone database has a peak 
throughput of 3 tps with a response time of 2.6 sec. Thus, on 16 
replicas, LeastConnections scales well to 12 times the 
performance of a single system. 

MALB-SC doubles the throughput of LeastConnections to 76 
tps with a response time of 0.81 sec. Thus, MALB-SC has a 
super-linear speedup of 25 over a single system. Super-linear 
speedup is observed, among other circumstances, when systems 
transition from being disk-bound to being memory-bound, 
reflecting more efficient use of the aggregate memory of the 
cluster. 

The locality-aware algorithm LARD supports 50 tps throughput 
(with 1.4 sec response time), an improvement over 
LeastConnections, but MALB-SC is still 52% higher in 
performance. The performance differences can be explained by 
looking at the amount of disk I/O in the three systems, shown in 
Table 1. LeastConnections performs on average 84 KB of disk 
I/O per transaction, of which 72 KB is for reading data and 12 
KB are writes from updates. LARD reduces read activity to 57 
KB, but MALB-SC creates the greatest reduction to 20 KB. The 
reduced read disk activity means there is less memory 
contention in MALB-SC. Table 2 shows the groupings settled 
on by MALB-SC, as well as the number of replicas assigned to 
each group in this experiment. 

For RUBiS in Figure 4, we see the same pattern, with MALB-
SC out performing both LeastConnections and LARD by 39% 
and 26%, respectively.  MALB-SC reduces the amount of disk 
I/O from reads significantly, as shown in Table 3. From the 
groupings in Table 4, we see that the transaction AboutMe is a 
demanding transaction that receives 9 of the 16 replicas. 
AboutMe is a large, frequent transaction that reads from almost 
all the tables in the database.  
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Table 1: TPC-W Average Disk I/O per Transaction 

Method Write Read Read Fraction to 
LeastConnections 

LeastConnections 12 KB 72 KB 1.00 
LARD 12 KB 57 KB 0.79 
MALB-SC 12 KB 20 KB 0.28 

 

 Table 3: RUBiS Average Disk I/O per Transaction 

Method Write Read Read Fraction to 
LeastConnections 

LeastConnections 11 KB 162 KB 1.00 
LARD 11 KB 149 KB 0.92 
MALB-SC 11 KB 111 KB 0.69 

 
 

Table 2: TPC-W MALB-SC groupings 

Transaction types Replicas 
[BestSeller] 2 
[AdminRespo] 4 
[BuyConfirm] 7 
[BuyRequest, ShopinCart] 1 
[ExecSearch, OrderDispl, OrderInqur, 
ProducDet] 

1 

[HomeAction, NewProduct, SearchRequ, 
AdmiRqust] 

1 
 

 Table 4: RUBiS MALB-SC groupings 

Transaction types Replicas 
[AboutMe] 9 
[PutBid, StoreComment, ViewBidHistory, 
ViewUserInfo] 

4 

[Auth, BrowseCategories, BrowseRegions, 
BuyNow, PutComment, RegisterUser, 
SearchItemsByRegion, StoreBuyNow] 

1 

[RegisterItem, SearchItemsByCategory, 
StoreBid, viewItem] 

2 
 

   
MALB-SC versus LARD. The performance difference 
between MALB-SC and LARD deserves special discussion. 
Without specific working set information, LARD does not 
perform as well as  MALB-SC, which does use working set 
information. The key insight into this difference is in how 
LARD allocates replicas to transactions.  

When a large transaction is assigned to a replica, every time it 
runs it displaces the pages for other transaction types.  Under 
LARD, when a large transaction is frequent it competes heavily 
with the other transactions for memory space creating 
contention and slowing down all transactions on the replica due 
to competition for the disk I/O channel. The replica becomes 
less productive. This contention results in longer response times 
and more open connections which signals to the LARD load 
balancer that the replica is heavily loaded (it is, but not with 
productive work). This triggers LARD to allocate another 
replica to the large transaction, creating memory contention on 
yet another machine and getting little if any additional 
throughput gains. The process continues until all machines are 

heavily utilized and, thus, “turns off” the LARD algorithm from 
making further allocations. LARD stabilizes at a sub-optimal 
configuration, with a lot of memory contention. 

The above scenario does not occur in LARD if the workload is 
static content consisting mostly of small files. With small files, 
no single request can systematically wipe out large portions of 
the memory. If LARD overloads a machine, it occurs gradually 
with the many small requests providing fine-grained feedback 
for LARD to reconsider its allocations. In contrast, a large 
transaction is coarse-grained in that the memory contention it 
creates does not arise gradually, but instantaneously and 
pronounced.   

In contrast, MALB-SC successfully manages large transactions 
by isolating their effects on other requests. The performance 
impact of making a bad dispatch decision on large transactions 
is high.  MALB-SC succeeds by avoiding the contention cases. 
Having the working set information allows proper grouping of 
requests to share resources amicably while avoiding memory 
contention. 



For the rest of the results we shall focus on TPC-W as it has 
greater variety in its transaction mixes, including a wider range 
of update activity. We return to RUBiS in Section 5.6. 

5.3 Constructing Transaction Groups 
We contrast the three methods for utilizing working set 
information to form transaction groups. MALB-S (size only) 
generates 7 groups. MALB-SC (working set size and contents) 
generates 6 groups, since shared tables are not double-counted. 
MALB-SCAP (working set size, contents, access pattern) 
generates 4 groups when using only heavily scanned items as a 
lower estimate of the working set. MALB-S and MALB-SC are 
more likely to over-estimate the true size of a working set, 
while MALB-SCAP is more likely to under-estimate the size. 

Figure 5 shows the performance of the system when using the 
different transaction groupings (as well as LeastConnections 
and LARD for reference). MALB-SCAP, MALB-S, and 
MALB-SC give 57, 73, 76 tps respectively. All have higher 
throughputs than that of LeastConnections and LARD. 

Even though MALB-SCAP performs better than LARD and 
LeastConnections, it does not perform as well as the two other 
methods, MALB-S and MALB-SC. MALB-SCAP generates 
more disk read I/O than both MALB-S and MALB-SC 
indicating some over-packing of transaction groups. 

This result may seem surprising, since MALB-SCAP uses more 
detailed information to more precisely estimate the working 
sets, while MALB-SC uses less information and therefore tends 
to over-estimate. The reason for MALB-SCAP’s inferior 
performance is that the penalty for under-estimation is high. 
Under-estimation and the resulting over-packing of transaction 
types in a single transaction group leads to more disk I/O, the 
cost of which dwarfs any gain achieved by tighter packing. A 
further consideration is that the estimation is inherently 
approximate, as demonstrated next. 

Experimental Working Set Measurement. We measure the 
working set of all transaction types experimentally by 
dedicating transaction types to a single machine and adjusting 
the amount of free memory until the amount of disk I/O spiked. 
We compare the measured working set size to the lower 
estimate (as used in MALB-SCAP) and upper estimate (as used 
in MALB-SC). 

For many transaction types the estimates differ little between 
MALB-SC and MALB-SCAP. For example, for the BestSeller 
transaction the estimates are 608 and 610 MB, respectively. 
These estimates agree well with the measured working set sizes 
that range between 600 and 650MB. For other transactions, 
however, the difference between the estimates of MALB-SC 
and MALB-SCAP are substantial. For example, for the 
OrderDisplay transaction MALB-SCAP estimates the working 
set size to be 1MB, while MALB-SC arrives at 1600MB,  
because it makes random accesses to nearly every table but 
scans only one small one. Its true working set size is between 
400 and 450 MB. Using the MALB-SCAP estimate would  
suggest that OrderDisplay can be packed with any group, but its 
true size of over 400 MB means that its working set actually 
consumes most of the available 512 MB of main memory. 
Therefore, it should be packed separately in a single group. 

Merging Groups. To compensate for occasional under-packing 
resulting from conservative estimates in MALB-S and MALB-
SC, transaction groups that under-utilize their replicas are 
merged. To measure the effect of merging, we disable it and 
measure the resulting throughput. The throughput of MALB-S 
decreases from 73 to 66 tps, and the throughput of MALB-SC 

decreases from 76 to 70 tps. Thus, in these experiments 
merging transaction groups on under-utilized replicas 
compensates for having many groups, of which some have 
infrequent requests.  

Summary. We conclude that being conservative in estimating 
the working set is safer because it avoids memory contention. 
Over-estimating the working sets can result in many transaction 
groups of which some may not be able to load a dedicated 
replica. Merging groups which have only a single under-utilized 
replica mitigates having too many transaction groups. 
Furthermore, in the event of memory contention, the  MALB-
SC algorithm prioritizes the undoing of merging before 
allocating additional replicas. Thus, memory contention of 
merged groups may occur in  MALB-SC but in a controlled 
fashion such that it can also be undone.  

5.4 Dynamic Reconfiguration 
Should the workload change, the system must adapt to the new 
mix of requests. In Figure 6, we change the workload from the 
shopping mix to the browsing mix and then back to the 
shopping mix. We use these two mixes since the distribution of 
replicas across the groups differ the most. For this experiment, 
we run the shopping mix for 2000 seconds, then switch to the 
browsing mix for 2000 seconds, and then switch back to the 
shopping mix for another 2000 seconds. The baseline 
performance for the shopping mix is 76 tps. The browsing mix 
has a lower baseline performance of 45 tps. We should expect 
the system to match these baseline  throughputs in the time 
intervals during which the corrseponding workload is in effect. 

The lighter curve is the number of transactions executed per 30 
second interval. The darker curve is the moving average of a 
150 second window. The system tunes itself to the shopping 
mix and then adjusts to the expected performance for the 
browsing mix. The system responds quickly. The slope between 
transitions is due to the lag to detect the change in workload and 
from  averaging over the interval.  

The thick bottom line (19 tps) is the throughput of running the 
browsing mix with the best static configuration for the shopping 
mix. This is the throughput that would occur if the load 
balancing could not adapt to the workload. With such a static 
algorithm, the throughput of MALB under the browsing mix 
(19 tps) is lower than the throughput of LeastConnections under 
the browsing mix (37 tps). Using the wrong static configuration 
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leads to unbalanced replicas; some are overloaded and others 
are underloaded. Therefore, a dynamic algorithm is necessary to 
get the benefits of MALB when the workload changes. 

5.5 Effectiveness of Update Filtering 
We enable update filtering after the system stabilizes the 
configuration of the database cluster. The results are shown in 
Figure 7. For the ordering mix with 50% of its transactions 
being updates, MALB-SC with update filtering (MALB-
SC+UpdateFiltering) has a throughput of 113 tps which is 47% 
above the performance of just MALB-SC, and 202% above that 
of LeastConnections. The average response time for MALB-
SC+UpdateFiltering is 0.349 sec. MALB-SC+UpdateFiltering 
shows super-linear speedup, with a throughput of 37 times the 
peak throughput of a standalone database. 

Table 5 lists the same disk I/O information as Table 1, but with 
an additional entry for “MALB-SC+UpdateFiltering”. The 
amount of data written to disk has dropped 25% to 9 KB from 
12 KB (at a higher throughput rate) due to filtering. The 
relatively large performance boost comes from update filtering 
removing competition for the disk channel on replicas with 
transactions that need data from disk. The slight reduction in 
read activity is because filtering updates also reduces memory 
pressure somewhat. 

The magnitude of the performance improvement resulting from 
update filtering may seem surprising. The writesets average 275 
bytes each, so 76 tps in the ordering mix (50% updates) 
generates 38 writesets per second, or less than 10K bytes per 
second. A paltry 10 KB/sec should not add much stress to the 
disk I/O channel, but it appears to do so because update filtering 
improves performance by 50% over just MALB-SC. However, 
Table 5 reveals that the total amount of data actually written to 
disk by MALB-SC is 76 tps * 12 KB per transaction, or 912 
KB/sec. Thus, the small updates being propagated are 
apparently creating significant disk activity.  

What is happening is that the 10 KB of updates are actually 
distributed throughout the database and touch many pages. 
Since a database page (8KB in our system) must be written 
completely to disk whether one byte is dirty or all 8KB are 
dirty, the randomness of the writes greatly impacts the amount 
of disk I/O activity generated. 

5.6 Different Database and Memory Sizes 
The relative sizes of the database and memory, as well as the 
transaction workload mix, impact the dynamics of the MALB-
SC algorithm. We explore this space in TPC-W and vary the 
memory size, the database size, and the workload mixes. 

Figure 10 has nine plots representing 81 experiments using 
different combinations. The top row is LargeDB of 500 EBS 
(2.9 GB); the middle row is MidDB of 300 EBS (1.8 GB) 
database; and the bottom row is SmallDB of 100 EBS (0.7 GB). 
The workload mixes vary across the columns, the first being the 
ordering mix (50% updates), the second the shopping mix (20% 
updates), and the third the browsing mix (5% updates). Within 
each chart, the memory is varied, at values of 256 MB, 512 
MB, and 1024 MB. The configuration space covered is 
summarized graphically in Figure 9. Finally, the three 
techniques compared are LeastConnections, MALB-SC, and 
MALB-SC with update filtering (MALB-SC+UpdateFiltering). 
LeastConnections is used as a base comparison to highlight 
when a simple load balancing approach suffices. For context, 
the results of Figure 7 map to the middle set of bars in chart 
MidDB-Ordering (middle row, first column).  
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Table 5: TPC-W Average Disk I/O per Transaction 

Method Write Read 
LeastConnections 12 KB 72 KB 
LARD 12 KB 57 KB 
MALB-SC 12 KB 20 KB 
MALB-SC + UpdateFiltering 9 KB 18 KB 

 

The chart LargeDB-Ordering at 256 MB shows there is little 
benefit with  MALB-SC when the database is large and the 
memory is small. This corresponds in Figure 9 to the region 
where the working set is too big for memory. Under these 
conditions, the transactions run from disk, regardless of the 
partitioning (or grouping) of transactions. However, as memory 
is increased to 1 GB the benefits of partitioning become 
pronounced, improving performance from 39 tps to 110 tps, and 
further to 147 tps with update filtering. The benefit of update 
filtering decreases in charts LargeDB-Shopping and LargeDB-
Browsing because of the lower update rates; there are fewer 
updates to filter.  

Charts SmallDB-Ordering, SmallDB-Shopping, and SmallDB-
Browsing at 1 GB RAM show the other extreme, a small 



database with large memory. Here, even LeastConnections 
performs well on all mixes since the full database fits entirely 
into memory.  MALB-SC and update filtering help when 
memory is small (256 MB) as  MALB-SC fits the working sets 
in the replicas’ main memories. 

The middle column showing the shopping mix displays a nice 
range of behavior as the database size is increased. In chart 
SmallDB-Shopping, 256 MB appears to be just a bit too small 
for the working sets and  MALB-SC helps. For the MidDB-
Shopping, both the 256 MB and 512 MB configurations benefit. 
For LargeDB-Shopping, all three memory sizes see benefits 
from  MALB-SC. The 20% update rate is not high enough for 
update filtering to have much effect. 

One graph for the RUBiS benchmark running the bidding mix 
is shown in Figure 8. MALB-SC helps improve performance 
below 1 GB of memory, but the working sets fit in 1 GB so 
LeastConnections performs as well as MALB-SC. Update 
filtering shows little help as the 15% update rate of the bidding 
mix is too low for filtering to be of advantage.  

In summary, MALB-SC and update filtering improve 
performance significantly when working sets of transaction 
groups fit into the available memory, but the combined sum 
across all transaction groups exceeds available memory. If the 
memory is too small or too large, then  MALB-SC is of little 
help. However, even if there is no additional benefit from  
MALB-SC, in our experiments the  MALB-SC algorithm still 
generates configurations whose performance is at least as high 
as LeastConnections. 

5.6.1 Update Filtering 
Here we discuss in more detail the effects of using update 
filtering to reduce the system-wide overhead of update 
propagation. We focus on the ordering mix with 50% updates, 
i.e., the leftmost column. 

From the three graphs of this column, the pattern that emerges 
is that when  MALB-SC enhances performance then update 
filtering tends to also add significant improvements. However, 
when  MALB-SC adds little benefit then update filtering does 
not appear to help much either. 

MALB-SC improves performance by reducing the amount of 
data “pulled” from disk. In contrast, update filtering helps by 
reducing the amount of data “pushed” to disk and competing 
with reads for disk I/O. Both techniques reduce disk channel 
activity.  

If the database is “small” and the memory “large” such that the 
database essentially fits in memory, then there is little data 
being “pulled” from disk. Thus, there is little activity for 
MALB to reduce. This also implies (1) there is plenty of buffer 
space to hold dirty database pages and (2) there is plenty of 
spare disk channel bandwidth for the write back of dirty pages 
from update propagation. Hence, update filtering offers little 
benefit. 

Conversely, if the database is “large” and memory is “small”, 
such that all transactions generate disk I/O, then MALB is 
unable to reduce memory contention. The system is I/O-bound, 
throughput is relatively low and, thus, update activity is also 
low, so filtering can only have minimal impact. 

6. RELATED WORK 
We focus on related work in two areas: replicated databases and 
load balancing in server systems. 

6.1 Replicated Databases 
Many database systems use a front-end to perform request 
scheduling and load balancing [ACZ03-1, ACZ03-2, PA04, 
ZP06]. In general, they use load balancing algorithms that do 
not exploit working set information. For example, conflict-
aware scheduling [ACZ03-1] is content-aware in that the 
application provides to the scheduler the tables that are accessed 
so requests are scheduled to copies that are up-to-date. The 
emphasis is on correctness; no provision is made for ensuring 
working sets fit in memory. In distributed versioning [ACZ03-
2], the scheduler increases concurrency to scale the 
performance of replicated databases. Another form of conflict-
aware scheduling [ZP06] is used to reduce aborts, and 
consequently increase system performance. Again, working set 
size and memory contention issues are not addressed. 

Partial replication [RT04] partitions data across replicas. In 
contrast, Tashkent+ is essentially fully replicated design and  
MALB-SC partitions transaction types, not data, across 
replicas. Update filtering reduces the overhead of update 
propagation, which is also reduced in partial replication. In 
Tashkent+, every transaction is fulfilled by the replica to which 
it is dispatched. Complex queries in partial replication may 
require distribution across many replicas simultaneously. 

The P*TIME system [CS04] is not a replicated database but it 
uses a shared memory design emphasizing parallel disk I/O 
channels for writes and fast recovery. Our work reduces disk 
I/O through better memory use and is intended for memory-
intensive rather than update-intensive workloads. 

6.2 Load Balancing 
Here we discuss three systems LARD [PAB+98], HACC 
[ZBCS99], and FLEX [CP00]. LARD uses locality-aware load 
balancing for serving static web pages. FLEX and HACC use a 
notion of the size of requests in load balancing. In both, the size 
of the returned content from the set of instances seen thus far is 
parsed from the log files and used as the estimate for the 
working set.  The authors of FLEX term this content-aware 
load balancing. However, when serving dynamic content, the 
size of the returned data is not a good measure of the total 
memory needed to process requests (in TPC-W the difference 
can be many orders of magnitude). Estimating working set size 
as in Tashkent+ provides (1) a safe estimate and (2) enables 
assigning an efficient configuration once a single instance for 
each request type occurs.  
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Figure 9 : The space of database size versus memory size 
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Our contributions include the identification of problems for 
locality-aware techniques when there are frequent requests with 
large working sets and how to estimate the working sets of 
database transactions (dominated by tables and indices rather 
than simple files). LARD, HACC and FLEX were not designed 
for database workloads; none of them addresses updates in the 
workload. In other domains, working set information has been 
used dispatch independent jobs in a computing cluster [BB97]. 

In decision support systems, an analytical model [KS00] of the 
memory access behavior has been developed. The model is 
shown to be effective, but requires a number of parameters that 
will not be readily available to a load balancer. Our working set 
estimation techniques are simpler yet still effective in MALB-
SC. 

7. CONCLUSIONS 
This paper presents memory-aware load balancing ( MALB) for 
replicated databases. MALB uses information on transaction 
working sets to dispatch transactions to replicas in a manner 
that reduces memory contention. We show that without using 
additional information on how transactions use memory, 
existing load balancing techniques cannot prevent memory 
contention when there are frequent requests with large working 
sets as in memory-intensive database workloads. We present a 
method to estimate the size and content of transaction working 
sets from the query execution plan and metadata from the 
database. Using information on memory use, our MALB-SC 
algorithm significantly improves performance over other load 
balancing methods. 

The  MALB-SC algorithm distributes transaction types among 
replicas in a way that we exploit for a complementary 
optimization called update filtering. The update filtering 
algorithm specializes each replica to its workload: The replica 
applies those updates to the tables and indexes needed to 
service its workload, and filters out updates to unused tables. 
Update filtering reduces resources needed to propagate the 
effects of update transactions, and therefore further boosts 
performance. 

We build a prototype system, called Tashkent+, to demonstrate 
the benefits of MALB and update filtering. On a cluster of 16 
database replicas using the ordering mix of TPC-W benchmark,  
MALB-SC doubles system throughput compared to least 
connections and provides 52% improvement over LARD. 
Adding update filtering further improves throughput to triple 
that of least connections and more than double that of LARD.  

 MALB-SC and update filtering exhibit super-linear speedup; 
the throughput of the 16 replica cluster is 37 times the peak 
throughput of a standalone database. 
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