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Abstract— We analyze a special class of configurations
with h sources and N receivers to demonstrate the
throughput benefits of network coding and deterministic
code design. We show that the throughput benefits network
coding offers can increase proportionally to

√
N , with

respect to theaverage as well as the minimum throughput.
We also show that while for this class of configurations
there exists a deterministic coding scheme that realizes
these benefits using a binary alphabet, randomized coding
may require an exponentially large alphabet size.

I. I NTRODUCTION

Consider a communication network represented as a
directed graphG = (V, E) with unit capacity edges, and
h unit rate information sourcesS1, . . . , Sh that simulta-
neously transmit information toN receiversR1, . . . , RN

located at distinct nodes. Assume that the min-cut be-
tween the sources and each receiver node ish. The max-
flow, min-cut theorem states that, if receiverRi could
utilize the network resources by himself, he would be
able to receive information at rateh.

Recently it has been realized that allowing nodes in
communication networks to re-encode the information
they receive in addition to re-routing, increases the
capacity of the network. This type of coding is termed
network coding [1], [2]. In fact it was shown that by
liner re-encoding, the min-cut rate can be achieved in
multicasting to several sinks [1], [2]. That is, using net-
work coding, allows each receiver to retrieve information
at rate h, even whenN receivers share the network
resources. This is generally not the case when we use
routing, i.e., when we allow intermediate nodes only to
forward and not to code. Thus network coding can offer
throughput benefits as compared to routing.

A central question in this area is whether we can
quantify how large these benefits are. LetT i

nc denote the
rate that receiverRi experiences when network coding

is used, andT i
u the rate when only uncoded transmission

on is allowed. We are interested in calculatingT i
u

T i
nc

.

In [2] it was shown that, for undirected graphs, the
throughput benefit for all receivers is bounded by a
factor of two, i.e., T i

u

T i
nc

≤ 2. This result does not apply
to directed graphs. In fact, the authors in [3] provided
an example network where the throughput benefits scale
proportionally to the number of sources, namely, there
exists a receiverRi such thatT i

u

T i
nc

= 1
h
. In other words, if

we compare the minimum rate guaranteed to all receivers
under routing with the rate that network coding can offer,
the benefits network coding offers are proportional to
the number of sourcesh. In [4] it was shown that these
benefits equal the integrality gap of a standard linear
programming formulation for the directed steiner tree
problem. Known lower bounds on the integrality gap are
Ω(

√
N) [5] andΩ((log n/ log log n)2) [6] wheren is the

number of nodes in the underlying graph.

For applications that are robust to loss of packets, such
as real time audio and video, we might be interested
in comparing the average throughput we can achieve
with and without network coding, where the averaging
is performed over the rate that each individual receiver
experiences. This is especially true when the number
of receivers is large and the throughput they experi-
ence tends to concentrate around a much larger value
than the minimum. A recent paper [7], examined the
average throughput achieved with routing and calculated
the ratio

∑

i
T i

u
∑

i
T i

nc

, where
∑

i T
i
nc and

∑

i T
i
u is the sum

rate for network coding and routing respectively. Using
this performance measure, we showed that for a large
class of configurations, including the example in [3],
network coding can offer only a constant factor benefit
as compared to routing. In [8], we show that the average
throughput benefits of network coding can also be related
to the integrality gap of a standard linear programming



formulation for the directed steiner tree problem.
The purpose of this paper is to describe and analyze a

class of directed graph configurations withN receivers.
These configurations were originally constructed in [5]
to obtain a lower bound on the integrality gap for the
directed steiner tree problem. Our observation is that
these graphs can also be used to illustrate two interesting
points related to network coding. First, we show that
employing network coding over this class of directed
graphs can offer throughput benefits proportional to

√
N ,

whereN is the number of receivers, with regard to the
average (and as a result to the minimum) throughput.
Second, we show that using randomizing coding over
these configurations may require an alphabet size expo-
nentially larger than the minimum alphabet size required.

The idea in randomized network coding [3], [9] is
to randomly combine over a finite field the incoming
information flows and show that the probability of error
can become arbitrarily small as the size of the finite field
increases. We show that for this class of configurations,
to guarantee a small probability of error, we may need to
use an exponentially large alphabet size. In contrast, we
prove that a binary alphabet size is in fact sufficient for
network coding. We construct a deterministic algorithm
that has linear complexity, can be used to perform
network coding over this class of configurations, and
requires binary alphabet.

The paper is organized as follows. In Section II
we describe the structure of these configurations, and
prove an upper bound on the average throughput. In
Section III we construct deterministic coding schemes
and in Section IV we compare them against randomized
coding schemes.

II. T HE NETWORK

Let N and p, p ≤ N , be two integers andI =
{1, 2, . . . , N} be an index set. We define two more index
sets:A as the set of all(p−1)-element subsets ofI and
B as the set of allp-element subsets ofI. We consider
a class of networks, illustrated in Fig. 1, and defined by
two parametersN andp as follows: SourceS transmits
information to N receiver nodesR1 . . . RN through a
network of three sets of nodesA, B and C. A-nodes
are indexed by the elements ofA, andB andC-nodes,
by the elements ofB. An A node is connected to aB
node if the index ofA is a subset of the index ofB. A
receiver node is connected to theC nodes whose indices
contain the index of the receiver. All edges in the graph
have unit capacity. The out-degree of the source node is
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Fig. 1. Source transmits information toN receivers.

(

N
p−1

)

. Two specific members of this family of networks
are shown in Fig. 2 and Fig. 3.

We can compute the degrees of the nodes in the
network by simple combinatorics:

Proposition 1:

• the out-degree ofA nodes isN − (p − 1),
• the in-degree ofB nodes isp,
• the out-degree ofC nodes isp,
• the in-degree of the receiver nodes is

(

N−1
p−1

)

.

We next compute the value of the min-cut between the
source node and each receiver node, or equivalently, the
number of edge disjoint paths between the source and
each receiver.

Theorem 1: There are exactly
(

N−1
p−1

)

edge disjoint
paths between the source and each receiver.

Proof: Consider receiveri. It is connected to the
(

N−1
p−1

)

distinct C-nodes indexed by the elements ofB
containing i. Each of theC-nodes is is connected to
the B-node with the same index. All paths between the
source and the receiveri have to go through theseB and
C-nodes. Therefore the number of edge disjoint paths
between the source and the receiver can not be larger
than

(

N−1
p−1

)

. To show that there that many of edge disjoint
paths, we proceed as follows: After removingi from the
indices of the receiveri B-nodes, we are left with

(

k−1
p−1

)

distinct sets of sizep − 1, i.e. distinct elements ofA.
We use theA-nodes indexed by these elements ofA to
connect the receiveri B-nodes to the source.

Therefore, the sum rate with network codingTnc is equal
to N

(

N−1
p−1

)

. We next find an upper bound to the sum rate
without network codingTu and the to the ratioTu/Tnc.



Theorem 2: In a network in Fig. 1, whenh =
(

N−1
p−1

)

Tu

Tnc
≤ p − 1

k − p + 1
+

1

p
. (1)

Proof: If only routing is permitted, the information
is transmitted from the source node to the receiver
through a number of trees, each carrying a different
information source. Letat be the number ofA-nodes
in tree t, and ct, the number ofB and C-nodes. Note
that bt ≥ at, and that thect C-nodes are all descendants
of the at A-nodes. Therefore, we can count the number
of the receivers spanned by the tree as follows: Let
nt(A(j)) be the number ofC-nodes connected to the
j-th A-node in the tree. Note that

at
∑

j=1

nt(A(j)) = ct.

The maximum number of receivers the tree can reach
through thisA-node isnt(A(j)) + p− 1. Consequently,
the maximum number of receivers the tree can reach is

at
∑

j=1

[nt(A(j)) + p − 1] = at(p − 1) + ct.

To find and upper bound to the routing throughput, we
need to find the number of receivers that can be reached
by a set of disjoint trees. Note that for any set of disjoint
trees we have

∑

t

at =

(

k

p − 1

)

and
∑

t

ct =

(

k

p

)

.

Therefore,Tu can be upper-bounded as

Tu =
∑

t

(at(p − 1) + ct)

=(p − 1)
∑

t

at +
∑

ct ≤ (p − 1)

(

N

p − 1

)

+

(

k

p

)

.

The sum rate with network codingTnc is equal to
N

(

N−1
p−1

)

. Thus we get that

Tu

Tnc
≤ p − 1

N − p + 1
+

1

p
.

For a fixedN , the LHS of the above inequality is
minimized for

p =
N + 1√
N + 1

≅
√

N,

and for this value ofp,

Tu

Tnc
= 2

√
N

1 + N
.

2√
N

. (2)

III. D ETERMINISTIC CODING

We show that network coding can be done by using
the binary alphabet. We first explain how the coding is
done for two special cases ofp: case whenp = 2 and
case whenp = N −1, and then proceed with the general
case.

A. p = 2

Consider the case whenp = 2 for arbitrary N . An
example forN = 4 is shown in Fig. 2. In this case the

1 2 3 4

1 2 3 4

12 13 14 23 24 34

Fig. 2. N=4, p=2

number of information sources ish = N − 1. We can
code over the binary field as follows: Since the number
of edges going out odS into A nodes isN , we can
send theN −1 sources over the firstN −1 of this edges
and not use theN -th edge. In other words, the coding
vector of thei-th of this edges is thei-the basis vector
ei for i = 1, 2, . . . , N − 1. The B-nodes merely sum
their inputs overFh

2 , and forward the result to theC-
nodes. Consequently, the coding vectors on the branches
going to receiverN are theN −1 basis vectors, and the
coding vectors on the branches going to receiveri for
i = 1, 2, . . . , N−1 areei andej+ei for j = 1, . . . , N−1
and j 6= i.

B. p = N − 1

Consider the case whenp = 2 for arbitrary N . An
example forN = 5 is shown in Fig. 2. In this case
the number of information sources ish = N − 1. The
number ofC-nodes isN . Each subset ofN −1 C-nodes
is observed by a receiver. Therefore coding vectors of the
edges between theB andC-nodes must belong to an arc,
namely anyN−1 of them must be linearly independent.
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Fig. 3. N=5, p=4

The following maximal arc overPG(N − 2, 2) hasN
points:

1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1
1 1 . . . 1

(3)

We can obtain this arc by coding as follows: To theN−1
edges going from the source to theA nodes whose label
does not containN , we assignN−1 basis vectors of over
F

(
2N − 1). We remove all other edges outgoing of the

source, and then allA-nodes which lost their connection
with the source, and the edges coming out of the removed
A nodes. Consequently, the first of theB-nodes hasN−1
inputs. By addition, of these inputs the coding vector
between thisB and its correspondingC node becomes
(11...1). The rest of theB-nodes have only one input.
Thus we get the binary arc 3) at the last set of edges.

C. The General Case

For arbitrary values ofp andN , network coding can
be done as follows: We first remove the edges going
out of S into thoseA-nodes whose labels containN .
There are

(

N−1
p−2

)

such edges. Since the number of edges

going out of S into A-nodes is
(

N
p−1

)

, the number of

remaining edges is
(

N
p−1

)

−
(

N−1
p−2

)

=
(

N−1
p−1

)

. We label

these edges by theh =
(

N−1
p−1

)

different basis elements of
Fh

2 . We further remove allA-nodes which have lost their
connection with the sourceS, as well as their outgoing
edges. TheB-nodes merely sum their inputs overFh

2 ,
and forward the result to theC-nodes.

Consider aC-node that theN -th receiver is connected
to. Its label, sayω, is ap-element subset ofI containing
N . Because of of our edge removal, the onlyA-node that
this C-node is connected to is the one with the label
ω \ {N}. Therefore, allC-nodes that theN -th receiver
is connected to have a single input, and all those inputs
are different. Consequently, theN -th receiver observes
all the sources directly.

Each of the receivers1, 2, . . . , N−1 will have to solve
a system of equations. Consider one of these receivers,
say j. Some of theC-nodes that thej-th receiver is
connected to have a single input: those are the nodes
whose label containsN . There are

(

N−2
p−2

)

such nodes,
and they all have different labels. For the rest of the
proof, it is important to note that each of these labels
containsj, and the

(

N−2
p−2

)

labels are all(p− 1)-element
subsets ofI which containj and do not containN . Let
us now consider the remaining

(

N−1
p−1

)

−
(

N−2
p−2

)

=
(

N−2
p−1

)

C-nodes that thej-th receiver is connected to. Each of
these nodes is connected top A-nodes. The labels ofp−1
of theseA-nodes containj, and only one does not. That
label is different for allC-nodes that the receiverj is
connected to. Consequently, thej-th receiver gets

(

N−2
p−2

)

sources directly, and each source of the remaining
(

N−2
p−1

)

as a sum of that source and somep − 1 of the sources
received directly.

D. A Lower Bound to the Throughput Tu

We can derive a lower bound to the sum rate when
only routing is used as follows: Assume that we route
h sources into theA-nodes as we did for the coding
described in the previous section and forward them to
through only thoseB-nodes which have a single input.
Then one receiver will receive all

(

N−1
p−1

)

sources and

N − 1 receiver will receive
(

N−2
p−2

)

sources. We have

Tu ≥
(

N − 1

p − 1

)

+ (N − 1)

(

N − 2

p − 2

)

=

(

N − 1

p − 1

)

+ (p − 1)

(

N − 1

p − 1

)

=p

(

N − 1

p − 1

)

,

and consequently
Tu

Tnc
≥ p

N
.



IV. RANDOM CODING

A. General Networks

For a general network withN receivers in which
coding is performed by random assignment of coding
vectors over the alphabetFq, a lower bound to the
probabilityP d

N that allN receivers will be able to decode
is derived in [9] to be

P d
N ≥

(

1 − N

q

)n

,

where n is defined in [9] to be the number of edges
where coding is performed. In our case,n ≥

(

N
p

)

, and
the lower bound becomes

P d
N ≥

(

1 − N

q

)(N

p
)

≅ e−
N(N

p )
q .

We next look into randomized coding for the class
of networks under investigation. We first consider the
case when randomized coding is used at all nodes with
multiple inputs, namely the source node and all theB
nodes, and then the case when the coding at the source
node is done deterministically as in Sec. III-C, and
randomized coding is done at theB nodes with multiple
inputs after the removal of edges as in Sec. III-C.

B. Random Coding for the Special Class of Networks

First, randomized coding is used at the source node to
decide which linear combination goes to eachA-node.
Then:
Pr (receiver j has a full rank set of equations)=
Pr (each node C receiver j observes increases his rank)=
Πh

i=2 Pr (nodeCi that receiver j observes increases his
rank)=
Π Pr (nodeCi increases receiverj rank|{Ai} inputs of
Ci do not lie in the span of{C1 . . . Ci−1})Pr({Ai} inputs
of Ci do not lie in the span of{C1 . . . Ci−1}) =

≥ Π(1 − 1
q
)2 = (1 − 1

q
)2(h−1) = (1 − 1

q
)2((

N−1

p−1
)−1).

C. Random Coding at B nodes

Assume that we choose the coding vectors for the
edges going into theA-nodes as we did for the determin-
istic coding described in Sec. III-C, but now theB-nodes
randomly combine their inputs instead of summing them.

Consider receiverj. As before
(

N−2
p−2

)

or its C-nodes
are connected to a single input. Consider one of the
remaining

(

N−2
p−1

)

C-nodes that the receiverj is con-
nected to. The correspondingB node will form a random
linear combination of thep− 1 sources that are directly
received and of an additional source. Therefore, if the
random linear combining is performed overFq, the C

will observe a linear combination of only thep − 1
sources directly received with probability1/q, namely
only if the coefficient zero is chosen for the additional
source. Thus the receiverj receives an independent
linear combination from aC node with p inputs with
probability 1 − 1/q. Since the linear combining at each
multi-input B node is performed independently, receiver
j will be able do decode allh sources with probability

Pr{single receiver decodes} =
(

1 − 1

q

)(N−2

p−1
)
.

We can also compute the probability that all receivers
be able to decode all sources. Note that this happens
when all multi-inputB nodes use a nonzero coefficient
for the not-directly received source. Since there are
(

N
p

)

−
(

N−1
p−1

)

=
(

N
p−1

)

such nodes, we obtain

Pr{all receiver decode} =
(

1 − 1

q

)( N

p−1
)
.

Thus similarly with before, if we want this probability
to be greater thane−1, we need to chooseq ≥

(

N
p−1

)

.
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