
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006 829

Information Flow Decomposition for
Network Coding

Christina Fragouli, Member, IEEE, and Emina Soljanin, Senior Member, IEEE

Abstract—We propose a method to identify structural proper-
ties of multicast network configurations, by decomposing networks
into regions through which the same information flows. This de-
composition allows us to show that very different networks are
equivalent from a coding point of view, and offers a means to iden-
tify such equivalence classes. It also allows us to divide the network
coding problem into two almost independent tasks: one of graph
theory and the other of classical channel coding theory. This ap-
proach to network coding enables us to derive the smallest code al-
phabet size sufficient to code any network configuration with two
sources as a function of the number of receivers in the network. But
perhaps the most significant strength of our approach concerns fu-
ture network coding practice. Namely, we propose deterministic al-
gorithms to specify the coding operations at network nodes without
the knowledge of the overall network topology. Such decentralized
designs facilitate the construction of codes that can easily accom-
modate future changes in the network, e.g., addition of receivers
and loss of links.

Index Terms—Arcs, convolutional codes, decentralized codes,
information flow, max-flow min-cut theorem, maximum distance
separable (MDS) codes, network coding, network multicast.

I. INTRODUCTION

COMMUNICATION networks are, like their transporta-
tion or fluid counterparts, mathematically represented as

directed graphs . We are concerned with multicast
communications networks in which unit rate information
sources simultaneously transmit information to
receivers located at distinct nodes. We assume
that all edges have unit capacity, and that, for each receiver,
there are edge-disjoint paths connecting the receiver with
the sources. Consequently, the unit-rate sources can send the
information to each receiver when that receiver is the only one
using the network.

Traditionally, information flows in communication networks
were treated like fluid flows in networks of pipes, in which a
unit-capacity edge cannot be simultaneously used by more than
one unit-rate source. Information flows are sequences of bits, or
if we look at bits at a time, sequences of elements of some fi-
nite field where . Thus, in communication networks,
a unit-capacity edge can be used simultaneously by more than
one unit-rate source to carry, for example, a linear combination

Manuscript received June 15, 2004; revised June 2, 2005. This work was sup-
ported by DIMACS, NSF under Grant CCR-0325673, and FNS under Grant
200021-103836/1.

C. Fragouli is with the School of Computer and Communication Sciences,
EPFL, Lausanne, CH-1015 Switzerland (e-mail: christina.fragouli@epfl.ch).

E. Soljanin is with Lucent Technologies, Bell Labs, Murray Hill, NJ 07974
USA (e-mail: emina@lucent.com).

Communicated by M. Médard, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2005.864435

over of the symbols the sources emit. Which symbol an edge
carries is decided by its parent node, which cannot only forward
but also re-encode (e.g., linearly combine) the information it re-
ceives. These features of communication networks make multi-
casting at the min-cut rate possible in the network scenario de-
scribed above, as shown in the seminal work of Ahlswede, Cai,
Li, and Yeung [1], and of Li, Yeung, and Cai [2].

Network codes for multicast are schemes which specify
what each node in the network has to perform in order to make
the multicast possible. Constructing such coding schemes effi-
ciently for various network scenarios is the subject of current
research. An algebraic framework for network coding was
developed by Koetter and Médard in [3], who translated the
network code design to an algebraic problem which depends
on the structure of the underlying graph. Li, Yeung, and Cai
showed constructively in [2] that multicast at rate can be
achieved by linear coding. The first deterministic polyno-
mial-time algorithms for constructing linear codes for multicast
were proposed in [4]–[6] and the first randomized in [20] and
[21].

The basic idea of our approach to network coding is parti-
tioning the network graph into subgraphs through which the
same information flows. Processing (combining of different
flows) happens only at the “border” of these subgraphs. For
the network code design problem, the structure of the network
inside these subgraphs does not play any role; we only need
to know how the subgraphs are connected and which receivers
observe the information flow in each subgraph. Thus, we can
contract each subgraph to a node and retain only the edges that
connect them. We call this process and the resulting object the
information flow decomposition of the network. To illustrate
this idea, let us look at the familiar example of a network with
two sources and two receivers shown in Fig. 1(a). Note that,
because of the topology of the graph, there are three different
information flows in this network: one that carries unaltered
symbols of the first source, one that carries unaltered symbols
of the second source, and one that carries a linear combination
(which will be specified by the code) of the symbols from
the first and the second source. The first two flows will be
referred to as source flows and the third as coding flow. They
are connected as shown in Fig. 1(b). The figure also shows
which receivers have access to which flows. Network coding
should ensure that the two flows a receiver has access to are
linearly independent.

One immediate advantage of the information flow decompo-
sition method is that it significantly reduces the dimensionality
of the network code design problem, making all algorithms that
depend on the graph size faster. Moreover, although a network

0018-9448/$20.00 © 2006 IEEE

830 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

Fig. 1. The Butterfly network and its information flow decomposition. At each time slot, the sources S and S produce bits x and x . Node C combines its
incoming bits x and x to create, for example, the bit x +x that it then forwards toward receiversR andR . Each receiver solves a system of linear equations
to retrieve the sources.

Fig. 2. Two possible information flow decompositions for networks with two sources and two receivers: (a) no coding required and (b) network coding necessary.

with sources and receivers satisfying the min-cut condition
may otherwise have arbitrary structure, its (in a certain sense
minimal) information flow decomposition will have a very
tightly described structure, and very different networks with
the same number of sources and receivers may have identical
information flow decomposition. For example, we will show
later that all networks with two sources and two receivers have
one of the two possible information flow decompositions shown
in Fig. 2. Fig. 2(a) shows the network scenario in which each
receiver has access to both source flows, and thus no network
coding is required. Fig. 2(b) shows the network scenario in
which each receiver has access to a different source flow and
a common coding flow.

Recognizing numerous structural properties that a flow
decomposition must satisfy enabled us to derive the size of the
network code alphabet which is sufficient for all networks
with sources and receivers and necessary for some
of such networks. We also state regularity conditions under
which the derived alphabet size is sufficient for all networks
with sources and receivers. In addition to its theoretical
merits, bounding the alphabet size has important practical
implications, since network coding and decoding requires
multiplications and inversions over finite fields whose imple-
mentation complexity quickly increases with the field size.
The original work of Ahlswede, Cai, Li, and Yeung shows
that network multicast is asymptotically possible if coding is
performed over infinitely large fields [1]. The subsequent work
of Li, Yeung, and Cai [2] shows that the network multicast is
possible if linear coding is performed over a sufficiently large

finite field. Koetter and Médard upper-bounded the required
alphabet size by in [3]. Sanders, Egner, and Tolhuizen
in [4], and Ho et al. in [20] reduced the upper bound of the
required alphabet size to . Jaggi, Chou, and Jain made a claim
in [5] that is a lower bound. Feder, Ron, and
Tavory [12], using information theory arguments, also derived a
lower bound of order , and in addition provided
upper bounds for some specific network configurations. The
lower bound of was also found by Rasala-Lehman and
Lehman in [14]. The result in this paper is that an alphabet of
size is always sufficient and sometimes
necessary, for all configurations with sources, and under
some regularity conditions for configurations with
sources. Note that all of the alphabet bounds depend on the
number of receivers. Consequently, the maximum alphabet size
a network can support affects the maximum number of users
that can be accommodated.

We derive the code alphabet size bounds by bounding the
chromatic number of a class of graphs defined based on the in-
formation flow decompositions of networks with sources
and receivers. The code design itself amounts to the vertex
coloring problem of this class of graphs. This connection al-
lowed us to directly apply results from coloring in [8] to derive
the code alphabet size bounds. The authors in [14] indepen-
dently used similar arguments that reduce the problem of net-
work code design for some special graphs to coloring to show
that the problem of identifying the minimum alphabet size re-
quired for a specific configuration is NP-complete.

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 831

The required alphabet size is not always the most important
criterion for network code design. Codes which can be defined
in a distributed manner without the knowledge of the overall
network topology and easily extended to accommodate future
changes in the network, such as addition of receivers or loss
of links, are particularly desirable in practice, but have not
yet received adequate attention in literature. The deterministic
network code design methods proposed so far result in codes
that may need to be completely redesigned to accommodate
addition of a single user. Randomized codes recently proposed
in [21], [22] alleviate this problem, at the cost of an error
probability and increased decoding complexity. We propose a
deterministic method to design decentralized codes, which is
also based on the information flow decomposition. One of the
main advantages of these decentralized codes is that they do not
have to be changed with the addition of new receivers as long as
the information flow decomposition of the network remains the
same. The authors in [25] have recently used the information
flow decomposition approach for decentralized coding over
wireless networks.

For networks with delay, information flow decomposition
makes connections between network codes and convolutional
codes transparent. This leads us to an alternative simpler deriva-
tion of the transfer function result in [3]. The convolutional
code framework naturally takes delay into account, but at the
cost of increased complexity for both encoding and decoding.
We investigate different methods to reduce the complexity
requirements taking advantage of the information flow decom-
position. Moreover, we discuss implementation using binary
encoders, and propose a simplified version of the method in [2]
to deal with cycles in the network. Independently, the authors
in [12] proposed to add node-memory to increase the alphabet
size a network can support, which has a similar flavor to our
proposed binary encoder implementation.

The paper is organized as follows. We first, in Section II,
state the problem and present the notation that we follow in the
paper, and then in Section III introduce the information flow
decomposition. We describe decentralized network coding in
Section IV and derive alphabet size bounds in Section V. In
Section VI, we investigate connections with vertex coloring, and
in Section VII, connections with convolutional codes. Section
VIII concludes the paper.

II. THE NETWORK CODING MODEL

We consider a communication network represented by a di-
rected acyclic graph with unit capacity edges. Our
results, however, also hold for a class of multicast configurations
over graphs with cycles, as we will discuss in Section VII-A.
There are unit rate information sources and re-
ceivers . The number of edges of the min-cut be-
tween the sources and each receiver node is . The sources
multicast information simultaneously to all receivers at rate

. As in the previous work (e.g., [2]), we assume zero delay
meaning that all nodes simultaneously receive all their inputs
and produce their outputs.

We denote by a set of edge-disjoint
paths from the sources to the receiver . Under the min-cut

assumption, the existence of such paths is guaranteed by the
Menger theorems (see, for example, [17, p. 203]). The choice
of the paths is not unique, and will, as we discuss later, affect
the complexity of the network code. Our object of interest is the
subgraph of consisting of the paths

. A way to specify a network code is to describe
which operations each node in has to perform on its inputs
for each of its outgoing edges.

We assume that source emits which is an element of
some finite field . In linear network coding, each node of
receives an element of from each input edge, and then for-
wards (possibly different) linear combinations of its inputs to
its output edges. Consequently, through each edge of flows
a linear combination of source symbols; namely, the symbol
flowing through some edge of is given by

...

where the vector belongs to
an -dimensional vector space over . We shall refer to the
vector as the coding vector of edge . Note that the coding
vector of an output edge of a node has to lie in the linear span
of the coding vectors of the node’s input edges. To describe a
network code, we need to specify which linear coefficients a
node should use to multiply its inputs for each of its outgoing
edges. Equivalently, we need to specify the coding vector for
each edge of the network.

The coding vectors associated with input edges of a receiver
node define the system of linear equations that the receiver needs
to solve to determine the source symbols. More specifically,
consider receiver . Let be the symbol on the last edge of
the path , and the matrix whose th row is the coding
vector of the last edge on the path . Then the receiver
has to solve the system of linear equations

...
...

(1)

to retrieve the information symbols , transmitted
from the sources. The network code design problem is to se-
lect a coding vector for each edge of the network so that the
matrix is full rank for each receiver , subject to the con-
straint that the coding vector of an output edge of a node lies in
the linear span of the coding vectors of the node’s input edges.
We refer to an assignment of coding vectors that achieves this
goal as a valid network code.

III. DECOMPOSITION INTO SUBTREES

A. Definitions

Throughout this section, we will use the example network
with two sources multicasting to the same set of three receivers
shown in Fig. 3. Since for a network code we eventually have to
describe which operations each node in has to perform on its

832 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

Fig. 3. Network with two unit rate sources fS ; S g and three receivers
fF;E;Kg. Each edge has unit capacity.

inputs for each of its outgoing edges, we find it more transparent
to work with the graph

where denotes the line graph of the path .
That is, is the graph with vertex set in
which two vertices are joined if and only if they are adjacent
as edges in . The graph for our example network of
Fig. 3 is depicted in Fig. 4(a).

Without loss of generality, by possibly introducing auxiliary
nodes, we can assume that the line graph contains a node cor-
responding to each of the sources. We refer to these nodes as
source nodes. Each node with a single input edge merely for-
wards its input symbol to its output edges. Each node with two
or more input edges performs a coding operation (linear com-
bining) on its input symbols, and forwards the result to all of its
output edges. We refer to these nodes as coding points.

Definition 1: Coding points are the nodes of with two or
more inputs.

We refer to the node corresponding to the last edge of the
path as the receiver node for receiver and source

. For a configuration with sources and receivers, there
exist receiver nodes. For example, in Fig. 4(a), and

are source nodes, BD and GH are coding points, and AF,
HF, HK, DK, DE, and CE are receiver nodes.

We partition the vertices of the line graph into subsets so
that the following holds:

1) each contains exactly one source node or a coding
point, and

2) each node that is neither a source node nor a coding point
belongs to the which contains its closest ancestral
coding point or source node.

Let be the subgraph of induced by (namely, together
with the edges whose both endpoints are in).

Theorem 1: The line graph and its subgraphs satisfy the
following properties.

1) Each subgraph of is a tree with root vertex either a
coding point or a source node.

2) The same linear combination of source symbols flows
through all the nodes in (edges in the original graph)
that belong to the same .

3) For each receiver , there exist in vertex-disjoint
paths from the source subtrees to the receiver nodes of .

4) For each receiver , the receiver nodes corresponding
to the last edges on the paths , belong
to distinct subtrees.

5) Each subtree contains at most receiver nodes.
Proof:

1) By construction, contains no cycles, the source node
(or coding point) has no incoming edges, and there exists
a path from the source node (or coding point) to each other
vertex of . Thus, is a tree rooted at the source node
(coding point).

2) Since is a tree, the linear combination that flows
through the root source node or coding point will also
have to flow through the rest of the nodes.

3) Because the min-cut condition is satisfied in the original
network , there exist edge-disjoint paths to each re-
ceiver. Edge-disjoint paths in the original graph corre-
spond to vertex-disjoint paths in the line graph .

4) Assume that the receiver nodes corresponding to the last
edges of paths and belong to the same
subtree . Then both paths go through the root vertex
(source node or coding point) of subtree . But by the pre-
vious claim, the paths for receiver are vertex-disjoint.

5) This claim holds because there are receivers and, by the
previous claim, all receiver nodes contained in the same
subtree are distinct.

Since each subgraph of is a tree, we shall call the process
described above subtree decomposition, and a source subtree
if it starts with a source node or a coding subtree if it starts
with a coding point. Note that subtree decomposition partitions
the network into subgraphs through which the same information
flows; hence the name information flow decomposition.

For the network code design problem, we only need to know
how the subtrees are connected and which receiver nodes are in
each , whereas the structure of the network inside a subtree
does not play any role. Thus, we can contract each subtree to
a node and retain only the edges that connect the subtrees. The
resulting combinatorial object, which we will refer to as the sub-
tree graph , is defined by its underlying topology and
the association of receivers with nodes . Fig. 4(b) shows the
subtree graph for the network in Fig. 3; there are four subtrees:

and are source subtrees, and are coding subtrees.
We shall use the notation to describe both the subgraph of the
line graph , and the corresponding node in the subtree graph

, depending on the context. Note that claims 3)–5) in Theorem
1 translate directly to properties of the subtree graph .

Network coding assigns an -dimensional coding vector
to each subtree . The flow

through is given by

Receiver takes coding vectors from distinct subtrees to
form the rows of the matrix and solves the system of linear
equations (1).

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 833

Fig. 4. Line graph with coding points BD and GH for the network in Fig. 3 and its subtree graph.

Definition 2: An assignment of coding vectors to subtrees is
feasible if the coding vector of a subtree lies in the linear span
of the coding vectors of the subtree’s parents.

Definition 3: A valid network code is any feasible assign-
ment of coding vectors to subtrees such that the matrix is
full rank for each receiver .

Note that whether a code is valid depends on both the under-
lying topology of the subtree graph and the distribution of the
receivers over the subtrees whereas feasibility depends only on
the topology.

Example 1: A valid code for the network in Fig. 3 can be ob-
tained by assigning the following coding vectors to the subtrees
in Fig. 4(b):

For this code, the field with two elements is sufficient. Nodes
B and G in the network (corresponding to coding points BD
and GH) perform binary addition of their inputs and forward
the result of the operation. The rest of the nodes in the network
merely forward the information they receive. The matrices for
receivers and are

B. Minimal Subtree Graphs and Their Properties

For a given communication network graph , the
choice of the edge-disjoint paths is not
unique, and thus the network subtree decomposition is not unique
either. We are interested in a subtree decomposition which is in
a certain sense minimal. As we will discuss later, if a subtree de-
composition isnotminimal, itmayrequirea lessefficientnetwork
code (in terms of network resources) than the minimal one.

In Theorem 1, we observed that the min-cut condition in the
network implies that in the graph , and as a consequence
in the subtree graph , for each receiver , the paths
from the source nodes to the receiver nodes are vertex-
disjoint. We will call this property the multicast property of the
subtree graph.

Definition 4: A subtree graph is called minimal with the mul-
ticast property if removing any edge would violate the multicast
property.

To illustrate the above issues, we consider the following ex-
ample of a network with two sources and two receivers shown in
Fig. 5(a). Notice that node in Fig. 5(a) and its incident edges
can be removed without affecting the min-cut conditions in the
network. The resulting graph is then identical to the one shown
in Fig. 1(a) in Section I, whose subtree graph is shown in Fig.
1(b). Consider now the choice of two sets of edge-disjoint paths
(corresponding to the two receivers) shown in Fig. 5(b) and (c).
The resulting subtree graph shown in Fig. 5(d) has more edges
and nodes than the one shown in Fig. 1(b). We see, however, that
the edge between and and the edge between and can
be removed without violating the multicast property. Removing
these edges allows us to incorporate into and into ,
and consequently obtain the subtree graph shown in Fig. 1(b).

In the previous example, we implicitly described a method
to identify a minimal subtree graph. We first find paths toward
every receiver, and then construct a subtree graph. Each sub-
tree graph can be reduced to a minimal subtree
graph, by sequentially examining each edge in . If removing
an edgedoes not violate the multicast property, we remove it, and
proceed to examine the next one. Note that this is a polynomial
time algorithm in the number of nodes because checking
if the multicast property holds after removing an edge and the
number of edges are both polynomial in .

Identifying a minimal subtree graph before multicasting may
allow us to reduce the number of coding points and thus to use
less network resources. Another reason we are interested in min-
imal subtree graphs is that, as we will see next, such graphs
have a number of structural properties, which can be exploited to
derive certain theoretical results. For example, in Section V-A,
we will use properties of minimal subtree graphs to derive the

834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

Fig. 5. A network with two sources and two receivers: (a) the original graph, (b) two edge-disjoint paths from the sources to the receiverR , (c) two edge-disjoint
paths from the sources to the receiver R , and (d) the resulting nonminimal subtree graph.

largest field size that a code for a network with two sources and
receivers may require.
Note that the multicast property is satisfied in if and only if

the min-cut condition is satisfied for every receiver in . Since
the min-cut condition is necessary and sufficient for multicast,
the following holds.

Lemma 1: There is no valid codeword assignment (in the
sense of Definition 3) for a subtree graph which does not satisfy
the multicast property.

We use this lemma to show some properties a minimal subtree
graph has.

Theorem 2: For a minimal subtree graph, the following
holds.

1) A valid network code where a subtree is assigned the same
coding vector as one of its parents does not exist.

2) A valid network code where the vectors assigned to the
parents of any given subtree are linearly dependent does
not exist.

3) A valid network code where the coding vector assigned to
a child belongs to a subspace spanned by a proper subset
of the vectors assigned to its parents does not exist.

4) Each coding subtree has at most parents.
5) If a coding subtree has parents, then there

exist vertex-disjoint paths from the source nodes to the
subtree.

Proof:

1) Suppose a subtree is assigned the same coding vector
as one of its parents. Then removing the edge(s) be-
tween the subtree and the other parent(s) results in a
subtree graph with a valid coding vector assignment. By
Lemma 1, the multicast property is also satisfied. But
we started with a minimal subtree graph and removed
edges without violating the multicast property, which
contradicts Definition 4.

2) Suppose there is a subtree whose parents
are assigned linearly dependent vectors . Without
loss of generality, assume that can be expressed as a
linear combination of . Then removing the edge
between and results in a subtree graph with a valid

coding vector assignment. From Lemma 1, the multicast
property is also satisfied. But this contradicts Definition 4.

3) Suppose there is a subtree whose parents are
assigned vectors . Without loss of generality as-
sume that is assigned a vector that is a linear combina-
tion of . Then removing the edge between and

results in a subtree graph with a valid coding vector
assignment. From Lemma 1 the multicast property is also
satisfied. But this contradicts Definition 4.

4) Since coding vectors are -dimensional, this claim is a
direct consequence of claim 2).

5) By claim 2), the coding vectors assigned to the parent
subtrees must linearly independent, which requires the ex-
istence of vertex disjoint paths.

The first three claims of Theorem 2 describe properties of
valid codes for minimal subtree graphs, while the last two claims
describe structural properties of minimal subtree graphs. The
additional structural properties listed below for networks with
two sources follow from Theorems 2 and 1.

Theorem 3: In a minimal subtree decomposition of a net-
work with sources and receivers we have the following.

1) A parent and a child subtree have a child or a receiver in
common or both.

2) Each coding subtree contains at least two receiver nodes.
3) Each source subtree contains at least one receiver node.

Proof:

1) Suppose that the minimal subtree graph has two source
and coding subtrees. Consider a network code which
assigns and to the source subtrees, and

, where is a primitive element of
to coding subtrees. This code is valid (see

Definition 3) since any two different coding vectors form
a basis for , and thus any other coding vector on the
line is in their span. Let and denote a parent and a
child subtree with no child or receiver in common. Now,
alter the code by assigning the coding vector of to

, and keep the rest of coding vectors unchanged. This
assignment is feasible (Definition 2) because and
do not share a child, which would have to be assigned a
scalar multiple of the coding vector of and . Since

and do not share a receiver, the code is still valid.

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 835

Therefore, by claim 2) of Theorem 2, the configuration is
not minimal, which contradict the assumption.

2) Consider a coding subtree . Let and be its parents.
By claim 1), a parent and a child have either a receiver or
a child in common. If has a receiver in common with
each of its two parents, then has two receiver nodes. If

and one of the parents, say , do not have a receiver
in common, then they have a child in common, say .
Similarly, if and do not have receiver in common,
then they have a child in common. And so forth, following
the descendants of , one eventually reaches a child of
that is a terminal node of the subtree graph, and thus has no
children.Consequently, has tohaveareceiver incommon
with this terminalsubtree.Similarly, if and donothave
achild incommon, thereexistsadescendantof andchild
of which must have a receiver in common with .

3) If the two source subtrees have no children, then each
must contain receiver nodes. If the source subtree has a
child, say , then by claim 1) it will have a receiver or a
child in common with . Following the same reasoning
as in the previous claim, we conclude that each source
subtree contains at least one receiver node.

Theorem 4: In a minimal subtree decomposition of a network
with two sources and receivers, the number of coding subtrees
is upper-bounded by . There exist networks which have a
minimal subtree decomposition that achieves this upper bound.

Proof: Recall that there are exactly receiver nodes.
The first part of the claim then follows directly from Theorem 3.
Fig. 6 demonstrates a minimal subtree graph for a network with
two sources and receivers that achieves the upper bound on
the maximum number of subtrees.

Corollary 1: For a network with two sources and two re-
ceivers, there exist exactly two minimal subtree graphs shown
in Fig. 2 in Section I.

Proof: The scenario shown in Fig. 2(a) is the case when no
network coding is required, i.e., there are no coding subtrees. If
network coding is required, then by Theorems 3 and 4, there can
only exist one coding subtree containing two receiver nodes.

Continuing along these lines, it is easy to show for example that
there exist exactly three minimal configurations with two sources
and three receivers, and seven minimal configurations with two
sources and four receivers. In fact, one can enumerate all the min-
imal configurations with a givennumberof sources andreceivers.

IV. DECENTRALIZED CODES

As discussed in Section III-A, network coding assigns an
-dimensional coding vector to

each subtree . The flow through is given by

Receiver takes coding vectors from distinct subtrees to
form the rows of the matrix and solves the system of linear
equations (1). Since the flow through the subtree corresponding
to the source is , we assign coding vectors

Fig. 6. A minimal subtree graph for a network with two sources, N receivers
and N � 1 coding subtrees.

to the source subtrees. For each coding subtree, the associated
coding vector has to lie in the span of the coding vectors asso-
ciated with its parent subtrees.

All deterministic network code design algorithms reported so
far in the literature rely on information about the entire network
structure, i.e., global information. Our goal here is to show how
network codes can be designed in a decentralized manner [10]
using only local information in the following sense:

Definition 5: Decentralized network coding assigns coding
vectors to subtrees by taking into account only the local infor-
mation available at the subtree, namely, which receiver nodes
it contains and which coding vectors have been assigned to its
parent subtrees.

Note that the algorithms proposed in [4]–[6] are not decen-
tralized according to this definition.

To make decentralized coding possible, we need special sets
of coding vectors to use as labels for subtrees as well as special
rules (algorithms) for assigning the labels to the subtrees. In
the remainder of the section, we first describe sets of coding
vectors and then algorithms for decentralized network coding.
It is interesting to note that the set of coding vectors we use
will, for a network with sources, correspond to the columns
of the generator matrix of an -dimensional maximum distance
separable (MDS) code.

A. Coding Vectors and Arcs

Coding vectors for networks with sources live in the -di-
mensional space over the field . Since in network coding we
only need to ensure that the coding vectors assigned to the sub-
trees having receivers in common be linearly independent, it
is enough to consider only the vectors in the projective space

defined as follows.

836 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

Definition 6: Projective -space over is the set of
-tuples of elements of , not all zero, under the equivalence

relation given by

For networks with two sources, we will use the points on
the projective space of dimension , i.e., the projective line

and for (2)

where is a primitive element of . Any two different points
on the projective line form a basis for , and thus,
any point on the line is in their span. Consequently, any code
which assigns different points of to different subtrees
is a valid network multicast code. Note that this type of coding
is decentralized since we only need to use information available
locally at a subtree, without taking into account how the subtrees
are connected or how the receiver nodes are distributed over the
graph.

Example 2: Two codes for the network in Fig. 3 are as fol-
lows.

1) A Decentralized Code: Since there are two source and two
coding subtrees, we take the first four points from 2)

For this code, we need the field with three elements.
2) The Smallest Alphabet Code: If we take into account the

information on the receivers in subtrees, we see that
and can be assigned the same coding vector since they
do not share any receivers:

For this code, the field with two elements is sufficient.

It does not hold in general that any different points on the
projective space form a basis for . A set of
points that has this property is called an arc.

Definition 7: In a projective plane, a -arc is a set of points
no three of which are collinear (hence, the name arc). In general,
in , a -arc is a set of points any of which form
a basis for .

In combinatorics, arcs correspond to sets of vectors in general
position.

Definition 8: Set of vectors in are said to be in general
position if any vectors in are linearly independent.

Example 3: The following set of points are in general
position in , and form an arc in

...
...

...

Example 4: For , the following set of points
are in general position in , and form an arc in :

...
...

...
...

where and for .

This arc is known as a normal rational curve.

Definition 9: A normal rational curve is any set of points
projectively equivalent to the set

Arcs are of special interest for us because they enable de-
centralized network coding. Namely, as long as we take a point
from an arc to be a coding vector of a subtree, and we make sure
that no other subtree uses the same vector (we can achieve that
in a decentralized manner as we will see in the following when
we discuss algorithms), we do not need to know other subtree’s
coding vectors or the structure of the network. We do, however,
have to know which sources are available at the subtree being
coded as we have to choose a coding vector with zeros at the co-
ordinates corresponding to the sources which are not available.

Given a subtree decomposition of a network with sources,
we are interested in finding an arc of the appropriate struc-
ture (i.e., containing points with zeros at prescribed places) in

with the smallest possible field size .
Arcs have been used by coding theorists in the context of

MDS codes. Consider a matrix with columns the vectors
in general position in . Matrix is a generator matrix for
an MDS code of dimension over . The maximum length

such a code can have, or equivalently, the maximum size
of an arc, is not known in general. Although the problem looks
combinatorial in nature, most of the harder results on the max-
imum size of arcs have been obtained by using algebraic geom-
etry (see [16] and references therein), which is also a natural tool
to use for understanding the structure (i.e., geometry) of arcs.

A good survey on the size of arcs in projective spaces can be
found in [16]. Some specific results presented there include the
following:

• if or if and is odd;
• if and is odd;
• if and is even;
• ;
• if is even;
• if or .

In general, for , we know that , whereas,
for , it holds that , and it is widely believed
that

if is even and either or
otherwise.

To handle possible constraints on coding vectors, we can either
use theorems about geometry of arcs or develop algorithms to
generate appropriate arcs, as discussed in the following sections.

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 837

B. Algorithms for Subtree Graph Design

All our algorithms for code design start with the information
flow decomposition (described in Section III), whose output is
a subtree graph. The proposed decentralized code design algo-
rithms are founded on two key ideas: 1) reduce the number of
coding points in the network, and 2) use as coding vectors points
in arcs to perform coding in a decentralized manner. Recall that
coding points correspond to terminals in the network that need
to perform coding operations, and thus have enhanced func-
tionalities. Reducing the number of coding points, which can
be achieved by identifying minimal configurations described in
Section III-B, lowers the number of such special terminals and
decreases the operational complexity of the network. We first
outline Algorithm IV.1 that finds the minimal subtree graph for a
given communication network graph , and a choice
of the edge-disjoint paths .
The details were discussed in Section III-B. Note that this pro-
cedure is not decentralized.

Algorithm IV.1: MINIMAL SUBTREE GRAPH ((S ;R); 1 � i � h;

1 � j � N)

 = (V ;E) [L(S ;R)

C coding points of

E edges of
 terminating in C

for each e 2 E

if (V ;E n feg) satisfies the multicast property

then

E E n feg

 (V ;E)

C coding points of

E edges of
 terminating in C

Find the subtree graph � corresponding to
 = (V ;E)

return (�)

We next outline Algorithm IV.2 that finds a reduced-state sub-
tree graph for networks with two sources, which is not neces-
sarily minimal but has at most coding subtrees. We know
that such a configuration always exist by Theorem 3, which as-
serts that a minimal configuration with two sources and re-
ceivers can have at most coding subtrees.

Algorithm IV.2: REDUCED STATE SUBTREE GRAPH ((S ;R); (S ;R)

1 � j � N)

 = (V ;E) [L(S ;R)

C coding points of

E edges of
 terminating in C

while jCj � N for each e 2 E

if (V ;E n feg) satisfyies the

multicast property

then

E E n feg

 (V ;E)

C coding points of

E edges of

terminating in C

Find the subtree graph � corresponding to
 = (V ;E)

return�

In the special case of networks with two sources, we can
find a minimal subtree graph in a distributed manner based on
the following observation. From Theorem 3, we know that in
a minimal subtree graph, a coding subtree has either a receiver

or a child subtree in common with each of its parent subtrees.
Therefore, if in a subtree graph, a parent and a child do not
share a receiver or a child, the edge between them can be re-
moved. The distributed algorithm for finding a minimal subtree
graph is based on the assumption that subtrees can exchange in-
formation with their parents and children, and the assumption
that each coding subtree knows (i.e., locally stores the infor-
mation) 1) the set of the receiver nodes it contains and
2) its two parents and , and 3) its set of children

. Recall that each coding point is incident to a terminal
of our network, which can store and process information about
the subtree starting with that coding point. When we say that
a “subtree stores/sends/receives information,” we mean that, in
the physical network, the terminal associated with the coding
point (root) of the subtree performs these actions. Note that the
same terminal may serve as the root for more than one subtrees.

The algorithm follows a bottom-up approach: initially, the
subtrees that have no children (i.e., the leafs of the subtree
graph) will first examine whether they can be incorporated
with their parents, then, depending on their findings, initiate the
local update of the subtree graph, and finally, send an update
information to their parents. Subsequently, the subtrees will
repeat this procedure as soon as they receive an update from all
their children. Algorithm IV.3 outlines the described procedure.
Here, denotes the set of subtrees that have completed their
local processing, and the set of subtrees that can start pro-
cessing (leafs or those that have just received an update from
all their children).

Algorithm IV.3: MINIMAL SUBTREE GRAPH ((S ;R); (S ;R)

1 � j � N)

 = (V ;E) [L(S ;R)

C coding points of

Find the subtree graph � = (V ;E) corresponding to

V leafs of �

V ;

while V 6= V

do

for each T 2 V

do

if [(T) (P (T)) = ;& (T) (P (T)) = ;]

then incorporate T into P (T)

else if [(T) (P (T))=;& (T) (P (T))=;]

then incorporate T into P (T)
V V V

V ;

for each T 2 C n V

do
if (T) � V

then V V fTg

C. Codes for Networks With Sources and Receivers

Once the subtree graph has been obtained and the number of
its nodes minimized or reduced, it remains to label the nodes
by coding vectors. As discussed in a Section IV-A, to label the
nodes of a subtree graph of a network with two sources, we can
use the points on the projective line

and for (3)

Recall that for a valid network code, it is sufficient and necessary
that the coding vector associated with a subtree lies in the linear

838 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

span of the coding vectors associated with its parent subtrees,
and the coding vectors of any two subtrees having a receiver
in common are linearly independent. Since any two different
points on the line are linearly independent and each point on the
line is in the span of any two different points on the line, both
coding conditions are satisfied if each node in a subtree graph
of a network is assigned a unique point of the projective line

. We here present two algorithms which assign distinct
coding vectors to the nodes in the subtree graph.

The first method is inspired by the carrier sense multiple access
(CSMA) systems, where access to the network is governed by
the possession of a token. The token is circulating around the
network, and when a device needs to transmit data, it seizes
the token when it arrives at the device. The token remains at
the possession of the transmission device until the data transfer
is finished. In our algorithm, a token will be generated for
each coding vector. Each coding point (associated terminal)
seizes a token and uses the associated coding vector. If a
change in the network occurs, for example, receivers leave
the multicast session, tokens that are no longer in use may
be released back in the network to be possibly used by other
coding points. Code design based on this method is outlined
as Algorithm IV.4.

Algorithm IV.4: DECENTRALIZED CODE ((S ;R); (S ;R); 1 � j � N)

Obtain � by using any of the algorithms IV.1, IV.2, or IV.3

C coding points of �

Create jCj tokens, each associated with a different point in (1; jCj � 1).

Circulate the tokens through the network until each gets seized by coding

point.

An alternative simple way to organize a mapping from
coding vectors to coding points is described below. Recall that
at each subtree, we locally know which receivers it contains and
which sources are associated with each receiver (at the terminal
before the coding point). In networks with two sources, each
coding subtree contains at least one receiver node associated
with and at least one receiver node associated with . Let

, where
be the set of receivers associated with in a given subtree

. We choose to be the label of that subtree. In this
way, no other subtree can be assigned the same label since the
receiver can be associated with the source in at most one
subtree. Note that this is not the most efficient mapping as it
may require alphabet size of , as opposed to .
This is because for receivers, we will use coding vectors
from the set for with . Code
design based on the described method is outlined as Algorithm
IV.5.

Algorithm IV.5: DECENTRALIZED CODE ((S ;R); (S ;R); 1 � j � N)

Obtain � by using any of the algorithms IV.1, IV.2, or IV.3

C coding points of �

for each T 2 C

do
p argminfj : R 2 (T ;S); 1 � j � Ng

c(T) [1 �]

D. Codes for Networks With Sources and Two Receivers
and Binary Multicast Codes

From the alphabet bounds derived in [3] on codes using global
information, we know that there are valid binary codes for net-
works with sources and two receivers. We here show that there
is only one valid binary code assignment for the minimal subtree
graph of a network with two receivers, and that this assignment
does not need global information. Since , from Theorem
1 claim 5), each coding subtree has at most two receiver nodes.
Moreover, from Theorem 1 claim 3), since the paths to each re-
ceiver need to be vertex disjoint, and there exist different
receivers, each subtree can be shared by at most two paths, and
thus it has exactly two inputs.

Theorem 5: The binary code that assigns to each source sub-
tree, a different basis vector, and to each coding subtree, the bi-
nary sum of the vectors assigned to its two parents is the only
valid binary code for the minimal subtree graph of a network
with two receivers.

Proof: From claim 1) of Theorem 2, we know that there
does not exist a valid network code where a subtree is assigned
the same coding vector as one of its parents. Therefore, since
the code is binary and there are exactly two parents, a coding
subtree must be assigned the binary sum of the vectors assigned
to its two parents. This is the only code that satisfies a neces-
sary condition for validity. Since there exist binary codes for
networks with two receivers, the code must be valid. This as-
signment indeed does not need global information.

Algorithm IV.6: DECENTRALIZED CODE ((S ;R); (S ;R); 1 � i � N)

Obtain � by using Algorithm IV.1

Each coding point of � performs binary addition of its inputs.

E. Codes for Bipartite Networks With Three Sources and
Receivers

We consider the special case of networks with three sources
and receivers where no coding subtree has a child. Thus, the
subtree graph is bipartite with one set of nodes consisting of
the three source subtrees and another set of nodes consisting of
coding subtrees. An example is shown in Fig. 7.

To the source subtrees, we assign the basis vectors
and . Depending on which

source subtrees a coding subtree has as its parents, we assign to
it a vector belonging to one of the following sets:

and

where denotes the span of vectors and , and
denotes the projective space of the vector space .

To design deterministic decentralized codes it is sufficient to
select sets of coding vectors that can be used for all pos-
sible bipartite configurations with receivers. For example,
one configuration would be when all coding subtrees are con-
nected to and only, and thus all coding vectors belong in

. Another configuration would be when all coding subtrees
have three parents, and thus all coding vectors belong in .

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 839

Fig. 7. A subtree graph for a network with three sources and four receivers
labeled by the points of an arc in (2; 4).

Sets that accommodate all these different cases have to satisfy
the following conditions.

1) Each set contains elements.
2) Any three vectors in are linearly independent.
3) Any three different vectors such that not all of them be-

long to the same set are linearly independent.
The first condition holds because we are interested in bipartite
configurations: if a subtree has parents, then paths share the
coding point, and thus the subtree contains at least receiver
nodes.

Such sets of coding vectors for different numbers of receivers
can be found by computer search, or constructed for example as
follows. We start with a finite field with a characteristic dif-
ferent then , and its quadratic extension . For set , we
take elements of the form , where is a primitive
element, such that but ; thus,
(see, for example, [18, Ch. 2]). For sets and , we
take elements of the form , , and , re-
spectively, such that . For the set , use such that

, for employed in set . Additionally,
we use a mapping such that not both the vectors and

are used for the same configuration. Similarly for the
vectors and .

Example 5: Let and . Then

where and is a primitive element for , and

For example, in Fig. 7, depending on the receiver nodes inside
each subtree and the employed mapping we can associate with
each coding subtree the following coding vectors:

.

The requirement that the same set of coding vectors apply for
all possible configurations leads to an increase of the required
alphabet size. Alternatively, we can optimize the coding vectors
for particular classes of configurations and achieve a smaller
alphabet size. Given a set of constraints that coding vectors have
to satisfy, we can look for an appropriate arc as illustrated by the
following example.

Example 6: Suppose we need six three-dimensional vectors
in general position such that: two are in , two in ,
one in , one in . Is there such an arc in ?
In other words, can we start with a known arc of length in

(such as the one on the left-hand side in (4) below),
and obtain the arc we are interested in by applying a change of
basis in the projective space. In this particular case, the answer
is positive, and the desired arc is obtained as follows:

(4)

F. Codes for Networks With Sources and Receivers That
Use Additional Resources

We here demonstrate how the code design problem can
be simplified at the cost of using some additional network
resources. We are motivated by applications, such as overlay
and ad hoc networks, where we have at our disposal large
graphs rather then predetermined sets of paths from sources to
receivers.

In a network with coding subtrees, a simple decentralized
code design is possible if we are willing to use an alphabet of
size as well as additional network resources (edges
and terminals) to ensure that the min-cut to each coding subtree
be , because of the following fact.

Theorem 6: If a minimal subtree decomposition of a network
with sources has coding subtrees, where the min-cut to
each coding subtree is , the alphabet of size is
sufficiently large for decentralized coding.

Proof: We can use the points in a normal rational
curve (see Definition 9) in to assign

vectors to the source subtrees and vectors to the coding
subtrees.

Algorithm IV.7 outlines the procedure for code design in the
described scenario.

Algorithm IV.7: DECENTRALIZED CODE ((S ;R); 1� i�h; 1�j � N)

Obtain � by using Algorithm IV.1

C coding points of �

for each T 2 C

for 1 � i � h

do

iiif T does not have a connection

with source S

then create a connection with source S
Coding vectors are the points of the normal rational curve in

(h � 1; jCj + h � 1).

Label coding points by using the approach of Algorithm IV.4 or

Algorithm IV.5.

Here, we can think of coding points as edges incident to
special network terminals, that have not only enhanced com-
putational power, but also enhanced connectivity. Note that,
even in this case, multicast with network coding requires fewer
resources then multicast without coding, because multicast

840 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

without coding is possible iff the min-cut toward every node of
the graph is , not just the coding points.

Another way to take advantage of the increased connectivity
is to (if possible) partition the network with sources (even)
into independent two-source configurations, and then code
each subnetwork separately in a possibly decentralized manner.
Algorithm IV.8 outlines this procedure.

Algorithm IV.8: PAIRED-SOURCES CODE (G)

Group sources into pairs.

for each pair of sources (S ; S)

Find paths (S ;R); (S ;R); 1 � j � N in G

Design a network code based on these paths.

Update G by removing the used paths.

G. Scalability

Recall that whether a code is valid depends on both the un-
derlying topology of the subtree graph and the distribution of
the receivers over the subtrees. One of the main advantages of
decentralized codes is that they do not have to be changed with
the growth of the network as long as their subtree decomposition
retains the same topology, regardless of the distribution of the
receivers, or the new subtree graph contains the original subtree
graph.

In a network using decentralized coding, the coding vectors
associated with any subtrees provide a basis of the -dimen-
sional space. We can think of subtrees as “secondary sources”
and allow the new receivers to connect to any different sub-
trees. Thus, we can extend the multicast network, without any
coding/decoding changes for existing users. Subtree decompo-
sition enables scalability in the described manner even when the
code is not decentralized, since we can have new receivers con-
tact subtrees, much like today terminals contact databases, until
they connect to subtrees that allow them to retrieve the source
information.

In the above scenario, the receivers are allowed to join the net-
work only in a way that will not change the topology of the sub-
tree graph. If, for example, in a network with two sources, addi-
tion of new receivers results in new subtrees without disturbing
the existing ones, then the existing code can be simply extended
without any coding/decoding changes for existing users. Note
that the projective line can be thought of as a subset
of the projective line , where is an extension field
of . Thus, if we need to create additional coding vectors to
allocate to new subtrees, we can employ unused points from the
projective line .

In some cases, even the codes which are not decentralized can
remain the same, and the subtree decomposition shows us how
to ensure that. This point is illustrated here by considering the
network in Fig. 3 and the codes in the Example 2. Suppose that
a new node with the receiver is introduced in our example
network in Fig. 3, as shown in Fig. 8. We are interested in finding
out if the two codes described in the Example 2 for the network
in Fig. 3 are also valid for the network in Fig. 8. The topology
of the subtree graphs for the networks are the same. Since the

Fig. 8. Network with two sources fS ; S g and four receivers F, E, K, and J.

first code in the Example 2 is decentralized, it is also valid for
the network in Fig. 8. To see if the other code in the Example 2
is also valid, we have to see which two subtrees in Fig. 4 will
contain the receiver . We see that will have to be in the
subtree and in either subtree or (i.e., observe one of
the two corresponding coding vectors). If is placed in ,
the code is not valid since and have identical labels and
thus the matrix is singular. If is placed in , the code
remains valid.

Having a decentralized code which does not have to be re-
designed as long as the topology of the subtree graph remains
the same (regardless of the distribution of the receivers) does not
always come with the price of having to use a larger alphabet
size. Consider, for example, the network in Fig. 6. It is easy to
see that a code over the binary alphabet where each coding point
performs the binary addition of its two inputs is a valid code for
this network. But if we introduce a receiver for each pair of sub-
trees that does not already share one, then all the subtrees will
have to be assigned a different coding vector. Therefore, the only
valid code for the latter scenario is effectively decentralized.

V. BOUNDS ON CODE ALPHABETS

We are here interested in the maximum alphabet size that a
code for a network with sources and receivers may require.
This alphabet size is sufficient but not necessary for all networks
with sources and receivers. Recall that the binary alphabet
is sufficient for networks which require only routing. We will
also characterize a class of networks that require the maximum
alphabet size in the case with two sources.

Definition 10: We say that a network requires an alphabet of
size if there exists a valid network over an alphabet of size
but not over over an alphabet of size .

We restrict our attention to minimal subtree graphs because a
valid network code for a minimal subtree graph directly trans-
lates to a valid network code for any subtree graph that can
be reduced to (the code for simply does not use some edges
of). Thus, an alphabet size sufficient for all possible minimal
subtree graphs, will be sufficient for all possible nonminimal
subtree graphs as well.

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 841

Fig. 9. A subtree graph � and its associated graph
. The receiver edges in
 are labeled by the corresponding receivers.

A. Networks With Two Sources and Receivers

To show that an alphabet of size is sufficient, we can equiv-
alently prove that we can construct a valid code by using as
coding vectors the different points in the projec-
tive line . Remember that any two such coding vectors
form a basis of the two-dimensional space.

Let be a minimal subtree graph with vertices (sub-
trees); is the number of coding subtrees. (Note that when

has only source subtrees and no network coding is
required.) We relate the problem of assigning vectors to the ver-
tices of to the problem of vertex coloring a suitably defined
graph . Let be a graph with vertices, each vertex corre-
sponding to a different subtree in . We connect two vertices
in with an edge when the corresponding subtrees cannot be
allocated the same coding vector.

If two subtrees have a common receiver node, they cannot be
assigned the same coding vector. Thus, we connect the corre-
sponding vertices in with an edge which we call a receiver
edge. Similarly, if two subtrees have a common child, by The-
orem 2, they cannot be assigned the same coding vector. We
connect the corresponding vertices in with an edge which
we call a flow edge. By Theorem 2, a parent and a child sub-
tree cannot be assigned the same coding vector. However, we
need not worry about this case separately since by Theorem 3,
a parent and a child subtrees have either a child or a receiver in
common. Fig. 9 plots for our example subtree graph.

Lemma 2: For a minimal configuration with , every
vertex in has degree at least .

Proof:

1) Source subtrees: If , the two source subtrees have
exactly one child which shares a receiver with each parent.
If , the two source subtrees have at least one child
which shares a receiver or a child with each parent.

2) Coding subtrees: Each coding subtree has two parents.
Since the configuration is minimal, it cannot be allocated
the same coding vector as either of its parents. This im-
plies that in , there should exist edges between a subtree
and its parents, that may be either flow edges, or receiver

edges, and the corresponding vertex has degree at least
two.

Lemma 3: [17, Ch. 9] Every -chromatic graph has at least
vertices of degree at least .

Theorem 7: For any minimal configuration with two sources
and receivers, the code alphabet of size

is sufficient. There exist configurations for which it is necessary.
Proof: Assume that our graph has vertices and chro-

matic number . Let , where is a
nonnegative integer. We are going to count the number of edges
in in two different ways.

1) By Lemmas 2 and 3, we know that each vertex has degree
at least , and at least vertices have degree at least .
Consequently, we can lower-bound the number of edges
of as

(5)

2) Since there are receivers and coding subtrees,
we have at most receiver edges and at most flow
edges. Thus,

(6)

From (5) and (6), we obtain

(7)

Equation (7) provides a lower bound on the number of receivers
we need in order to have chromatic number . Solving for

we get the bound

This proves the first claim of the theorem that, for any min-
imal configuration with receivers, an alphabet of size

is sufficient.
To show that there exist configurations for which an alphabet

of this size is necessary, we consider a network which has a
minimal subtree graph with the same topology as the one shown
in Fig. 6, but different number of receivers. There are subtrees
in the graph and of them share a child with another subtree.

842 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

Fig. 10. (a) A network with two sources and 10 receivers; (b) a subtree decomposition of the network; (c) a minimal subtree decomposition of the network; (d)
graph for coloring.

For each pair of subtrees that do not share a child, we introduce a
common receiver. Therefore, we will have
receivers, and the corresponding graph will be a complete
graph with nodes and edges (

receiver edges and flow edges). The chromatic
number of is and thus the required alphabet size is .
The bound is plotted in Fig. 11.

It was previously shown that an alphabet of size is
sufficient for networks with two sources and receivers, and
that there are networks with receivers for which
the alphabet of size is necessary [4], [14]. Both bounds
can be derived by bounding the chromatic number of the graph

, as we explain next.
Since (by Theorem 4 in Section III-B) a minimal subtree

graph with two sources and receivers has at most
vertices, the chromatic number of the corresponding graph
is smaller than or equal to . Therefore, an alphabet of size

is sufficient for all networks with two sources. Moreover, we
have shown that an alphabet of size is sufficient for decen-
tralized coding of all networks with two sources.

Now, consider the special case when the subtree graph is bi-
partite with one set of vertices corresponding to the source sub-
trees and the other set of vertices corresponding to the coding
subtrees, and for every set of two vertices there exists a receiver
that observes them. That is, if the network has subtrees, then
there exist receivers. The corresponding is a com-
plete graph with vertices and thus cannot be colored with
fewer than colors. has receivers, and
requires an alphabet of size . Fig. 10(a) depicts such a
configuration for . We found that there are networks with

Fig. 11. Alphabet size upper bound b 2N � 7=4+1=2c as a function of the
number of receivers N . Since alphabets are finite fields, their actual size is the
prime or the power of prime closest but larger than the bound. In practice, one
would most likely use the closest larger power of 2.

even fewer receivers for which the alphabet of size
is necessary, and found that the minimum number of receivers
such a network must have is .

B. Networks With Sources and Receivers

The required alphabet size for networks with sources and
receivers whose subtree graph consists of source nodes

with no children and a two-source configuration is clearly de-
termined by the two-source subgraph. Therefore, based on the
results of the previous section, a lower bound on the alphabet
size a network with sources and receivers may require is

. The interesting question is whether this

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 843

is also an upper bound. We next demonstrate two scenarios in
which this is the case.

Definition 11: We say that a subtree graph is -critical if

1) it requires an alphabet of size (see Definition 10), and
2) the same subtree configuration with a different nonequiv-

alent receiver-to-subtree assignment requires a smaller al-
phabet.

Definition 12: We say that a feasible assignment (Defini-
tion 2) of coding vectors to the (subset of) nodes of a subtree
graph is valid for receiver if under that assignment, receiver

observes independent flows (and thus is able to decode all
sources).

Theorem 8: Any nonempty subtree in a -critical configura-
tion with sources and receivers, contains at least
receivers.

Proof: Consider a nonempty coding subtree . Since
is -critical, there is at least one assignment of coding vectors
over an alphabet of size to that is valid for all re-
ceivers in the network but one of those observing . Such an
assignment can be obtained by moving one of the receivers in

to the source node corresponding to the source it observes in
and designing a valid network code for this subgraph. Any

assignment of coding vectors over an alphabet of size to
that is valid for all receivers other then those ob-

serving makes all feasible choices for over the same al-
phabet invalid for at least one of the receivers observing . Re-
call that is feasible if it belongs to the linear span
of the vectors assigned to the parents of . If has parents,
there are feasible (nonzero) choices for . If a
feasible vector is not valid for a receiver observing , say

, then it must belong to the -dimensional subspace
spanned by the coding vectors assigned to the remaining
subtrees observed by , and therefore to the -dimen-
sional intersection between this subspace and . (That the
dimension of this intersection is follows from the ele-
mentary linear algebra and the min-cut condition.) Therefore,

choices for out feasible
will make the assignment not valid for a single receiver. The
remaining feasible choices are therefore
not valid for some of the remaining receivers. Thus, the smallest
number of receivers necessary to eliminate all the feasible
points for satisfies

giving . In the special case when the -di-
mensional subspaces corresponding to different receivers con-
tain the same -dimensional subspace of , we have

giving .

By observing that each coding subtree can contain at most
receiver nodes, we immediately have the following corollary.

Corollary 2: For any network with sources and re-
ceivers, there exists a valid network code over an alphabet of
size .

This result was derived using different approaches in [3]
and [4].

Theorem 9: If a removal of a nonempty coding subtree from
a -critical subtree graph with sources and receivers
followed by the removal from the network of all the receivers
observing that subtree results in a -critical subtree graph,
then .

Proof: Let denote the number of receivers required in
a -critical -source configuration. For the case, we know
that

For , we have

where the inequality follows from Theorem 8, and is
found through exhaustive search. This implies that ,
that is, the number of receives in a -critical -source configura-
tion is greater than or equal to the number of receives in a -crit-
ical two-source configuration. The claim then follows from The-
orem 7, which relates and .

To understand another scenario in which an alphabet of size
is sufficient, we consider a subtree graph

with sources and receivers together with its valid code
which labels the source nodes by the basis vectors .

Starting from and , the following procedure derives a two-
source configuration with receivers together with a valid
code over the alphabet of .

1) Consider a pair of linearly independent vectors vectors
and in the -dimensional vector space ,

and the projection operator that maps the -dimen-
sional space onto the plane leaving and un-
changed.

2) Consider one of the possible pairs of sources in ,
say and . Find a code isomorphic to by a change
of basis that maps to and to , and then project
the resulting coding vectors in the plane by ap-
plying .

3) Disconnect from the graph all the sources but and .
For each receiver , find two vertex-disjoint paths from
the and source subtrees to two receiver nodes of .
Remove the remaining receiver nodes of . Identify
the associated minimal subtree graph . The projected
coding vectors obtained in step 2) that are associated with
the nodes of constitute that is a valid code for
over the alphabet of .

Now may have a valid network code over a smaller alphabet
in the plane , but we conjecture that if requires an
alphabet of size , then there exists a pair of vectors and
in step 1), a size-two set of source subtrees in step 2), and a
choice of vertex-disjoint paths from the sources and to the
receiver nodes in step 3), such that the resulting also requires
an alphabet of size in the plane . Clearly, if that is the
case, based on our results for the networks with two sources, we
have .

844 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

VI. CODING FOR NETWORKS WITH TWO SOURCES WITH

LIMITED ALPHABET SIZE

In Section V-A, we used the subtree decomposition to reduce
the problem of designing a network code for a multicast config-
uration with two sources to the problem of vertex coloring. We
now make another connection with coloring problems in com-
binatorics to study coding in networks with two sources where
the processing complexity is a stronger constraint than the band-
width, meaning that the system cannot support an alphabet size
large enough to accommodate all users, but on the other hand,
the min-cut toward each receiver is larger than the information
rate that we would like to multicast. Below, we mention only a
few relevant combinatorial results, but there are many more in
the literature that are applicable in this and other practical net-
work scenarios (see for example [23, Ch. 6]).

A. Min-Cut Alphabet-Size Tradeoff

When the min-cut toward each user is exactly equal to the
number of sources, the bound in Theorem 7 gives the max-
imum alphabet size a network with users may require. One
would expect that, if the min-cut toward some or all of the users
is greater than the number of sources, a smaller alphabet size
would be sufficient. For the special case when the subtree graph
is bipartite, we can show that this is indeed true by applying the
following result. Consider a set of points and a family of
subsets of . A coloring of the points in is legal if no element
of is monochromatic. If a family admits a legal coloring with

colors, then it is called -colorable.

Theorem 10: (Erdös 1963) Let be a family of sets each of
size at least . If , then is -colorable.

An algorithm for identifying a legal -coloring can be found
for example in [24].

In our case, is the set of subtrees, is the min-cut from
the sources to each receiver, each element of corresponds
to the set of subtrees observed by a receiver, and the set of
colors are the points on the projective line. Therefore, is a
family of sets each of size , and . Suppose that we
can use an alphabet of size (which gives colors). Note
that each receiver can observe both sources if is -colorable,
since that means that no set of subtrees observed by a receiver
is monochromatic. By Theorem 10, this holds as long as

The above inequality shows the tradeoff between the min-cut
to each user and the alphabet size required to accommo-
date receivers. We expect a similar tradeoff in the case where
the graph is not bipartite as well. However, Theorem 10 cannot
be directly applied, because in this case there are additional con-
straints on coloring of the elements of coming from the con-
straints that each child subtree has to be assigned a vector lying
in the linear span of its parents’ coding vectors.

B. Almost Good Codes

Consider again the case where the subtree graph is bipartite
and the min cut to each receiver is . We are interested in the
number of receivers which will get only a single source when a

code over an alphabet of size is used. We obtain a bound
to this number by making use of the following result.

Theorem 11: [23, Ch. 9] For every family whose all mem-
bers have size exactly , there exists a -coloring of its points
that colors at most of the sets of monochromati-
cally.

Thus, if we have receivers, the min-cut to each
receiver is , and we use an alphabet of size , then at most

receivers will get only one source. In other words, if
the alphabet size is not large enough to accommodate all users,
but on the other hand, the min-cut toward each receiver is larger
than the information rate that we would like to multicast, at least

receivers will still be able to successfully decode
both sources.

C. Structural Information

Having some information about the structure of the under-
lying graph can be helpful both in bounding the alphabet size
and in designing codes. For example, the required alphabet size,
which is equal to the chromatic number of the graph intro-
duced in Section V-A, can be bounded in terms of the maximum
degree of . Although the chromatic number of is smaller or
equal to its maximum degree , we can find a legal coloring
using at most colors by simply applying the greedy
algorithm (see, for example, [15, p. 98]).

Recall that the maximum degree of is equal to the max-
imum number of receiver nodes inside any subtree of a bipartite
configuration. Again, if the min-cut toward each receiver in the
network is greater than the required, the code alphabet size may
be reduced, as shown by the following result.

Theorem 12: (Erdös–Lovasz 1975) If every member of an
-uniform family intersects at most other members, then

the family is -colorable.

Thus, if the min-cut to each receiver is and every coding
subtree is observed by at most receivers, then it is
sufficient to use an alphabet of size , irrespective of the
number of receivers. The authors in [12] have derived alphabet
size bounds in this direction.

VII. CONNECTION WITH CONVOLUTIONAL CODES

In the development of the previous sections, we assumed that
all nodes simultaneously receive all their inputs and produce
their outputs. We now relax this zero-delay assumption and dis-
cuss a connection between network codes and convolutional
codes over finite fields. To relax the zero delay assumption, we
can associate a unit delay either with each node of the line
graph or only with coding points. Associating a unit delay with
each edge of the network was proposed in [3]; our contribu-
tion is the observation that then the line graph can be thought of
as a convolutional code over a finite field, with the number of
memory elements equal to the number of edges in .

The convolutional code framework naturally takes delay
into account, but at the cost of increased complexity for both
encoding and decoding. We investigate methods to reduce the
complexity requirements that differ from the standard in the

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 845

theory of convolutional codes, because our design is subject to
network topology constraints. We also discuss implementation
using binary encoders, and propose a simplified version of the
method in [2] to deal with cycles in the network.

A general description of a convolutional encoder over a finite
field with inputs, outputs, and memory elements is
given by the well known state–space equations

where is the state vector, is the output vector,
is the input vector, and and are matrices

with appropriate dimensions. The corresponding generator ma-
trix is given by

(8)

where is the indeterminate delay operator. The expression in
(8) coincides with the transfer matrix derived in [3], giving
a different and simpler derivation of the same result.

Matrix reflects the way the memory elements are con-
nected. An element in matrix can be nonzero only if a cor-
responding edge exists at the given network configuration. Net-
work code design amounts to selecting the nonzero-element
values for matrix . Matrices and are completely de-
termined by the network configuration.

We observe that the dimensions of matrices and
depend upon the number of memory elements of the convo-
lutional code, which in turn is equal to the number of edges
in the original graph . This number can get quite large, re-
sulting in large size of matrices to handle. Using the subtree
graph as a convolutional code instead, as discussed in detail in
[9], allows to significantly decrease the number of memory el-
ements and thus accelerate all algorithms that depend on the
involved dimensionality. An example subtree configuration is
shown later in Fig. 14(a) and its corresponding convolutional
code in Fig. 14(b). Unless otherwise stated, we will be consid-
ering the convolutional code associated with the subtree graph.

A. Structural Properties of Codes

We next examine the structure of matrices and .
Determining the structure of these matrices can be used, for ex-
ample, to perform exhaustive searches over all possible config-
urations to satisfy a given criterion. We distinguish two cases,
depending on whether a partial order constraint, which we de-
scribe below, is satisfied.

We observe that each path from source to receiver
induces a partial order on the set of the line graph nodes: if

edge is a child of edge then we say that . The source
node is the maximal element. Each different path imposes a dif-
ferent partial order on the same set of edges. We distinguish the
graphs depending on whether the partial orders imposed by the
different paths are consistent. Consistency implies that for all
pairs of edges and , if in some path, there does not exist
a path where . A sufficient, but not necessary, condition for
consistency is that the underlying graph is acyclic. Consider
the two example networks shown in Fig. 12. Sources and
use the cycle to transmit information to receivers

Fig. 12. Two networks with a cycle ABCD: (a) paths (S ;R) = S A !
AB ! BC ! CD ! DR and (S ;R) = S B ! BC ! CD !

DA ! AR impose consistent partial orders to the edges of the cycle; (b)
paths (S ;R) = S A ! AB ! BC ! CD ! DR and (S ;R) =
S C ! CD ! DA ! AB ! BR impose inconsistent partial orders to
the edges of the cycle.

and , respectively. In the network shown in Fig. 12(a), the
paths from sources and impose consistent partial orders
on the edges of the cycle. In the network shown in Fig. 12(b),
for the path from source , we have , whereas for
the path from source , we have .

1) Consistent Partial Order: Each subtree corresponds to
one element in the state vector . Let be the total number
of subtrees. It is easy to see that we can arrange the state vector
so that matrix is lower diagonal, and matrix has the form

(9)

where is the identity matrix. The matrix is
a zero–one matrix of the form

... (10)

where the matrix corresponds to receiver . Each row
of corresponds to one of the subtrees whose state is observed
by the receiver . Thus, matrix has exactly one in each row
and at most one in each column. Matrix is identically zero
since we associate a memory element with each source subtree.
Matrices are completely determined by the subtree config-
uration. To design matrix , we can either use an exhaustive
search, as is typically done to identify good convolutional codes,
or we can use an adaptation of any of the algorithms for network
code design, as for example proposed in [13].

The min-cut, max-flow requirement is equivalent to the con-
dition that the transfer matrices

(11)

that corresponds to the receivers have full rank, as described
in [3].

2) Nonconsistent Partial Order: When the partial orders
imposed by the different paths are not consistent, the cor-
responding subtree graph forms a recursive convolutional
encoder, which can be analyzed by taking into account the
feedback as proposed in [3]. Observe that an information
source needs to be transmitted through the edges of a cycle at
most once, and then can be removed from the circulation by
the node that introduced it. For example, consider the cycle

846 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

Fig. 13. Block representation of the cycle in Fig. 12(b).

in Fig. 12(b), and for simplicity assume that each edge corre-
sponds to one memory element. Then the flows through the
edges of the cycle are

(12)

where is the symbol transmitted from source at time .
Equation (12) can be easily implemented by employing a block
of memory elements as shown in Fig. 13. Thus, we can still have
a feedforward encoder by representing the cycle with a block
of memory elements, and accordingly altering the structure of
matrices and .

This is a simplified version of the approach in [2]. Instead
of starting with the original graph , and “expand it in time” to
create as is described in [2], we use the graph
(or the subtree graph) where vertices correspond to edges in the
original graph , and treat each cycle separately. Every vertex

in (edge in the original graph) corresponds to a state vari-
able in our notation. It is sufficient to express how the in-
formation that goes through each evolves with time. To do
that, we look at the inputs (incoming edges) of the cycle (for
example in Fig. 13, we have inputs). Each input fol-
lows a path of length (in Fig. 13,). For each
input, we create memory elements. Through each edge of
the cycle flows a linear combination of a subset of these
memory elements. This subset is defined by the structure of the
paths and the structure of the cycle, i.e., it is not selected by the
code designer. The code designer can only select the coefficients
for the linear combinations. Using this approach, we create an
expanded matrix that contains for every cycle an additional
number of memory elements. For example, in Fig. 13, we
use six additional memory elements resulting a convolutional
code with a total of 12 memory elements. For the same config-
uration, the approach in [2] for (where is a parameter
described in [2]) would create a graph with nodes,

edges, and the corresponding
convolutional code would have 52 memory elements. We can
think of our approach as “expanding in time” like in [2], but
only when necessary, and along specific paths.

B. Decoding Complexity

Taking delay into account implies that each receiver no longer
has a linear system of equations to solve, but needs to perform
trellis decoding of the code whose generator matrix is given by
(11) in the noiseless scenario. Thus, the complexity of decoding
is proportional to the complexity of the trellis diagram.

One way to reduce the decoder complexity is to identify
among all encoders that are subject to the constraints of a given
topology, and that satisfy the min-cut max-flow conditions
for each receiver, the encoder that has the smallest number of
memory elements. The minimization does not need to preserve
the same set of outputs, as we are not interested in error-cor-
recting properties, but only the min-cut condition for each
receiver. Equivalently, we need to identify a minimal subtree
configuration that has the smallest possible number of subtrees.
As the number of states of the convolutional code depends
upon the number of subtrees in the minimal configuration,
it is interesting to observe that a given subtree graph can be
reduced to minimal configurations that have a different number
of coding subtrees.

Another way to reduce the decoder complexity is to use for
decoding the trellis associated with the minimal strictly equiva-
lent encoder to . Two codes are strictly equivalent if they
have the same mapping of input sequences to output sequences.
Among all strictly equivalent encoders, that produce the same
mapping of input to output sequences, the encoder that uses the
smallest number of memory elements is called minimal [19].

Typically for convolutional encoders, we are interested
in equivalent encoders that produce the same set of output
sequences. Only recently, with the emergence of turbo codes
where the mapping from input to output sequence affects the
code’s performance, the notion of strictly equivalent encoders
has become important. Here we provide another example
where this notion is useful. Note that in the conventional use of
convolutional codes, there is no need to use a different encoder
to encode and decode. In our case, we are restricted by the
network configuration for the choice of the encoder . Our
observation is that, given these constraints, we still have some
freedom at the receiver to optimize for decoding complexity.

C. Codes Over the Binary Alphabet

The convolutional codes corresponding to network codes
are over a finite field that (but for the simplest cases) is
not binary. If a network supports only binary transmission, we
consider uses of the network to constitute a
symbol of a higher alphabet. This implies that each node that
performs network coding has to store and process binary
bits before retransmitting, and thus, effectively it needs to use

binary memories.
An alternative approach would be to restrict the network

coding alphabet to be binary, and allow each node to use up
to binary memory elements in an arbitrary fashion. In our
subtree configuration, we may replace each subtree with any
convolutional code with binary memory elements. Using an
alphabet of size becomes a special case, so it is guaranteed
that there exists a topology that employs possibly less and at
most an equal number of binary memory elements.

FRAGOULI AND SOLJANIN: INFORMATION FLOW DECOMPOSITION FOR NETWORK CODING 847

Fig. 14. Configuration with two sources and five receivers: (a) the subtree graph; (b) the corresponding convolutional encoder.

Example 7: Consider the configuration with source
subtrees and coding subtrees depicted in Fig. 14(a).
The corresponding convolutional encoder is depicted in Fig.
14(b). In this case, matrix has the following form:

where is of dimension , and “ ” denotes a nonzero1

element. Each receiver has its corresponding generator
matrix of the form

Matrix is common for all receivers. A possible choice for
matrix over a finite field of size greater than or equal to three
would be

Alternatively, we may use a binary network code. Since we
consider two uses of the network, the input/output to each sub-
tree in Fig. 14 would be 2 bits. Then each subtree can perform
at time the following binary operation:

where

Receiver will observe a matrix of the form

which has full rank.

VIII. CONCLUSION

In this paper, we introduced the information flow decompo-
sition which offers a method to study the common underlying

1A zero coefficient would correspond to effectively removing an edge, which
in a minimal configuration we cannot do without violating the min-cut condi-
tion.

structural properties of different multicast configurations. We
showed that this method can be used to classify network con-
figurations based on their equivalence from a coding point of
view, to derive alphabet size bounds, to develop decentralized
scalable algorithms, and draw connections with convolutional
codes. We believe that this is a promising tool that may find
many more applications both in developing the theory and en-
hancing the practice of network coding.

ACKNOWLEDGMENT

The authors would like to thank Andrew Brown, Ellen
Esichen, Dana Ron, and Amin Shokrollahi for stimulating dis-
cussions and comments on earlier versions of this manuscript.
The authors would also like to thank the anonymous reviewers
for detailed reviews that helped to greatly improve the clarity
and presentation of this paper.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul.
2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[3] R. Koetter and M. Médard, “Beyond routing: An algebraic approach to
network coding,” in Proc. IEEE INFOCOM 2002, vol. 1, New York, Jun.
2002, pp. 122–130.

[4] P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial time algorithms
for network information flow,” in Proc. 15th ACM Symp. Parallel Algo-
rithms and Architectures, San Diego, CA, Jun. 2003, pp. 286–294.

[5] S. Jaggi, P. Chou, and K. Jain, “Low complexity algebraic multicast net-
work codes,” in Proc. IEEE Int. Symp. Information Theory, Yokohama,
Japan, Jun./Jul. 2003, p. 368.

[6] P. A. Chou, M. Effros, S. Egner, S. Jaggi, K. Jain, P. Sanders, and L.
Tolhuizen, “Linear multicast network coding algorithms,” IEEE Trans.
Inf. Theory, submitted for publication.

[7] C. Chekuri, C. Fragouli, and E. Soljanin, “On average throughput bene-
fits and alphabet size for network coding,” IEEE Trans. Inf. Theory. Spe-
cial Issue on Networking and Information Theory (Joint Special Issue of
the IEEE Trans. Inf. Theory and the IEEE/ACM Trans. Netw.), submitted
for publication.

[8] C. Fragouli, E. Soljanin, and A. Shokrollahi, “Network coding as a
coloring problem,” in Proc. Conf. Information Sciences and Systems.
Princeton, NJ, Mar. 2004.

[9] C. Fragouli and E. Soljanin, “A connection between network coding and
convolutional codes,” in Proc. IEEE Int. Conf. Communications, vol. 2,
Paris, France, Jun. 2004, pp. 661–666.

[10] , “Decentralized network coding,” in Proc. Information Theory
Workshop, San Antonio, TX, Oct. 2004.

[11] , “On average throughput benefits for network coding,” Proc.
Allerton Conf. Communications, Control and Computing, Sep./Oct.
2004.

[12] M. Feder, D. Ron, and A. Tavory, “Bounds on linear codes for network
multicast,” in Electronic Colloquium on Computational Complexity,
2003, Rep. 33.

848 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

[13] E. Erez and M. Feder, “Convolutional network codes,” in Proc. IEEE
Int. Symp. Information Theory , Chicago, IL, Jun./Jul. 2004, p. 146.

[14] A. Rasala-Lehman and E. Lehman, “Complexity classification of net-
work information flow problems,” in Proc. Symp. Discrete Algorithms
(SODA), New Orleans, LA, Jan. 2004, pp. 142–150.

[15] R. Diestel, Graph Theory, 2nd ed. Berlin, Germany: Springer-Verlag,
2000.

[16] A. H. Ali, J. W. P. Hirschfeld, and H. Kaneta, “On the size of arcs in pro-
jective spaces,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 1649–1656,
Sep. 1995.

[17] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. Am-
sterdam, The Netherlands: North-Holland, 1979.

[18] R. Lidl and H. Niederreiter, Finite Fields. New York: Cambridge Univ.
Press, 1997.

[19] H.-A. Loeliger, G. D. Forney, T. Mittelholzer, and M. D. Trott, “Mini-
mality and observability of group systems,” Linear Algebra and Its Ap-
plications, vol. 205–206, pp. 937–963, Jul. 1994.

[20] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” in Proc. IEEE Int. Symp.
Information Theory, Yokohama, Japan, Jun./Jul. 2003.

[21] T. Ho, D. R. Karger, M. Médard, and R. Koetter, “Network coding from a
network flow perspective,” in Proc. IEEE Int. Symp. Information Theory,
Yokohama, Japan, Jun./Jul. 2003.

[22] T. Ho, M. Mèdard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” in Proc. Allerton Conf. Communications, Control and
Computing, Monticello, IL, Sep./Oct. 2004.

[23] S. Jukna, Extremal Combinatorics. Berlin, Germany: Springer-Verlag,
2001.

[24] U. Manber, Introduction to Algorithms: A Creative Ap-
proach. Reading, MA: Adison-Wesley, 1989.

[25] Y. Sagduyu and A. Ephremides, “Crosslayer design for distributed MAC
and network coding in wireless ad hoc networks,” in Proc. IEEE Int.
Symp. Information Theory, Adelaide, S.A., Australia, Sep. 2005, pp.
1863–1867.

	toc
	Information Flow Decomposition for Network Coding
	Christina Fragouli, Member, IEEE, and Emina Soljanin, Senior Mem
	I. I NTRODUCTION

	Fig.€1. The Butterfly network and its information flow decomposi
	Fig.€2. Two possible information flow decompositions for network
	II. T HE N ETWORK C ODING M ODEL
	III. D ECOMPOSITION I NTO S UBTREES
	A. Definitions

	Fig. 3. Network with two unit rate sources $\{S_1, S_2\}$ and th
	Definition 1: Coding points are the nodes of γ with two o
	Theorem 1: The line graph γ and its subgraphs T_i satis
	Proof:

	Fig.€4. Line graph with coding points BD and GH for the network
	Definition 2: An assignment of coding vectors to subtrees is fea
	Definition 3: A valid network code is any feasible assignment of
	Example 1: A valid code for the network in Fig. 3 can be obtaine
	B. Minimal Subtree Graphs and Their Properties
	Definition 4: A subtree graph is called minimal with the multica

	Fig.€5. A network with two sources and two receivers: (a) the or
	Lemma 1: There is no valid codeword assignment (in the sense of
	Theorem 2: For a minimal subtree graph, the following holds.
	Proof:

	Theorem 3: In a minimal subtree decomposition of a network with
	Proof:

	Theorem 4: In a minimal subtree decomposition of a network with
	Proof: Recall that there are exactly $2N$ receiver nodes. The fi

	Corollary 1: For a network with two sources and two receivers, t
	Proof: The scenario shown in Fig. 2(a) is the case when no netwo

	IV. D ECENTRALIZED C ODES

	Fig.€6. A minimal subtree graph for a network with two sources,
	Definition 5: Decentralized network coding assigns coding vector
	A. Coding Vectors and Arcs
	Definition 6: Projective $(h-1)$ -space over ${\BBF}_q$ is the s
	Example 2: Two codes for the network in Fig. 3 are as follows.
	Definition 7: In a projective plane, a k -arc is a set of k
	Definition 8: Set ${\cal A}$ of vectors in ${\BBF}_q^h$ are said
	Example 3: The following set of $h+1$ points are in general posi
	Example 4: For $q+1 \geq h$, the following set of $q+1$ points a
	Definition 9: A normal rational curve is any set of $q+1$ points

	B. Algorithms for Subtree Graph Design
	C. Codes for Networks With $h=2$ Sources and N Receivers
	D. Codes for Networks With h Sources and Two Receivers and Bin
	Theorem 5: The binary code that assigns to each source subtree,
	Proof: From claim 1) of Theorem 2, we know that there does not e

	E. Codes for Bipartite Networks With Three Sources and N Recei

	Fig.€7. A subtree graph for a network with three sources and fou
	Example 5: Let ${\BBF}_{3^2}$ and ${\BBF}_{3^4}$. Then $$\{1,\a
	Example 6: Suppose we need six three-dimensional vectors in gene
	F. Codes for Networks With h Sources and N Receivers That Us
	Theorem 6: If a minimal subtree decomposition of a network with
	Proof: We can use the $\vert {\cal C}\vert +h$ points in a norma

	G. Scalability

	Fig. 8. Network with two sources $\{S_1, S_2\}$ and four receive
	V. B OUNDS ON C ODE A LPHABETS
	Definition 10: We say that a network requires an alphabet of siz

	Fig.€9. A subtree graph Γ and its associated graph $% \Omeg
	A. Networks With Two Sources and N Receivers
	Lemma 2: For a minimal configuration with $n> 2$, every vertex i
	Proof:

	Lemma 3: [17, Ch. 9] Every k -chromatic graph has at least $
	Theorem 7: For any minimal configuration with two sources and $N
	Proof: Assume that our graph Ω has n vertices and chrom

	Fig.€10. (a) A network with two sources and 10 receivers; (b) a
	Fig. 11. Alphabet size upper bound $\lfloor \sqrt{2N-7/4}+1/2 \r
	B. Networks With h Sources and N Receivers
	Definition 11: We say that a subtree graph is q - critical if
	Definition 12: We say that a feasible assignment (Definition 2)
	Theorem 8: Any nonempty subtree in a q -critical configuration
	Proof: Consider a nonempty coding subtree T . Since Γ_q

	Corollary 2: For any network with h sources and N receivers,
	Theorem 9: If a removal of a nonempty coding subtree from a q
	Proof: Let N_{q}^h denote the number of receivers required in

	VI. C ODING FOR N ETWORKS W ITH T WO S OURCES W ITH L IMITED A L
	A. Min-Cut Alphabet-Size Tradeoff
	Theorem 10: (Erdös 1963) Let ${\cal F}$ be a family of sets each

	B. Almost Good Codes
	Theorem 11: [23, Ch. 9] For every family ${\cal F}$ whose all

	C. Structural Information
	Theorem 12: (Erdös Lovasz 1975) If every member of an m -unifo

	VII. C ONNECTION W ITH C ONVOLUTIONAL C ODES
	A. Structural Properties of Codes

	Fig.€12. Two networks with a cycle $ABCD$: (a) paths $(S_1,R_1)=
	1) Consistent Partial Order: Each subtree corresponds to one ele
	2) Nonconsistent Partial Order: When the partial orders imposed

	Fig.€13. Block representation of the cycle in Fig. 12(b) .
	B. Decoding Complexity
	C. Codes Over the Binary Alphabet

	Fig.€14. Configuration with two sources and five receivers: (a)
	Example 7: Consider the configuration with $h=2$ source subtrees
	VIII. C ONCLUSION
	R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, Network infor
	S.-Y. R. Li, R. W. Yeung, and N. Cai, Linear network coding, IEE
	R. Koetter and M. Médard, Beyond routing: An algebraic approach
	P. Sanders, S. Egner, and L. Tolhuizen, Polynomial time algorith
	S. Jaggi, P. Chou, and K. Jain, Low complexity algebraic multica
	P. A. Chou, M. Effros, S. Egner, S. Jaggi, K. Jain, P. Sanders,
	C. Chekuri, C. Fragouli, and E. Soljanin, On average throughput
	C. Fragouli, E. Soljanin, and A. Shokrollahi, Network coding as
	C. Fragouli and E. Soljanin, A connection between network coding
	M. Feder, D. Ron, and A. Tavory, Bounds on linear codes for netw
	E. Erez and M. Feder, Convolutional network codes, in Proc. IEEE
	A. Rasala-Lehman and E. Lehman, Complexity classification of net
	R. Diestel, Graph Theory, 2nd ed. Berlin, Germany: Springer-Verl
	A. H. Ali, J. W. P. Hirschfeld, and H. Kaneta, On the size of ar
	J. A. Bondy and U. S. R. Murty, Graph Theory with Applications .
	R. Lidl and H. Niederreiter, Finite Fields . New York: Cambridge
	H.-A. Loeliger, G. D. Forney, T. Mittelholzer, and M. D. Trott,
	T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, The b
	T. Ho, D. R. Karger, M. Médard, and R. Koetter, Network coding f
	T. Ho, M. Mèdard, J. Shi, M. Effros, and D. R. Karger, On random
	S. Jukna, Extremal Combinatorics . Berlin, Germany: Springer-Ver
	U. Manber, Introduction to Algorithms: A Creative Approach . Rea
	Y. Sagduyu and A. Ephremides, Crosslayer design for distributed

