Toward Online Probabilistic Path Replanning

R. Philippsen¹ B. Jensen² R. Siegwart³

¹LAAS-CNRS, France

²Singleton Technology, Switzerland

³ASL-EPFL, Switzerland

Workshop on Autonomous Robot Motion, ICRA 2006

R. Philippsen, B. Jensen, R. Siegwart Toward Online Probabilistic Path Replanning

Outline

Algorithm Overview

SLIP and ECKF

Co-Occurrence Estimation

E* Weighted Region Planner

PNF: Integrating It All

Conclusion and Outlook

R. Philippsen, B. Jensen, R. Siegwart Toward Online Probabilistic Path Replanning

Problem Statement

Comparison with "Known-Trajectory" Approaches

- very cluttered dynamic environments
- frequent changes to environment model
- static objects = environment topology
- hardly predictable movement = risky regions
- use "worst-case" scenarios

⇒ Probabilistic Navigation Function

R. Philippsen, B. Jensen, R. Siegwart Toward Online Probabilistic Path Replanning

Requirements for PNF

- static object positions
- dynamic object positions, shapes, and speeds
 - sensor based
 - circular shapes for simplicity
 - estimated or assumed max speed
- estimation of co-occurrence probability
- weighted region planner

Input: Laser scanner data

- 1: SLIP/ECKF \Rightarrow extract and track motion
- 2: Determine co-occurrence risk
- **3:** $E^* \Rightarrow$ navigation function

Output: Direction for reactive obstacle avoidance

Algorithm Overview

SLIP and ECKF Co-Occurrence Estimation E* Weighted Region Planner PNF: Integrating It All Conclusion and Outlook

PNF Architecture

R. Philippsen, B. Jensen, R. Siegwart

Toward Online Probabilistic Path Replanning

 $\gamma \diamond \circlearrowright$

SLIP and ECKF

robustly detect and track motion

R. Philippsen, B. Jensen, R. Siegwart

Motion Tracking: Challenge and Approach

robust tracking despite occlusion and uncertainty

- compensate ego-motion
 - ICP variant called SLIP
 - probabilistic distance metric
- constrained object motion
 - multi-object Kalman filter called ECKF
 - topology via particle-filtering

[Jensen, 2005]

Motion Tracking Flow Diagram

R. Philippsen, B. Jensen, R. Siegwart

Toward Online Probabilistic Path Replanning

うくで

Motion Tracking: Environment Constraints

Environment-Constrained Kalman Filter

R. Philippsen, B. Jensen, R. Siegwart

Toward Online Probabilistic Path Replanning

Motion Tracking: Videos

lobj_ECKF_series.wmv environment-constrained particles

3obj_ECKF_series.wmv tracking robustly through occlusions

R. Philippsen, B. Jensen, R. Siegwart

Co-Occurrence Estimation

R. Philippsen, B. Jensen, R. Siegwart

Toward Online Probabilistic Path Replanning

うくぐ

1D Co-Occurrence Estimation

1D Case Computations

assumptions

- point object and robot
- object speed v_i
- discretized process, $N = \lceil \lambda_r / \delta \rceil$
- can change direction at each step

R. Philippsen, B. Jensen, R. Siegwart

More Realistic Setting

- N-dimensional (currently 2D)
- non-point objects and robot, (currently circles)
- λ is topologically correct distance
- reduce λ by object and robot radii (future work)

E* Weighted Region Planner

R. Philippsen, B. Jensen, R. Siegwart

Toward Online Probabilistic Path Replanning

 $\gamma \diamond \diamond$

Interpolated Weighted Path Replanning

- D* [Stentz, 1995]
 - edge costs
 - local cost changes

- E* [Philippsen, 2004]
- cell costs
- less "local" cost changes
- smooth distance measure

Level Set Method Interpolation

R. Philippsen, B. Jensen, R. Siegwart

Solving the LSM Equations

 1^{st} order *upwind* gradient, "Fast Marching" \Rightarrow

R. Philippsen, B. Jensen, R. Siegwart

E* Demonstration

R. Philippsen, B. Jensen, R. Siegwart

PNF Flow Diagram

PNF Demonstration

R. Philippsen, B. Jensen, R. Siegwart

"Fusion and Convolution" Quirks

- low-cost "canals" at obstacle boundaries
- strong tendency to "hug walls"
- related problem at grid boundary

R. Philippsen, B. Jensen, R. Siegwart Toward Online Probabilistic Path Replanning

Distance-Correction Step

R. Philippsen, B. Jensen, R. Siegwart

Conclusion and Outlook

approach

- weighted regions on grid
- sensor-based world model
- trade-off risk vs. distance

future work

- resurrect SLIP/ECKF
- \blacksquare implement new $\mathcal{W} \to \mathcal{C}$ transform
- real-world tests
- reusability

http://estar.sourceforge.net/

R. Philippsen, B. Jensen, R. Siegwart