
Dynamic Distributed BackJumping

Viet Nguyen1, Djamila Sam-Haroud2, and Boi Faltings2

1 Laboratory of Autonomous Systems
2 Laboratory of Artificial Intelligence

Ecole Polytechnique Federale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

{viet.nguyen,jamila.sam,boi.faltings}@epfl.ch

Appears in: Recent Advances in Constraints,
Springer-Verlag LNAI-3419, p71-85, 2005

Abstract. We consider Distributed Constraint Satisfaction Problems (DisCSP)
when control of variables and constraints is distributed among a set of agents.
This paper presents a distributed version of the centralized BackJumping algo-
rithm, called the Dynamic Distributed BackJumping - DDBJ algorithm. The ad-
vantage is twofold: DDBJ inherits the strength of synchronous algorithms that
enables it to easily combine with a powerful dynamic ordering of variables and
values, and still it maintains some level of autonomy for the agents. Experimental
results show that DDBJ outperforms the DiDB and AFC algorithms by a fac-
tor of one to two orders of magnitude on hard instances of randomly generated
DisCSPs.

Keywords: Search, Constraint Satisfaction, Distributed Systems, Multi-Agent Systems.

1 Introduction

Constraint Satisfaction has been used as a powerful paradigm for general problem solv-
ing. It consists of finding values for problem variables in some particular domains sub-
ject to constraints that specify possible consistent combinations. Solving a CSP is to
find a set of variable assignments that satisfies all the constraints.

A distributed CSP (DisCSP) is a CSP where variables and constraints are distributed
among a network of automated agents. Each agent may hold one or more variables
which are connected by local constraints, and also connected by inter-constraints to
variables of other agents. Many application problems in Multi-Agent Systems (MAS)
can be formulated and solved using a DisCSP framework ([1]), such as distributed re-
source allocation problems, distributed scheduling problems or multi-agent truth main-
tenance tasks.

In solving DisCSPs, agents exchange messages about the variable assignments and
conflicts of constraints. Several distributed search algorithms have been proposed for
solving DisCSPs. They can be divided into two main groups: asynchronous and syn-
chronous algorithms. The former are algorithms in which the process of assigning vari-
able values and exchanging messages is performed asynchronously between the agents,
whereas in the latter group, agents assign values to variables in a synchronous, sequen-
tial way. Each group has different strengths and drawbacks.



The main contribution of this paper is to introduce the first distributed version of
the centralized algorithm BackJumping ([2]), called Dynamic Distributed BackJumping.
The advantage is twofold: DDBJ inherits the strength of synchronous algorithms that
enables it to easily combine with a powerful dynamic ordering of variables and values,
and still it maintains some level of autonomy for the agents. Experimental results show
that DDBJ outperforms some existing algorithms.

2 Related Work

One of the pioneer algorithms is the Asynchronous BackTracking - ABT algorithm ([3,
4]). It is a distributed, asynchronous version of a generic backtracking algorithm. Agents
communicate by two types of messages: OK? messages to distribute the current value,
and Nogood messages to declare new constraints. The simplicity and computational
concurrency are its strengths. ABT needs polynomial space for storing nogoods to be
complete ([3]). The algorithm requires the assumption that messages are received in the
order in which they were sent for completeness, otherwise all nogoods have to be stored
and it would suffer from exponential space complexity. One way to work around is to
attach a sequence number for each message, so the order of messages can be determined
at the receiving end.

A later version of ABT which makes use of dynamic ordering of agents, called
the Asynchronous Weak-Commitment Search - AWC, is given in [4]. This algorithm is
shown to be faster than ABT, but the main drawback is that it requires exponential space
for completeness.

The Distributed Dynamic Backtracking - DiDB algorithm is another distributed,
asynchronous algorithm which is inspired by its centralized version Dynamic Back-
tracking ([5]), presented in [6, 7]. The algorithm transforms the constraint network into
a directed acyclic graph and performs dynamic jumps over the set of conflicting agents.
This algorithm requires the assumption that messages are received in the order in which
they were sent and polynomial space for nogood stores. However, the main weakness
is the problem of message duplication. Due to asynchrony, an agent may keep asking
values of its parents, and the parents keep sending reply messages. This process prop-
agates down the whole graph, creates many duplicated messages. Experimental results
show that the number of messages increases dramatically.

Another distributed asynchronous algorithm is given lately in [8], the Asynchronous
Aggregation Search - AAS. This algorithm works in a similar way as ABT, except that
consistent values of the partial solution are also included in OK messages. This mech-
anism helps in reducing number of backtracks. For problems with large variable do-
mains, including consistent values produces long messages. Thus, AAS is more practical
for problems with small variable domains.

A recently proposed algorithm, called the Asynchronous Forward Checking - AFC
([9]), belongs to the group of distributed synchronous algorithms. It is a generic back-
tracking algorithm combined with a look ahead heuristic by means of asynchronous
forward checking messages. Agents assign their values for variables sequentially by
having one current partial assignment shared among all agents. When a dead end is de-
tected, the algorithm backtracks sequentially following the reverse ordering. A strength



of this algorithm is in its algorithmic simplicity and good computational efficiency, in-
herited from centralized algorithms. It has been shown to provide better performance,
in terms of number of messages and constraint checks, than asynchronous algorithms
ABT and DiDB ([9]). The main drawback of AFC is that it does not exploit concurrency:
at any time, there is only either one AFC or one BT message that is exchanged between
the agents, results in long running time compared to asynchronous algorithms.

3 Preliminaries

Classically, Constraint Satisfaction Problems (CSP) have been defined for problems in
centralized architectures. A finite CSP is defined by a triple (X ,D, C), where

– X = {x1, ..., xn} is the set of n variables.
– D = {D1, ..., Dn} is the set of n finite, discrete domains of variables x1, ..., xn,

respectively.
– C = {C1, ..., Ck} is the set of k constraints on the variables. These constraints give

the allowed values that the variables can simultaneously take. var(Ci) is the set of
variables that are constrained by Ci.

A solution to a CSP is an assignment of values taken from the domains to all vari-
ables such that all the constraints are satisfied. Constraint satisfaction is NP-complete
in general, and it is typically solved by a tree-search procedure with backtracking.

A distributed CSP (DisCSP) is a CSP in which the variables and constraints are
distributed among a network of automated agents. Formally, a finite DisCSP is defined
by a 5-tuple (X ,D, C,A, φ), where X , D and C are the same as in centralized CSP, and

– A = {A1, ..., Ap} is the set of p agents
– φ : X → A is a function that maps variables to agents

Solving a DisCSP is to find an assignment of values to variables by the collective and
coordinated action of automated agents. A solution to a DisCSP is a compound assign-
ment of values to all variables such that all constraints are satisfied.

In DisCSP, agents communicate with each other by sending messages. We make the
following assumptions for the communication model similar to those proposed in [4]:

1. An agent can send messages to other agents iff the agent knows the addresses of
the agents.

2. The delay in delivering a message is finite but random; there is no message lost.

The second assumption has been partially relaxed from the original one in [4] that also
assumes that messages are received in the order in which they were sent. Some algo-
rithms (ABT, DiDB) require this assumption to be complete. Furthermore, for simplicity
and without loss of generality, we assume that:

1. φ is a one-to-one function; it means that each agent holds only one variable; and
there are no intra-agent constraints. (In DisCSP, it is assumed that intra-agent
variables/constraints can be solved efficiently by some centralized algorithm. Dis-
tributed algorithms are to focus on the cooperative solving techniques between
distributed solvers (e.g. agents).)



2. C are binary constraints so that var(Ci) = 2, and every constraint is known by both
agents involved in the constraint.

By these assumptions, the constraint network is simplified to a constraint graph where
agents represent graph nodes and constraints represent graph edges.

4 The Algorithm DDBJ

The Dynamic Distributed BackJumping - DDBJ, is a complete, distributed, semi-
asynchronous version of a graph-based backjumping algorithm which was previously
introduced in centralized CSP ([2]). The algorithm combines the concurrency of an
asynchronous dynamic backjumping algorithm and the computational efficiency of the
synchronous AFC algorithm ([9]), coupled with the heuristics of dynamic value and
variable ordering.

The Distributed BackJumping procedure

Agents perform value assignments in two phases:

– Advancing forward phase: which occurs when a new assignment tuple is added to
the current partial solution.

– Backjumping (backward) phase: which occurs when an agent encounters a conflict.
The process is “jumped back” to the culprit agent.

An agent is either in a forward phase or a backward phase. Algorithmically, the forward
phase is performed sequentially: the assigning agent sends an OK to the next agent
and FC messages to unassigned connected agents (similarly to AFC algorithm). If an
agent detects a conflict when receiving some OK/FC message, it performs the backward
phase asynchronously to backjump to the culprit agent, and also sends NG messages
to unassigned agents. At any time, there can be several culprit agents detected and
thus several backjumps are performed simultaneously. The culprit agents will change
their values, hence the current partial solution (CPS), and perform the forward phase,
without synchronizing with other agents nor waiting for other agents to switch phases.
Consequently, at any time, agents are performing the forward and backward phases
simultaneously in parallel without any synchronous control.

An example of algorithm execution is illustrated in Fig.1. At time t1, agent A3
sends one OK message to A4 (solid lines) and FC messages to connected agents (dotted
lines). At a later time t2, A11 finds a conflict and backjumps to A3 by a BT message
(dashed lines) and sends NG messages to others (not shown). At the same time, A3’s
assignment has already propagated down to A6 and A7, and get backjumped at A6 to
A4 and backtracked at A7 to A5. However, the asynchronous executions at A6 and A7
and the consequent ones will soon be overwritten by the new assignment at A3. These
execution flows are carried out simultaneously.

In AFC, backtracking is performed sequentially (or synchronously) from the detect-
ing agent to the culprit. At any time, there is only either one OK or one BTmessage being
sent. In DDBJ, any agent who receives an OK or FC message can initiate a backjump.



asynchronous
execution
threadsA5

A7 A11

A1

A2

A3

A4

A6

FC msg
BT msg

OK msg

time t1

time t2

Fig. 1. An example of the DDBJ algorithm execution

Thus, there can be several OK and BT messages exchanged simultaneously, generat-
ing multiple asynchronous execution threads. However, there is only one OK message
which may potentially lead to a solution (the most updated one or equivalently the one
on the highest level of the search tree). The other OK messages will continue to propa-
gate and create the assignment chains down the search tree, until only when the NG or
newer messages arrive. Usually, it takes some cycles to stop these obsolete processes,
depending on the size of the network, the connectivity density, the message delivering
delay, etc.

The DDBJ algorithm is executed on every agent. Each maintains current
value assignments of other agents in an AgentV iew ([3]). We also adopt the
AgentV iew.consistent from [6] to represent whether the CPS it holds is consistent.
To determine which OK message is the most updated one and to discard obsolete mes-
sages, we introduce for each agent a time flag called T imeStamp which is incremented
by 1 when the agent changes its value. When sending OK/FC messages, an agent in-
cludes its T imeStamp with its assignment. The receiving agent checks the attached
T imeStamps and updates its context only if the message is valid. In the example above,
by the T imeStamps, A4’s new assignment (due to A6’s backjump) will overwrite ex-
ecutions from A5 (due to A7’s backtrack); however the new A3’s assignment (due to
A11’s backjump) will eventually overwrite all executions below it.

The Dynamic Value and Variable Ordering Heuristics

The DDBJ algorithm uses dynamic value and variable ordering heuristics. Each agent
keeps a potential conflict counter list of its domain values, and a potential conflict
counter list of other agents (variables). An agent chooses the value which has the low-
est counter value to assigns its variable, and sends the OK message (which contains the
partial solution) to the agent (variable) which has the highest counter value (and FC
messages to other linked agents). If there is a tie, the agent can use the chronological
order. At start, all the counter values are equally zeros.



1 52 43 6 7
A1 A1

A2 A2
A1
A2

A1
A2

A5 domain (7)

A3 A3
A4 A4 A4

A1 conflicts
A2 conflicts
A3 conflicts
A4 conflicts

PC
PC

BT
A3

Fig. 2. An example of the heuristics: Agent A5 comes to a dead end, sends a BT message to
culprit agent A4, sends “potential conflict” - PC messages to A1, A2

When a dead end is detected by an agent, the dead end discovering (DED) agent
performs updating its priority lists in two steps. In the first step, it decreases the counter
of the culprit agent (the agent whose value causes the dead end), then it sends the
BT message to the culprit agent. The culprit agent, upon receiving the BT message,
increases the counter of the sender (the DED agent) and increases the counter of its
value that causes the backtrack, then it follows the backjumping procedure. In second
step, the DED agent determines its “potential conflicting agents” (PC agents). A PC
agent is the first agent whose value conflicts with a value in the domain of the
DED agent. The DED agent increases the counters of the PC agents, sends a “potential
conflict” - PC message to the PC agents. The PC agents, after receiving the PCmessage,
increase the counters of their values (that cause the dead end), increase the counter of
the DED agent. The idea here is to give more priority to the agents at higher top level of
the search tree to change their values. The heuristics of dynamic ordering of value and
variable would intuitively help to avoid thrashing on values selected by the very first
agents and improve the ordering of agents.

An example is shown in Fig.2 to illustrate how the heuristics work. Agent A5 has 7
values in its domain. The value of agent A1 conflicts with the values (value id) 1, 2, 4, 5
of agent A5, thus these values are removed from the available values of agent A5. The
value of agent A2 conflicts with the values 2, 3, 4, 6. The value of agent A3 conflicts
with the values 1, 3, 4. The value of agent A4 conflicts with the values 4, 6, 7 where
the value 7 is the last available value in the domain of agent A5. Thus A4 is the culprit
agent with respect to agent A5. Following the first step, agent A5 increases the counter
of agent A4, sends a BT to agent A4. Agent A4, upon receiving the BT, increases the
counter of agent A5 and increases the counter of its corresponding value.

In the second step, agent A5 determines that A1 and A2 are the PC agents, as they
are first agents who remove the values 1, 2, 3, 4, 5, 6 from its domain. Agent A3 is not a
PC agent, since its value conflicts with the values 1, 3, 4 of A5 that have been removed
previously by A1, A2. Thus, agent A5 increases the counters of A1 and A2, sends PC
messages to A1 and A2. A1 and A2, when receive the PC message, increase the counter
of A5 and also the counter of their corresponding value.

Detailed Algorithm Description

The DDBJ algorithm uses 8 types of messages as follows:



1. SUCCESS: a termination message which is broadcasted to all agents, by the last
assigned agent, when a solution has been found.

2. FAILURE: a termination message which is broadcasted to all agents, by the first
agent, when it has determined the problem has no solution.

3. ERROR: a termination message which is broadcasted to all agents when the algo-
rithm encounters error (e.g. exceeded limit of time/resources).

4. OK: a message which contains the current partial solution (CPS) composed of a
list of (variable, value) tuples and their associate T imeStamp’s. This message is
sent to the next agent according to the sending agent’s decision of ordering.

5. FC: a message which contains a copy of OK message. This message is sent by the
assigning agent to the linked agents that have not been assigned, according to its
AgentV iew.

6. NG: a message which contains a nogood partial solution. It is sent to the linked
agents that have not been assigned, according to its AgentV iew.

7. BT: a message which contains a nogood partial solution. It is sent back to the culprit
agent (the last agent in the nogood partial solution).

8. PC: a message which contains a nogood partial solution. It is sent to potential con-
flicting agents determined by the agent when a conflict occurs.

The DDBJ algorithm is executed simultaneously on all agents in parallel. An ap-
propriate function is called depending on the type of the received message. At start, an
empty OK message is sent to the first agent for initialization.

Upon receiving an OK message, function receiveOK() is executed. It first checks
if the message is valid (line 1); otherwise, it is older than, or equally timely to, the
stored T imeStamps 3 and discarded. Next, T imeStamps get updated (line 2). It then
checks whether the message’s partial solution (MPS) contains the previously deter-
mined nogood (meaning current AgentV iew.consistent = false and the MPS con-
tains AgentV iew). If it is the case, the agent simply does nothing and returns (line
3,4). Otherwise, it updates its context by the MPS (line 6). If the update succeeds,
meaning its consistent domain of values is not empty, the agent assigns the value (line
8). Otherwise, it backtracks to the last assigned agent (line 10).

Function receiveFC() is called when an FC message is received. The agent checks
and discards obsolete message (line 1), otherwise updates its T imeStamps (line 2). It
then checks whether the message does not contain the previously determined nogood.
If it is the case, it resets the consistency state to true (line 3,4). Whenever the consis-
tency state is true (line 5), the agent updates its context (line 6). If the update does
not succeed, it does the following: sending NG messages to linked agents that are not
assigned, sending PC messages to the determined PCAs, updating its memory of PCAs
and backjumping to the culprit agent.

When receiving an NG message, the function receiveNG() checks to see if
AgentV iew contains the MPS. If it is the case, it removes last one or more tuples
in its AgentV iew to be the same as the received nogood, restores the values accord-
ingly (which are associate with those tuples) (line 2) and resets the consistency state
(line 3). Otherwise, if the message is newer than its AgentV iew, the agent updates

3 the latter happens when the agent has already received an NG message which contains the same
time flag



procedure receiveOK()
1: if Msg is newer than AgentV iew then
2: update T imeStamps
3: if previously determined nogood then
4: return
5: set AgentV iew.consistent = true

6: updateDomain(MPS)
7: if success then
8: assignVal()
9: else

10: backJump(previous)
end
procedure receiveFC()
1: if Msg is newer than AgentV iew then
2: update T imeStamps
3: if not previously determined nogood then
4: set AgentV iew.consistent = true

5: if AgentV iew.consistent then
6: updateDomain(MPS)
7: if not success then
8: update PCA
9: send NG to unassigned agents; PC to agents in PCA

10: backJump(culprit)
end
procedure receiveNG()
1: if AgentV iew orderly contains Msg then
2: restoreDom()
3: set AgentV iew.consistent = false

4: else if Msg is newer than AgentV iew then
5: set AgentV iew.consistent = false

6: update T imeStamps
7: updateDomain(MPS-last)
8: if not success then
9: update PCA

10: send NG to unassigned agents; PC to agents in PCA
11: backJump(culprit)
12: if self is assigned then
13: reset to unassigned
end

its context (line 5,6,7). If the update does not succeed, it functions similarly to func-
tion receiveFC(). In both cases, if the agent is an assigned agent, it has to reset itself
unassigned (line 11,12).

Function receivePC() simply updates the agent’s memory of PCAs and value pri-
ority. Function receiveBT(), when a BT message is received, first updates the memory
of PCAs and value priority (line 1,2). It then finds the next available value, by calling
function assignVal(). Note that it has to check if the message is still valid (meaning that



procedure receivePC()
1: update value priority / PCA

end
procedure receiveBT()
1: update value priority / PCA
2: if self is assigned then
3: if my AgentV iew is NOT newer Msg then
4: assignVal()

end
procedure assignVal()
1: findNextVal()
2: if found a consistent value then
3: Increase T imeStamp

4: if self is last agent then
5: broadcast SUCCESS to all agents
6: else
7: send OK to next agent; FC to connected agents
8: else
9: backJump(previous)

end
procedure backJump(AgentIndex)
1: if self is first agent then
2: broadcast FAILURE to all agents
3: else
4: set AgentV iew.consistent = false

5: reset to unassigned
6: send BT to agent AgentIndex

7: update PCA
end

its variable is assigned and the message is not too old), (line 3,4,5), since several BT
messages can be sent simultaneously to the agent, and some have already arrived and
been processed.

Function assignVal() tries to find a next consistent value (line 1), forwards
the CPS to the next agent (line 7), otherwise it backtracks (line 9). Function
backJump(AgentIndex) performs the backjumping by resetting the agent context and
sending BT message to agent AgentIndex. Function updateDomain(MPS) simply up-
dates its value domain, AgentV iew with the input MPS. As soon as it finds the domain
empty, the function returns the detected nogood.

5 Soundness, Completeness and Termination

The argument for soundness is close to the one given in [9]. The fact that agents only
forward consistent assignments in OK messages at only one place in function assign-
Val(), line 7, implies that the receiving agents receive only consistent assignments. A



solution is reported by the last agent only in function assignVal() at line 5. At this point,
all the agents have assigned their variables, and the assignments are consistent. Thus
the algorithm is sound.

For completeness, we need to show that DDBJ is able to produce all solutions and
terminate. The algorithm only backtracks, by sending BT messages, in function back-
Jump(), which implements the graph-based backjumping. It has been shown in [10] that
graph-based backjumping only makes safe jumps. In other words, the algorithm back-
jumps to the culprit variable, and this jump does not lead to missing any solution. Sim-
ilarly in DDBJ, multiple safe jumps may be performed at the same time simultaneously
which are caused by different culprits detected by different agents. The re-assignments
of the culprit agents then happen simultaneously. However, the one with the highest
level in the search hierarchy tree will eventually replace all others. Thus the algorithm
performs an exhaustive search and is able to produce all solutions. Hence, it is complete.

In each backtrack step, there is at least one value of a variable that is removed (line
5 in backJump()). The fact that the domains of variables are finite implies finite number
of backtracks, or BT messages, until FAILURE messages are broadcasted (line 2 in
backJump()). Similarly, each OK message (only sent in assignVal(), line 7) increases the
number of assigned variables by 1, until the last variable where SUCCESS messages
are broadcasted. Therefore, the algorithm terminates.

In DDBJ, agents do not have to store nogoods. An agent has to keep only the cur-
rent AgentV iew and the associated T imeStamp’s, which have at most n elements. In
addition, an agent also needs to maintain two priority lists of its value domain and other
agents. Thus, the algorithm’s spatial complexity is linear.

6 Experimental Results

This section gives an experimental evaluation of our algorithm DDBJ in comparison
with two other well known algorithms, the distributed asynchronous algorithm - DiDB
([7]) and the distributed synchronous algorithm - AFC ([9]). DDBJ is tested in 2 ver-
sions: one version is without the dynamic ordering heuristics, called DBJ, to measure
the performance of the semi-asynchronous backjumping procedure itself, and the other
version is the full DDBJ algorithm.

The algorithms are tested on distributed binary CSPs which are randomly generated
using the problem generator JavaCSP ([11]). The problems are generated based on 4
setting parameters:

– v - The number of variables (or number of agents),
– d - The number of values in the domain of each variable (domain size),
– c - The constraint density (which reflects the number of constraints), and
– t - The constraint tightness (which refers to the number of value pairs which are

disallowed by the constraint).

These settings are commonly used in experimental evaluation of CSP algorithms ([12,
13, 9]). The problem generator has the ability to generate only feasible problem in-
stances (having solutions). Thus, it is advantage to generate only feasible problem in-
stances for problems in transition phase which are most hardest to solve and so it is



easy to highlight differences in algorithm performance ([4]). Note that the problem in-
stances are generated with the setting parameters applied globally, not by interleaving
of independent subproblems.

We recall the distinction between Distributed Systems and Distributed Computing
([4]). The latter is belong to the research field of High Performance Computing, where
the problem is to divide/distribute, in a efficient way, some computation load onto sev-
eral connected (or distributed) computing machines. The efficiency is then defined as
speedup/N where N is the number of distributed machines ([14]).

In this work, we are concerning the former case, Distributed Systems, where the
problems in question have their distributed characteristics in nature: they are spread
over a number of distributed agents. As in [4, 7, 9, 6], we use the following measures as
the criteria for evaluation:

– Number of cycles (or running time): to estimate the algorithm concurrency / asyn-
chrony, as used in [3].

– Number of messages: to estimate the overhead of the algorithm affecting on the
distributed environment, where the cost of sending messages is usually considered
being more expensive than local computation of agents ([9]).

– Number of constraint checks: to evaluate computational efforts done locally.
– Number of value assignments: to represent the cost of value changes committed

that may be high in some applications.

The first two measures are the most important factors in measuring the efficiency
of distributed algorithms. The number of cycles indicates the running time of an algo-
rithm. More importantly, it shows how much parallelism is exploited in asynchronous
algorithms compared to synchronous ones. The notion of “concurrent checks” is dis-
cussed in [15]. In this work, we make an assumption that the constraints are simple
so that an agent is able to process incoming messages, perform necessary constraint
checks and send out messages in one clock cycle ([3]). Thus, the ratio “N.Constraint
checks/N.Cycles” gives a good estimate of the average number of concurrent constraint
checks. As argued in [16], synchronous distributed algorithms usually have better ef-
ficiency than asynchronous ones (in terms of overheads, redundant efforts, etc.), but
asynchronous algorithms can exploit concurrency, thus resulting in better running time
(or less number of running cycles).

The messages are set up to be delivered to destination not necessarily in the order in
which they were sent, except for the algorithm DiDB where it requires the messages are
delivered in order. The number of messages is an important measure for DisCSP algo-
rithms, since in distributed environment, sending messages to other distributed agents
is considered expensive ([4]).

To simulate a distributed environment and asynchronous execution, we use a dis-
crete event simulator. We have a global discrete clock counting in cycles to simulate a
real time clock. At each cycle, all agents read the incoming messages, process the com-
putation and send out messages to other agents. If there is no incoming message, an
agent simply sits idle. We recall the assumption that an agent is able to process incom-
ing messages, perform necessary constraint checks and send out messages in one clock
cycle. The algorithm is executed simultaneously in parallel on all agents. All agents
terminate when an termination message is broadcasted and the algorithm finishes. The



0 0.2 0.4 0.6 0.8 1
101

102

103

104

105

106
N. Cycles

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
102

103

104

105

106

107
N. Cons Checks

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
101

102

103

104

105

106

107
N. Messages

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
101

102

103

104

105

106

107
N. Assignments

tightness

AFC
DiDB
DBJ
DDBJ

Fig. 3. Results (in log10 scale) for N.vars v=15, domain d=15, density c=0.5. At transition phase
when tightness t = 0.5 − 0.7, DiDB solved 50% − 80%, AFC, DBJ and DDBJ solved 100% of
100 generated instances

algorithm’s running time is counted as the number of global clock cycles. Furthermore,
to simulate the real distributed environment as close as possible, we set up the link
channels between agents such that the delivery time is randomly generated between 1
and the total number of agents, which best reflects the effect of the size of the con-
straint network. Because the concurrency of computation of asynchronous algorithms
is difficult to see from other measurements (number of constraint checks, number of
messages), this setting helps to differentiate asynchronous and synchronous (or sequen-
tial) execution schema. The same argument for comparing algorithms is also pointed
out in [15].

Because of limited space, the results of 2 test sets are presented. The first test set
includes problems with the number of variables n = 15, the variable domain d = 15,
the constraint density probability c = 0.5 and the constraint tightness varying from 0.1
to 0.9 in 0.1 steps. The results in log10 scale are shown in Figure 3. Each plot point
is the average of results taken from 100 randomly generated instances. An algorithm is
stopped when the number of running cycle reaches a limit of 10, 000, 000 cycles or the
number of messages sent in one cycle exceeds 100, 000.



In term of running time, DBJ is about 2-4 times faster than AFC at transition phase.
The difference indicates the concurrency effect of the asynchronous backward phase
of DBJ. DiDB, because of its fully asynchronous nature, is better than DBJ and AFC.
However, when combined with the dynamic ordering heuristics, DDBJ is the best algo-
rithm among the four for most cases.

On number of messages, DDBJ is better than the other three algorithms by a factor
of one order approximately. The only drawback is that the message OK of DDBJ (and
AFC, DBJ) is longer than that of DiDB. However, since the number of elements in
a message is at most equal to the number of variables n and each element contains
agent id, value id and its associate T imestamp, that all can be represented by 3 integer
numbers, the size of a message is not more than 3n integer numbers.

In term of computational performance, DDBJ outperforms both algorithms DiDB
and AFC by a factor of 5 to 100 on hard instances, where DBJ comes next. This can be
explained by the fact that by combining good value/variable ordering heuristics and ex-
ploiting concurrency, it also helps to increase the algorithm’s computational efficiency
and reduces the number of messages. Note that the synchronous algorithm AFC always
performs better than the fully asynchronous algorithm DiDB, that it agrees with the
result obtained in [9].

In more details, at transition phase where problems are hardest to solve (constraint
tightness is between 0.5 and 0.7), DiDB is only able to solve 50% − 80% of the gen-
erated problem instances: we stop the algorithm when the number of messages sent in
one cycle exceeds the limit of 100, 000 messages, since most of the time and memory
resources are consumed by processing duplicated messages. This message duplication
problem arises significantly when the messages are delivered with some random delay.
The other three algorithms are able to solve all the problems within the limits of running
cycles and messages.

In the second test set, we evaluate the algorithms by 4 feasible, high dimension
problems, with the number of variables equals 20, 30, 30 and 40, respectively. The
constraint tightness is set to a value close to 0.5 so that the problems are in the transi-
tion phase. The limit of number of cycles is now set to 100, 000, 000. We exclude DiDB
because of its limited capacity of solving high dimension problems: the number of mes-
sages explodes exponentially so that after a few hundred running cycles, the number of
messages soon exceeds the limit of available resource. The results in log10 scale are
shown in Figure 4. The percentages show the numbers of problems solved by the algo-
rithms. Each subgraph shows the median value of the results of 50 generated instances.
The reason of taking the median value instead of the mean value is that in the transition
phase, the variance of the results is too high, thus the median value indicates better the
result average.

It is clear that the semi-asynchronous algorithm DBJ always performs better than
AFC by a factor of 2 or more. It shows the effect of the asynchronous backjumping
phase on the algorithm efficiency. DDBJ outperforms both the others by a factor of
one to two orders for all measures. On the number of problems solved, DDBJ is able to
solve all the problem instances for the 4 cases within the time limit, where the other two
algorithms can not. This measure again confirms the high efficiency of the heuristics
used in DDBJ. For the last two problems where the numbers of variables are 30 and 40,



DDBJ DBJ AFC 
10^4

10^5

10^6

10^7

10^8
v20 − d15 − c0.5 − t0.45

100%

100% 98%

DDBJ DBJ AFC 
10^4

10^5

10^6

10^7

10^8
v30 − d10 − c0.2 − t0.55

100%

90%
84%

DDBJ DBJ AFC 
10^4

10^5

10^6

10^7

10^8

10^9
v30 − d10 − c0.3 − t0.4

100%

78%
54%

DDBJ DBJ AFC 
10^4

10^5

10^6

10^7

10^8

10^9
v40 − d15 − c0.3 − t0.3

100%

52%
40%

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Fig. 4. Results (in log10 scale) of feasible, high dimension problems. The percentages represent
the number of problems solved within a time limit.
a) N.vars v=20, domain d=15, density c=0.5, tightness t=0.45
b) N.vars v=30, domain d=10, density c=0.2, tightness t=0.55
c) N.vars v=30, domain d=10, density c=0.3, tightness t=0.4
d) N.vars v=40, domain d=15, density c=0.2, tightness t=0.4

AFC is able to solve only 54% and 40% of the instances. The performance measures
of AFC are at least one order behind those of DDBJ. These factors will be larger if we
increase the running time limit for AFC to solve more instances.

One can also notice that as the number of variables increases, the performance dif-
ference between DDBJ and the other algorithms increases. When v=15, DDBJ is faster
by about one order of magnitude, when v=30,40, DDBJ outperforms the others by about
two orders of magnitude on number of running cycles and number of messages.

7 Conclusion

A new complete, distributed, semi-asynchronous algorithm, DDBJ, is presented. The
algorithm adopts a sequentially assigning procedure, an asynchronous forward check-
ing scheme in its advancing phase and an asynchronous graph-based safe-backjumping



scheme in its backjumping phase. The sequentiality of variable assignment enables
DDBJ to integrate the powerful heuristics of dynamic value and variable ordering and
still easily to control the algorithm completeness. Experimental results show that the
DDBJ algorithm outperforms the DiDB and the AFC algorithms by a factor of one to
two orders of magnitude on hard instances of randomly generated DisCSPs, both on
concurrent running time, number of messages and on other measures of number of con-
straint checks, number of variable assignments.

Acknowledgments
We would like to thank Prof. Amnon Meisels for his visiting presentation on the AFC
algorithm. We also thank Arnold Maestre, Dr. Christian Bessière for their helpful ex-
plication of the DiDB algorithm. Many thanks to Dr. Bart Craenen for his problem
generator JavaCSP. This work was performed at the Artificial Intelligence Laboratory,
Ecole Polytechnique Fédérale de Lausanne and was sponsored by project COCONUT
under contract number IST-2000-26063.

References
1. Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraint Satisfaction: A Review. In:

Proceedings of Autonomous Agents and Multi-Agent Systems. (2000)
2. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning and

cutset decomposition. Artificial Intelligence 41(3) (1990) 273–312
3. Yokoo, M., Durfee, E., Ishida, T.: Distributed constraint satisfaction for formalizing dis-

tributed problem solving. In: Proceedings DCS. (1992)
4. Yokoo, M.: Distributed Constraint Satisfaction. Springer-Verlag (2001)
5. Ginsberg, M.: Dynamic Backtracking. Journal of Artificial Intelligence Research 1 (1993)

25–46
6. Hamadi, Y.: Interleaved backtracking in distributed constraint networks. International Jour-

nal on Artificial Intelligence Tools 11 (2002) 167–188
7. Bessière, C., Maestre, A., Meseguer, P.: Distributed Dynamic Backtracking. In: Proceedings

of the IJCAI’01 workshop on Distributed Constraint Reasoning. (2001)
8. Silaghi, M., Sam-Haroud, D., Faltings, B.: Asynchronous Search with Aggregations. In:

Proceedings AAAI’00. (2000)
9. Meisels, A., Zivan, R.: Asynchronous Forward-checking on DisCSPs. In: Proceedings of

the Workshop on Distributed Constraints (DCR-03), Acapulco, August 2003. (2003)
10. Dechter, R., Frost, D.: Backtracking algorithms for constraint satisfaction problems - a tuto-

rial survey. Technical report, University of California, Irvine (1998)
11. Craenen, B.: JavaCsp package. http://www.xs4all.nl/˜bcraenen/JavaCsp/ (2003)
12. Prosser, P.: Binary constraint satisfaction problems: some are harder than others. In: Pro-

ceedings of the 11th European Conference on Artificial Intelligence - ECAI’94. (1994)
13. Bessiere, C.: Random Uniform CSP Generators.

http://www.xs4all.nl/˜bessiere/generator.html (1996)
14. Dowd, K., Severance, C.: High Performance Computing. Second edn. O’Reilly & Associates

(1998)
15. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of distributed

constraints processing algorithms. In: Proceedings of the Workshop on Distributed Con-
straint Reasoning, in AAMAS-2002. (2002)

16. Barbosa, V.C.: An Introduction to Distributed Algorithms. The MIT Press (1996)


