
A Real-Time Software Framework for Indoor Navigation

Frederic Pont and Roland Siegwart
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Autonomous Systems Laboratory (ASL)
CH-1015 Lausanne, Switzerland

{frederic.pont, roland.siegwart}@epfl.ch

Abstract— We introduce an initial implementation of a real-
time component-based software framework for autonomous
mobile robots. We argue that real-world autonomous mobile
robots shall be controlled by self-contained software systems
able to meet hard timing constraints. The proposed solution
empowers specialized roboticists to contribute software compo-
nents that can be integrated into complete real-time systems.
The framework also facilitates robotic software components
reuse and portability across hardware platforms. Based on an
indoor navigation case study we evaluate the advantages and the
limitations of the framework in terms of ease of use, modularity
and real-time capabilities.

Index Terms— Real-time, software framework, component-
based software, indoor navigation.

I. INTRODUCTION

With the increasing complexity of the missions to be
performed by autonomous mobile robots (e.g. space explo-
ration), a growing number of disciplines become involved
in the conception of a complete system, from mechanical
and electronics engineering, to computer and even cognitive
sciences. This complexity results in an augmenting amount of
software to be produced to control robots, with contributions
from a number of specialized roboticists pursuing different
goals and with varying software engineering skills.

Architectures for autonomous robots have been studied
for many years, describing how software systems could be
organized [1], [2]. Nowadays, a hybrid solution combining
reactive behaviors with limited knowledge of the world and
higher level reasoning is widely accepted [3]–[5]. However,
there is no standardized way of implementing this archi-
tecture to build a complete software system. As a result,
software systems for autonomous robots are usually written
from scratch and not built from existing pieces of software,
leading to a waste of time and resources. Indeed, students,
researchers and developers spend a large amount of their time
solving software implementation and integration problems
instead of focusing on their specific areas of interest to
make valuable contributions. Therefore, new solutions and
frameworks shall be provided, so that implemented software
components can be reused for building complete systems.
Moreover, components that comply to a specific model can
easily be replaced by other implementations providing similar

services in a system, and performance comparison is made
possible.

The majority of current robotic research platforms rely
on an off-board infrastructure, using autonomous robots
as mobile sensors. If this approach has many advantages
for carrying out efficient research in individual areas like
localization, mapping or path planning, we argue that real-
world autonomous mobile robots must be self-contained
and able to meet timing constraints. Indeed, autonomy and
mobility ask for the ability to perform missions in unknown
environments where supporting infrastructure for off-board
processing is not always available. Moreover, the limited
processing power usually available on embedded systems and
the critical safety requirements that apply to autonomous
mobile robots performing missions in the real-world, for
example when interaction with humans is involved, call for
the ability to meet strict timing constraints.

A. Related Work

Recently, many research projects started tackling these
software reuse, integration and implementation problems.
Among them, PlayerStage [6], [7] is widely used. PlayerStage
provides a network server for robot control over IP. It is
designed for off-board control and is therefore not suitable
for self-contained autonomous systems, but the proposed
hardware abstraction based on devices, drivers and inter-
faces is promising [7]. ORCA-Robotics [8]–[10] promotes
a component-based software engineering [11] approach for
robotics, where software systems can be composed by mixing
existing components with custom in-house developed com-
ponents. A number of open-source components are already
available.

Moreover, a number of other projects [12]–[14] also in-
vestigate how robotic software systems can be improved, and
other focus on how modern software engineering techniques
can be applied to embedded systems in general [15].

B. Approach

In order to be widely accepted by the robotic community,
a solution for coping with system complexity, integration
problems and software reuse for autonomous mobile robots
should at least fulfil the following requirements:

• Embeddable (self-contained) for autonomy

• Modular for independent development of components
• Portable across robotic platforms
• Real-time for reliability and safety
• Open-source for easy component sharing and reuse

All existing solutions and frameworks tackle some of the
above listed requirements, but most lack support for hard
real-time constraints and focus on distributed systems or off-
board processing. As listed above and mentioned in [16],
a robust, reliable and safe software system for autonomous
mobile robots must be able to meet timing constraints.

In this paper, we present an initial implementation of
a real-time component-based software framework for self-
contained autonomous mobile robots. Based on an indoor
navigation case study, we evaluate the advantages and limi-
tations of this framework. The initial implementation focuses
on specialized software components generation and integra-
tion into a complete real-time embedded system. Ultimately,
the framework will also provide real-time constraints check-
ing and adaptation to events such as missed deadlines.

This paper is organized as follows. Section II introduces
the real-time software framework and section III describes
a case study, in which the framework is used to build an
embedded software system for indoor navigation with real-
time constraints. In section IV, we evaluate the advantages
and the limitations of the framework and finally, we outline
future research orientations and present some concluding
remarks in section V.

II. A REAL-TIME SOFTWARE FRAMEWORK

The proposed real-time capable component-based software
framework for autonomous mobile robots is composed of
a real-time operating system (RTOS), a robotic hardware
abstraction layer (rHAL) and a component-based software
system, as represented on figure 1. It targets self-contained,
embedded and real-time software systems for controlling
autonomous mobile robots. It aims at empowering roboticists
to implement specialized software components that can be
used to build complete software systems able to meet timing
constraints. It also provides for easier integration of compo-
nents and takes care of inter-component communication.

The current implementation of the framework is based on
RTAI Linux [17] as its underlying RTOS. RTAI Linux is a
real-time extension to the regular Linux kernel, and has been
selected because it provides the usual advantages of the Linux
operating system, along with hard-real time capabilities. This
choice limits the programming language to C, to allow for
component execution in kernel space when hard real-time is
required, but extensions to other programming languages are
possible for non real-time components. The robotic hardware
abstraction layer is a thin real-time capable software layer
ensuring that higher level software components are portable
across different robotic platforms. The current implementa-
tion supports the tour-guiding robot RoboX [18] and provides

Hardware

Specialized Software Components

Real−Time and Non Real−Time

Component−Based System

Robotic Hardware Abstraction Layer (rHAL)

Real−Time Operating System (RTOS)

Fig. 1. A hard real-time capable component-based software framework
for autonomous mobile robots composed of a real-time operating system
(RTOS), a robotic hardware abstraction layer (rHAL), and a component-
based software system.

standardized abstractions for the following hardware devices:

• analog inputs and outputs
• digital inputs and outputs
• counters (e.g. encoders)
• serial interfaces

The robotic hardware abstraction layer is implemented as a
set of kernel modules for interfacing with real-time compo-
nents, and as a user-space library for non real-time com-
ponents, as represented on figure 2. Both user space library
and kernel space modules provide the exact same interface to
ensure that components accessing hardware through the ab-
straction layer can be executed transparently in user space or
kernel space. For more details about rHAL implementation,
see [19]. The component model selected for the proposed
software framework is GenoM (generator of modules) [20],
[21], which is an environment for description and imple-
mentation of robotic software components that provides the
following:

• Component Model: GenoM defines specific interaction
between components and composition standards.

• Component Model Implementation: GenoM provides
the dedicated set of executable software elements re-
quired to support the execution of software components
that conform to the model.

• Component Architecture: GenoM defines the internal
architecture of software components, and their structure

rHAL Library

User Space

Kernel Space

rHAL Kernel Modules

RT

Fig. 2. Software components accessing RoboX hardware (sensors or
actuators) through the robotic Hardware Abstraction Layer (rHAL). In RTAI
Linux, real-time components (RT) are kernel modules, and therefore access
hardware through rHAL kernel modules. Non real-time components use the
user-space rHAL library, which acts as a proxy for rHAL kernel modules.

Skeleton
RT

Description
Parser

Specialized

Algorithms

Generic code

Makefiles

Component

Generic

Component

Real−time

Non RT

Fig. 3. GenoM-based software component generation: from the component
description file to real-time and non real-time executables.

and functioning.
• Component Generation Tools: GenoM provides a set

of tools for describing software components and for
generating templates.

GenoM-based software component generation is represented
on figure 3. The generation process is based on a component
description file that is parsed by the tool. Then, templates
are generated and can by used by specialized roboticists for
algorithms implementation. Finally, binary components are
generated, in both real-time and non real-time forms, along
with test programs.

III. INDOOR NAVIGATION CASE STUDY

In this section, we present an indoor navigation case
study to describe and evaluate how a complete embedded
and real-time software system for a mobile robot can be
developed using the introduced software framework. For the

software system developed in this case study, the following
requirements have been defined:

1) The complete software system shall be embedded on
the autonomous mobile robot, and all processing must
be carried out on-board and on-line.

2) Localization of the robot shall be performed using both
encoders data and laser range finders.

3) Localization relies on a known map of the environment.
4) Navigation in the environment shall be performed

without bumping into humans or fixed obstacles.
5) For safety reasons, obstacle avoidance shall be per-

formed in a periodic hard real-time task.
6) Requests from a human operator will be in the form

of: go to x, y, θ. No path planning is required.
In the remainder of this section, we describe the software
layers and components that have been used to build the
navigation system represented on figure 4.

A. RTOS and rHAL

As introduced in section II, the current implementation
of the software framework relies on RTAI Linux, and on a
robotic hardware abstraction layer that provides for hardware
(sensors and actuators) access through well defined interfaces
(see figure 2). For this case study, the robot RoboX has been
selected. A PowerPC 750 clocked at 400 MHz is included,
as well as two differentially driven wheels, bumpers and two
laser range finders.

B. Software Components

The indoor navigation software system is made of a mix
of reused and newly developed components. Existing compo-
nents have been developed at LAAS (Laboratory for Analysis
and Architecture of Systems) in Toulouse, France, [22], and
have been used for many years on LAAS robots. New
software components have been developed in collaboration
with specialized roboticists from the Autonomous System
Lab at EPFL. The complete system with data flow between
components is shown on figure 4.

1) SICK Laser Range Finder (real-time): The SICK com-
ponent is responsible for managing the two SICK laser range
finders placed back to back on RoboX. To ensure no data
loss on the two high speed serial interfaces RS422 and to
meet the hard real-time obstacle avoidance requirement, this
component is a periodic real-time task.

• Input: Data from rHAL serial interfaces.
• Output: Scans in polar and cartesian coordinates.
2) Obstacle Avoidance (real-time): The obstacle avoid-

ance component is based on nearness diagram navigation
(ND) [23], which performs a high level information ex-
traction and interpretation of the environment, producing
appropriate linear angular speeds. To ensure safe indoor nav-
igation in a human crowded environment, this component is
a periodic real-time task. Note that the real-time requirement

Estimation

Configuration

Estimation

Scan in Polar

and Cartesian

Coordinates

Linear and

Angular Speeds

rHAL Counter

Interface (Encoders)

rHAL Serial

Interface (RS422)

rHAL Analog

Configuration

I/O Interface

Component−Based System

Hardware

Map of the

Environment

RT
RT

RT

LOCALIZATION

OBSTACLE

Robotic Hardware Abstraction Layer (rHAL) for RoboX

Real−Time Operating System: PPC Linux RTAI

SPEED

AVOIDANCE

SICK LASER

CONTROL

ODOMETRY RANGE FINDER

RT

Fig. 4. Real-time software system for indoor navigation. Software components that are executed as real-time tasks are mentioned with RT. Arrows represent
data flow between components.

on this component implies that all components producing
data used by it must also be hard real-time. In the case
study, the suggested linear and angular speed produced by
this component are read by the speed control component.

• Input: Scan in cartesian coordinates from the SICK
component.

• Output: Suggested linear and angular speeds.

3) Speed Control (real-time): This component is respon-
sible for translating angular and linear speed requests into
a specific speed for each wheel. Maximum speeds and
acceleration can be configured. This component is a real-
time task to ensure smooth movements of the robot, and to

comply with the real-time obstacle avoidance requirement. In
the indoor navigation scenario, this component reads linear
and angular speeds from the obstacle avoidance component.
However, when the robot is remote controlled or when
obstacle avoidance disabled, linear and angular speeds can
be set manually.

• Input: Linear speed, angular speed from obstacle avoid-
ance.

• Output: Left and right motor values (rHAL analog
outputs).

4) Odometry (real-time): The odometry component esti-
mates the current robot configuration (x, y, θ) using only

wheel sensors. It is well known that position estimation
using only odometry is rough and that the error grows with
time. Therefore, other kind of position estimation must be
introduced for advanced navigation. Odometry configuration
estimations are used by the localization and speed control
components.

• Input: Left and right encoder values (rHAL counter).
• Output: Robot configuration (x, y, θ, C).
5) Localization: The localization component relies on the

two SICK laser range finders and on an a-priori known map
of the environment to evaluate the current configuration of
the mobile robot. This component also relies on configuration
estimations provided by the odometry. The line extraction
method used is based on the split and merge approach [24]
and the fusion with the configuration estimation produced by
the odometry is performed using an Extended Kalman Filter.
The configuration estimation produced by this component
is used by the obstacle avoidance component in the indoor
navigation scenario. Note that if this component is disabled
or is not able to produce an acceptable estimation, the indoor
navigation system can rely on the odometry component for
a rough configuration estimate. As this component is not
critical for security, it is executed as a non real-time task.

• Input: Map of the environment, cartesian scan from
SICK, configuration from odometry.

• Output: Robot configuration (x, y, θ, C).

IV. EVALUATION

The indoor navigation system developed in this case study
has been tested on the robot RoboX in the Autonomous
System Laboratory at EPFL during office hours, and an
exemplary navigation path is shown on figure 5, where
configuration estimations from the odometry and localization
components are depicted. As path planning was not listed as
a requirement, the following intermediate targets have been
set manually by a human operator:

1) go to x=79 y=99
2) go to x=73 y=99
3) go to x=112 y=99

Relying only on its embedded software system, the robot was
able to navigate autonomously and safely in its environment
and to localize itself using laser range finders, correcting
the imprecise configuration estimations from odometry. The
obstacle avoidance implemented as a hard real-time periodic
task ensured that intermediate targets set by the human
operator were reached safely. As the goal of the experiment
was not to prove the quality or reliability of the navigation
system and as all requirements were fulfilled, the case study
was considered a success.

In the remainder of this section, we discuss key require-
ments for a software framework for autonomous mobile
robots and we evaluate the proposed solution based on the
indoor navigation case study experience.

A. Ease of use

Components generation and development require basic
knowledge of the GenoM tools. The learning process is
quick for roboticists with basic Unix knowledge. The oblig-
atory usage of the C programming language can be seen
as a limitation. However, the templates provided by the
framework define the structure of software components and
most of the coding is limited to algorithm implementation
in simple functions, where the power of object oriented
programming languages is not required. The ability to carry
out the specialized algorithms debugging phase with non real-
time components is very valuable. Real-time and scheduling
issues can then be tackled separately, with the help of a
system integrator.

B. Modularity

The component-based approach provides for independent
component development, and for easier components integra-
tion into a complete embedded system. As software compo-
nents conform to a predefined model, testing, evaluation and
integration of externally developed components is possible.
Moreover, the complexity of the whole system can be broken
down into manageable pieces, as specialized roboticists need
only minimal knowledge about other components.

C. Real-time capabilities

The framework ensures that software components can be
executed with timing constraints when necessary. Moreover,
the framework provides real-time capabilities with minimum
impact on specialized roboticists, who can develop and debug
their software components without additional constraints.
Later, real-time versions of specialized components can be
used and real-time testing can be carried out.

V. CONCLUSION AND OUTLOOK

We presented an autonomous indoor navigation system
based on an initial implementation of a hard real-time ca-
pable component-based software framework for autonomous
mobile robots. The navigation case study demonstrated the
possibility to develop a complete embedded software system
using a mix of existing components and newly developed
components. The case study also highlighted the possibility
for specialized roboticists to develop software components
without having to deal with the overall complexity of the
system, even in the case of timing constraints being set on
some components. Therefore, the proposed software frame-
work helps roboticists to make valuable contributions in their
specialized areas of interest.

The initial implementation of the framework will be
extended to include mandatory tools and mechanisms for
precise performance monitoring and timing constraints ver-
ifications in order to ensure safety and compliance to re-
quirements. Adaptation capabilities to events such as missed

 96

 97

 98

 99

 100

 101

 102

 70 75 80 85 90 95 100 105 110

map
odometry

localization
targets

Fig. 5. Successful indoor navigation in the Autonomous System Lab at EPFL with position estimations from the odometry (thin line, imprecise estimations)
and localization (thick line, precise estimations) software components. Initial location and intermediate targets points are also represented.

deadlines will also be investigated. For non real-time com-
ponents, interfaces with other programming languages and
other existing robotic software frameworks are also planned.

ACKNOWLEDGMENT

The work reported in this paper has been supported in part
by the IST Project RECSYS (IST-2001-32515). Moreover,
the authors would like to thank Agostino Martinelli, Viet
Nguyen and Anthony Mallet for their precious contributions
to the framework and to the indoor navigation case study.

REFERENCES

[1] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. 2, no. 1, pp. 14– 23,
March 1986.

[2] R. C. Arkin, Behaviour Based Robotics. Intelligent Robots and
Autonomous Agents, MIT Press, 1998.

[3] E. Gat, “On three-layer architectures,” Artificial Intelligence and
Mobile Robots. MIT/AAAI Press, 1997.

[4] K. Konolige and K. Myers, “The saphira architecture for autonomous
mmobile robots,” Tech. Rep., Artificial Intelligence Center, SRI
International, 1996.

[5] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The
CLARAty architecture for robotic autonomy,” in IEEE Aerospace
Conference Proceedings, Big Sky, Montana, March 2001, pp. 121–
132.

[6] B. Gerkey, R. Vaughan, K. Sty, A. Howard, G. Sukhatme, and
M. Mataric, “Most valuable player: A robot device server for
distributed control,” in Proceedings of the International Conference
on Intelligent Robots and Systems, Wailea, Hawaii, October 2001, pp.
1226–1231.

[7] R. T. Vaughan, B. P. Gerkey, and A. Howard, “On device abstractions
for portable, reusable robot code,” in Proceedings of the International
Conference on Intelligent Robots and Systems, Las Vegs, Nevada,
October 2003, pp. 2121–2427.

[8] “ORCA-Robotics,” http://orca-robotics.sourceforge.net/.
[9] W. Li, H. I. Christensen, A. Oreback, and D. Chen, “An architecture

for indoor navigation,” in Proceedings of the International Conference
on Robotics and Automation (ICRA), April 2004.

[10] A. Oreback, A Component Framework for Autonomous Mobile Robots,
Ph.D. thesis, KTH Stockholm, 2004.

[11] G. T. Heineman and W. T. Councill, Component-Based Software En-
gineering: Putting the Pieces Together, Addison Wesley Professional,
2001.

[12] “Orocos,” http://www.orocos.org/.
[13] C. Cote, D. Letourneau, F. Michaud, J.-M. Valin, Y. Brosseau,

C. Raievsky, M. Lemay, and V. Tran, “Code reusability tools for
programming mobile robots,” in Proceedings of the Conference on
Intelligent Robots and Systems (IROS), 2004.

[14] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standard-
ization in mobile robot programming: The carnegie mellon navigation
(CARMEN) toolkit,” in Proceedings of the Conference on Intelligent
Robots and Systems (IROS), 2003.

[15] A. Pasetti, ”Software Frameworks and embedded Control Systems”,
vol. 2231 of Lecture Notes in Computer Science, Springer-Verlag,
2002.

[16] R. Brega, N. Tomatis, and K.O. Arras, “The need for autonomy and
real-time in mobile robotics: A case study of xo/2 and pygmalion,”
in Proceedings of the Conference on Intelligent Robots and Systems
(IROS), 2000.

[17] “RTAI: Real-time application interface,” http://www.rtai.org.
[18] “RoboX,” http://robotics.epfl.ch.
[19] F. Pont and R. Siegwart, “Towards improving robotic software

reusability without losing real-time capabilities.,” in ICINCO (2), 2004,
pp. 291–294.

[20] S. Fleury, M. Herrb, and R. Chatila, “GenoM: a tool for the specifi-
cation and the implementation of operating modules in a distributed
robot architecture,” in Proceedings of the International Conference on
Intelligent Robots and Systems, Genoble, France, September 1997, pp.
842–848.

[21] A. Mallet, S. Fleury, and H. Bruyninckx, “A specification of generic
robotics software components: future evolutions of genom in the orocos
context,” in International Conference on Intelligent Robotics and
Systems, Lausanne (Switzerland), Oct. 2002, IEEE.

[22] “Laas open software for autonomous systems,”
http://softs.laas.fr/openrobots/.

[23] J. Minguez and L. Montano, “Nearness diagram navigation (nd): A
new real time collision avoidance approach for holonomic and no
holonomic mobile robots,” 2000.

[24] T. Pavlidis and S. Horowitz, “Segmentation of planar curves,” IEEE
Transactions on Computers, vol. C-23, no. 8, pp. 860–870, 1974.

