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Abstract— In this paper we consider the problem of simul-
taneously localizing all members of a team of robots. Each
robot is equipped with proprioceptive sensors and exteroceptive
sensors. The latter provide relative observations between the
robots. Proprioceptive and exteroceptive data are fused with
an Extended Kalman Filter. We derive the equations for this
estimator for the most general relative observation between
two robots. Then we consider three special cases of relative
observations and we present the structure of the filter for each
case. Finally, we study the performance of the approach through
many accurate simulations.

Index Terms— Robot Navigation, Kalman filter, Multi-Robot
Localization, Sensor Fusion, Relative Observation

I. INTRODUCTION

In most cases, autonomous mobile robots are required to
know precisely their position and orientation in order to
successfully perform their mission. This is usually achieved
by fusing proprioceptive data (gathered by sensors monitoring
the motion of the vehicle, like encoders) with exteroceptive
data (e.g. [1], [3], [5], [12]).

Most of the localization methods have been developed
for applications involving a single robot. Current research
investigates applications where a team of robots collaborates
to fulfill a mission. Single-robot localization approaches are
not optimized to estimate the positions of all members of a
team of collaborating robots. Indeed, an optimal strategy must
take advantage of relative observations (detection of other
robots).

Fox and collaborators [7] introduced a probabilistic ap-
proach based on Markov localization. Their approach has
been validated through real experiments showing a drastic im-
provement in localization speed and accuracy when compared
to conventional single robot localization. Other approaches
take advantage of relative observations for multi-robot local-
ization [8], [9], [10], [13], [14], [15]. In [9] a method based
on a combination of maximum likelihood estimation and
numerical optimization was introduced. This method allows
to reduce the error in the robot localization by using the
information coming from relative observations among the
robots in the team. In [14], an Extended Kalman Filter (EKF)
is used to fuse proprioceptive and exteroceptive sensor data.
The equations of this filter are written in a decentralized
form, allowing the decomposition into a number of smaller
communicating filters. The approach relies on a particular

relative observation, that is the relative configuration (position
and orientation) between two robots. Experiments with a
group of three robots successfully validated the method.

In this paper we extend the EKF approach introduced in
[14] by considering the most general relative observation
between two robots. The interest of this extension relies on the
fact that in many real applications the robots can be equipped
with exteroceptive sensors not able to provide the special
relative observation considered in [14]. In order to exploit the
information contained in any relative observation between two
robots, we derive (section II) the EKF equations to integrate
a generic relative observation. Then, three different relative
observations are considered, that is relative bearing, relative
distance and relative orientation. The structure of the filter is
explicitly derived in section III. In section IV the results from
several accurate simulations for the previous three relative
observations are provided. Finally, some conclusions and
future research are presented in section V.

II. LOCALIZATION

The goal of this section is to present the adopted strategy
to estimate the configuration of each robot (from now on
Ri). Each Ri is equipped with encoders and an exteroceptive
sensor. The latter is able to detect and identify other robots,
therefore providing relative observation.

Let us indicate the configuration of Ri with Xi =
[xi, yi, θi]T . The state we want to estimate is then

X = [X1, X2, X3, ..., XN ]T (1)

We use an Extended Kalman Filter (EKF) to fuse encoder
data and the data from the exteroceptive sensor. Therefore,
this EKF will update the state in (1) and its covariance matrix,
which is:

P =


P11 P12 ... P1N

P21 P22 ... P2N

... ... ... ...
PN1 PN2 ... PNN

 (2)

A. Encoder Data Integration

The dynamics for the Ri can be modelled through the
following equation:

Xik+1 = f (Xik
, uik

) (3)
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where k is the time and uik
are the wheel displacements

between the time k and k+1 which are directly evaluated by
the encoders (ue

ik
). Clearly, this estimation is affected by an

error. We assume the following encoder error model:

uik
= N

(
ue

ik
, Qik

)
(4)

We assumed that the function f in (3) is the same for all
robots (in other words the drive system is the same).

The equations to update the state in (1) and its covariance
in (2) are [2]:

X̂ik+1 = f
(
X̂ik

, ue
ik

)
(5)

Piik+1 = Fxik
Piik

FT
xik

+ Fuik
Qik

FT
uik

(6)

Pijk+1 = Fxik
Pijk

FT
xjk

(7)

where X̂ik
is the estimated Xik

at the time k, Fxik
and Fuik

are respectively the Jacobian of the function f with respect
to the state Xi and ui in

(
X̂ik

, ue
ik

)
.

B. Exteroceptive Sensor Data Integration

Let us suppose that at a given time Ri observes Rj through
its exteroceptive sensor. We model this relative observation
through the following equation:

z = h (Xi , Xj) + w (8)

We assumed that the function h is the same for all the
relative observations. w is an error with Gaussian distribution,
zero mean value, and covariance matrix R.

By applying the Kalman filter equations (see the appendix)
we can update the new state and the new covariance matrix.
We obtain for Rl

X̂lnew = X̂l + (9)

+
(
PliH

T
i + PljH

T
j

)
P−1

zz

(
z − h

(
X̂i , X̂j

))
where Pzz is the covariance of the innovation(

z − h
(
X̂i , X̂j

))
computed in the appendix and Hi

and Hj are respectively the Jacobian of the function h with
respect to Xi and Xj both computed in

(
X̂i , X̂j

)
.

We obtain (see the appendix) the following equation for
the update of the component Plf in the covariance matrix

Plfnew = Plf + (10)

−
(
PliH

T
i + PljH

T
j

)
P−1

zz (HiPif + HjPjf )

As shown in [14], communication among the robots is
required only when a relative observation occurs. This allows
for implementation on real robots with limited communication
bandwidth. Furthermore, the global localization error is not
bounded. Indeed, the Observability matrix is not full rank.
To have a bound it is necessary that at least one robot has
absolute positioning capabilities.

III. RELATIVE OBSERVATION

In the relative observation one robot detects and identifies
another one and measures some relative quantity through its
exteroceptive sensors. This quantity will depend on both robot
configurations. We will call the first robot the Observer and
the latter the Observed. In this section we consider three
special cases of relative observations (see figure 1):

• relative bearing (i.e. direction of the Observed in the
reference of the Observer);

• relative distance;
• relative orientation (i.e. the orientation of the Observed

in the reference of the Observer)

The relative observation is completely defined through the
function h appearing in equation (8). Therefore, in order to
derive the structure of the filter for the three mentioned cases,
it is necessary to specify the analytical expression of h, to
compute its Jacobian and to apply the equations derived in
the previous section (in particular, the equations (9) and (10)).

The previous three observations are chosen because of the
following two reasons:

• when the three observations are simultaneously com-
bined together they contain all the necessary information
to estimate the configuration of the Observed in the
reference of the Observer (this global observation is the
one considered in [14]);

• they can be easily implemented on real platforms with
good accuracy (in particular, for bearing, a camera can
be used).

Let us derive the equations for the three relative observa-
tions. The required analytical expressions for function h in
(8) can be obtained from fig. 1.

A. Relative Bearing

It is possible to express the bearing angle in terms of the
two robot configurations through the following expression:

zb = hb (Xi, Xj) = (11)

= tan−1

(
−sinθi∆x + cosθi∆y

cosθi∆x + sinθi∆y

)
where

∆x = xj − xi; ∆y = yj − yi

The two Jacobian Hi and Hj in the update equations (9)
and (10), are obtained from the expression in (11):

Hb
i =

[
∆y

∆x2 + ∆y2
,

−∆x

∆x2 + ∆y2
, − 1

]

Hb
j =

[
−∆y

∆x2 + ∆y2
,

∆x

∆x2 + ∆y2
, 0

]
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Fig. 1. Relative observations between two robots. zb is the bearing, zd the
relative distance and zo the relative orientation

B. Relative Distance

The expression for the relative distance is:

zd = hd (Xi, Xj) =
√

∆x2 + ∆y2 (12)

and for the two Jacobian we get:

Hd
i =

[
−∆x√

∆x2 + ∆y2
,

−∆y√
∆x2 + ∆y2

, 0

]

Hd
j =

[
∆x√

∆x2 + ∆y2
,

∆y√
∆x2 + ∆y2

, 0

]

C. Relative Orientation

The expression for the relative orientation is:

zo = ho (Xi, Xj) = θj − θi (13)

and the two Jacobian are:

Ho
i = [0, 0, − 1] , Ho

j = [0, 0, 1]

IV. RESULTS AND DISCUSSION

We validated the proposed approach through several ac-
curate simulations where we considered the three relative
observations introduced and also observations consisting of
a combination of them.

(a) (b)

Fig. 2. The simulated robot motions for the experiment with 2 (a) and 7
(b) robots.

A. Simulated Environment

We simulated several experiments by varying the number of
robots from two to seven. We also considered different robot
trajectories. In particular, we moved the robot along straight
lines, i.e. we set vR = vL for each robot (see fig 2), straight
lines and pure rotations (i.e. vR = vL for some robots and
vR = −vL for the other ones) and more general trajectories
obtained by setting at each time step the value of vR and vL

randomly.
In each experiment data coming from the encoder sensors

were delivered at the frequency of 100Hz, in agreement
with the experiments carried out on real platforms in our
laboratory (e.g. [1]). The simulated robots are equipped with
a differential drive system. We adopted the same odometry
error model introduced in [4] where the actual translation of
the right and left wheel at a given time step is assumed to be
a gaussian random variable satisfying the following relation:

δρR/L = δρ
R/L

+ νR/L (14)

δρ
R/L

= δρeR/LδR/L (15)

νR/L ∼ N(0,KR/L|δρeR/L|) (16)

In other words, both δρR and δρL are assumed to be
gaussian random variables, whose mean values are given by
the encoder readings (respectively δρeR and δρeL) corrected
for the systematic errors (which are assumed to increase
linearly with the distance travelled by each wheel), and whose
variances also increase linearly with the travelled distance.
Furthermore, it is assumed that δρR and δρL are uncorrelated.
In our simulation we adopted δR = δL = 1 (i.e. encoders
perfectly calibrated) and KR = KL = 5 10−5m (that is the
value experimentally estimated for our robot in our laboratory,
[11]).

We simulated all three relative observations introduced in
the previous section. In particular, the frequency for these
data was fixed to 1Hz which is, in our opinion, reasonably
achievable in real experiments. The data consist of all the
relative observations among the robots. This point could be
questionable, since each robot has to sense all the other
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Fig. 3. The experiment with two robots. The real motions (black dotted line)
are plotted together with the trajectories estimated by using only odometry
(red o) and by fusing the odometry with the relative distances (green .). The
unities are m for both axes.

Fig. 4. As in the figure 3 but the sky-blue + is adopted to represent the
trajectories estimated by fusing odometry with the relative orientation.

ones. However, in a real experiment with many robots, it
is reasonable to think that each member of the team is
able to sense at least another one during its navigation. For
this reason, the experiment with only two robots could be
used to get an upper bound for the error for the cases with
more than two robots. Furthermore, in order to overcome this
problem, control strategies as the one introduced in [6], could
be adopted to move each robot in presence of constraints.
This problem can also be reduced by using 360o sensors,
like an omnicam. Regarding the adopted error model for
the simulated relative observations, we adopted the following
variances, respectively for the case of the relative bearing,
relative distance and relative orientation: σ2

B = (1o)2, σ2
D =

(0.01m)2 and σ2
O = (1o)2. Note that regarding the relative

bearing, it is possible to achieve much higher accuracy with
an omnicam ([10]).

B. Results

Figures 3, 4, 5 and 6 illustrate the results for the simulated
experiment with two robots moving along the straight lines
in fig 2a. We conclude that the accuracy on the localization
is strongly improved by using the relative bearing. The
result obtained by fusing all three relative observations with
odometry is slightly better than the one obtained by fusing
only the relative bearing with the odometry (in particular the
final position error after 30m of navigation is 0.0175m when
all three relative observations are integrated and 0.0356m
when only the relative bearing is adopted).

Fig. 5. As in the figure 3 but the blue × is adopted to represent the
trajectories estimated by fusing odometry with the relative bearing.

Fig. 6. The error for the estimated position vs the distance travelled by each
robot when the estimation is carried out with only odometry (red .), fusion
of odometry with the relative distance (green .), fusion of odometry with
the relative orientation (sky-blue +), fusion of odometry with the relative
bearing (blue ×) and fusion of odometry with the three relative observations
together (black .). The plotted error is averaged over the two robots.

Figures 7, 8, 9 and 10 illustrate the simulation with seven
robots moving along the straight lines in fig 2b. The results
are quite similar to the ones obtained with two robots. The
final position error after 30m of navigation is shown in table
I. The estimation is carried out by using only odometry (1st

column), by fusing the odometry with the relative distance
(2nd column), with the relative orientation (3rd column), with
the relative bearing (4st column) and with all the relative
observations (5st column)

Regarding other robot trajectories, similar results can be
obtained when some robots in the team perform pure rota-
tions (i.e. vR = −vL) and some other move along straight
lines. On the other hand, for more general robot trajectories
(obtained by setting at each time step the value of vR and vL

randomly), the results can be sometimes different. Indeed, the

Odometry Distance Orientation Bearing All
2.7443 0.4807 1.4098 0.0320 0.0196

TABLE I
THE FINAL POSITION ERROR WITH SEVEN ROBOTS.
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Fig. 7. The experiment with seven robots. The real motions (black dotted
line) are plotted together with the trajectories estimated by using only
odometry (red o) and by fusing the odometry with the relative distances
(green .). The unities are m for both axes.

Fig. 8. As in the figure 7 but the sky-blue + is adopted to represent the
trajectories estimated by fusing odometry with the relative orientation.

relative bearing usually shows slightly better performances
with respect to the other relative observations but it is not
always the case. However, simulations tend to indicate that
the relative bearing clearly outperforms other relative obser-
vations whenever the robot trajectories are similar as the ones
presented on figure 2.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we considered the problem of localizing
simultaneously all members of a team of robots able to sense
one another. An Extended Kalman Filter was adopted to
estimate a state containing all the configurations of the robots.
This filter fuses the data coming from the odometry and the
exteroceptive sensors of each robot.

Fig. 9. As in the figure 7 but the blue × is adopted to represent the
trajectories estimated by fusing odometry with the relative bearing.

Fig. 10. The error for the estimated position vs the distance travelled by each
robot when the estimation is carried out with only odometry (red .), fusion
of odometry with the relative distance (green .), fusion of odometry with
the relative orientation (sky-blue +), fusion of odometry with the relative
bearing (blue ×) and fusion of odometry with the three relative observations
together (black .). The plotted error is averaged over the seven robots.

The proposed approach extends the method introduced in
[14] by considering the most generic relative observation
between two robots. The equations for this generic relative
observation were firstly provided and then specialized for
the cases of the relative bearing, the relative distance and
the relative orientation. The results from several simulated
experiments were also provided. Our first conclusion is that
the relative bearing seems to better integrate with the odom-
etry and it is able to reduce the error on the pose estimate
better than for the other relative observations. In particular, the
improvement is much higher (at least one order of magnitude)
than the one achievable by using the other two relative
observations (relative distance and orientation) whenever the
robot trajectories are similar as the ones presented on figure
2.

We are currently implementing this strategy on real plat-
forms in our laboratory. We are using a webcam as the exte-
roceptive sensor and we extract the relative bearing from the
images. We are also generalizing this approach by considering
the following extensions:
• Integrate the approach presented in this paper with the

strategy introduced in [11] for simultaneously localizing
and calibrating an odometry system. According to this
strategy each robot will be characterized by six parame-
ters instead of three, since the parameters characterizing
the systematic odometry error will also be included in
the state estimated through the filter (the radii of the two
wheels and the distance between them).

• Combine this approach with the control strategy intro-
duced in [6] in order to maximize the number of relative
observations during the navigation.

• Consider relative observations among more than two
robots. This means that the function h in (8) will depend
on more than two robot configurations.

Finally, we are performing a theoretical observability anal-

2812



ysis to evaluate the information content of each considered
relative observation.

APPENDIX

DERIVATION OF EQUATIONS (9-10)

We want to derive the update equations for the state X
in (1) and its covariance matrix in (2) when the information
coming from an observation characterized by the equation (8)
is integrated through an Extended Kalman Filter (EKF ). The
observation described by (8) is a special case of the following
observation on the entire state:

z = h̃(X) + w (A.1)

Let us indicate the estimation for the state X and its
covariance matrix before integrating this observation by X̂
and P . By applying the standard equations of the EKF [2]
we get:

X̂new = X̂ + PHT
[
HPHT + R

]−1
[
z − h

(
X̂

)]
(A.2)

and

Pnew = P − PHT
[
HPHT + R

]−1
HP (A.3)

where R is the covariance of w in (A.1) and H the Jacobian
of the function h̃ with respect to state X computed in X̂ .

Now, when h̃ characterizes a relative observation between
the robots Ri and Rj it can be characterized through the
function h in (8). It is easy to verify that, in this case, the
previous Jacobian H is:

H = [0, ..., 0,Hi, 0, ..., 0,Hj , 0, ..., 0] (A.4)

where Hi and Hj are respectively the Jacobian of the
function h with respect to Xi and Xj computed in

(
X̂i , X̂j

)
.

From (2) and (A.4) it is now easy to obtain:

Pzz = HPHT + R = (A.5)

= HiPiiH
T
i + HiPijH

T
j + HjPjiH

T
i + HjPjjH

T
j + R

and finally, from (A.2) and (A.4) by considering the robot
Rl it is possible to get the equation (9) and from (A.3) and
(A.4) we obtain for the block Plf the equation (10).
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