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Abstract. This paper presents an approach to solve the SLAM problem in the stochas-
tic map framework based on the concept of the relative map. The idea consists in in-
troducing a map state, which only contains quantities invariant under translation and
rotation. This is the only way in order to have a decoupling between the robot mo-
tion and the landmark estimation and therefore not to rely the landmark estimation
on the unmodeled error sources of the robot motion. The approach is general and can
be applied for several kind of landmark. However, only the case of point landmark
is considered here. For this special case, the structure of the proposed filter is deeply
examined and a comparison with the joint vehicle-landmark approach (absolute map
filter) is carried out theoretically and through accurate simulations. The main result
shown about this new approach is the map convergence in large environment even
when the odometry is affected by undetected systematic errors or by large or unmod-
eled non-systematic errors.

1 Introduction

In the SLAM problem a mobile robot has to be able to autonomously explore the environment
with its on board sensors, gain knowledge about it, interpret the scene, build an appropriate
map and localize itself relative to this map.

Many approaches have been proposed to solve the SLAM problem both in the framework
of the metric and the topological navigation.

A very successful method is the stochastic map approach. After the first precise math-
ematical definition of the stochastic map [13] early experiments ([4], [8]), have shown the
quality of fully metric simultaneous localization and map building: the resulting environment
model permits highly precise localization that is only bounded by the quality of the sensor
data. However, these approaches suffer from some limitations. Firstly, they rely strongly on
odometry. For automatic mapping this makes the global consistency of the map difficult to
maintain in large environments where the drift in the odometry becomes too important. Fur-
thermore, they represent the robot position with a single Gaussian distribution. This means
that an unmodeled event (i.e. collision) could cause divergence between the ground truth and
the estimated position from which the system is unable to recover (lost situation). In [1] it has
been shown that by taking into account all the correlations the global consistency is better
maintained. However, this is not sufficient as confirmed by another work [2] where a solution
is proposed by extending the absolute localization to include a localization relative to local
reference frames.



In [6], the convergence of a filter which estimates the robot configuration and the absolute
location of the landmarks by adopting a Kalman filter (absolute map filter,AMF ), is theoret-
ically proven. However, the proof is based on strong and practically infeasible assumptions.
The map convergence is not proven when these hypothesis are not fully satisfied. Moreover,
Julier and Uhlmann proved that theAMF yields an inconsistent map, even for the special
case of a stationary vehicle with no process noise [7]. This problem can occur when a new
landmark is introduced in the map. Indeed, even in the case when the dynamics and the obser-
vation are linear, the Kalman filter cannot be considered optimal since the introduction of a
new landmark is related to a very non-linear process (e.g. maximum range in the observation).

The aim of the method introduced in this paper in the frame-work of the stochastic map
approach to SLAM, is to minimize the loop consistency problem (i.e. the global convergence
and consistency of the built map in large environment - large meaning when the size of the
environment is much larger than the range of the adopted exteroceptive sensor). The basic
idea consists in introducing a map state which only contains quantities invariant under trans-
lation and rotation. This is the only way in order to have a decoupling between the odometry
and the landmark estimation and therefore not to rely the landmark estimation on the un-
modeled error sources in the robot motion. Moreover, since the new elements introduced in
the map during the navigation are not correlated with the old elements when they are not
observed together, this approach does not suffer from the inconvenient pointed out by Julier
and Uhlmann [7].

A relative map was already introduced by Newmann ([11] and [12]). He used two filters
in the estimation, called the relative map filter and the geometric projection filter. The sec-
ond one provides a means to produce a geometrically consistent map from the relative map,
by solving a set of linear constraints. Both filters are optimal since the dynamics and the
observation are both linear and they are based on the Kalman Filter. However, the elements
used in this approach are invariant for translation only, not for rotation. Our approach is to
take invariant elements, but for both translation and rotation and to apply a Kalman Filter
for the estimation, contrasting to [5], who used the same invariants in combination with a
non-optimal filter. Only the case of point landmark is here considered although the same idea
could be applied to other kind of landmark. In section 2 we discuss the main drawbacks of
theAMF . The proposed filter is presented in section 3 for the case of point landmark. The
results obtained through accurate simulations are displayed in section 4 where also a compar-
ison with the absolute map filter is shown. Finally, conclusions and future research are given
in section 5.

2 Drawbacks in the absolute map filter

In the absolute map filter the robot configuration and the location of each landmark are reg-
istered in one common global reference frame. A Kalman filter is used to estimate the state
containing the previous global coordinates and its covariance matrix.
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whereXv = [x, y, θ]T is the robot configuration,pi is the absolute location of theith

landmark,Pij is the cross-covariance between theith andjth landmark location andPvi is the
cross-covariance between theith landmark and the vehicle configuration. The ”state transition
equation” for the stateX restricted to the map part (pi) is the identity. Concerning the vehicle
part, this equation is determined by the drive system of the robot. The Kalman filter is used to
fuse the information coming from this transition equation with the information coming from
an observational equation. This equation models the observation coming from an external
sensor and provides a vector depending on the state given in the equation (1).

Z = h(X, w) (3)

wherew is a vector of temporally uncorrelated observation errors with zero mean and
covariance matrixR.

The convergence of the absolute map filter is proved in [6] (theorems 1, 2 and 3 in the
paper). However, the proof of these theorems is based on two very strong and infeasible
assumptions.

• Perfectly modeled Odometry;

• Linear Observation

The first assumption means that the odometry is perfectly calibrated and the non-systematic
errors are perfectly approximated by a Gaussian zero mean vector. A typical problem which
arises from an imperfect calibration (for instance, due to an uncertainty on the wheel diam-
eter) is a drift in the built map. Clearly, the Kalman filter fuse the odometry data with the
data coming from the external sensor without considering this uncertainty and this produce
inevitably a drift in the built map. The problem is that even a knowledge of the wheel di-
ameter with a very high accuracy, produces such a problem (in the section 4 we show that
an accuracy of0.1% is still too low for the convergence of the map in large environment).
Even worse are the problems caused by the non-systematic errors. Indeed, there are many
error sources (for instance a robot collision) which are faulty modeled by a Gaussian statis-
tics. Again, the Kalman filter fuse the odometry data with the data coming from the external
sensor and the result is an error in the built map and in the robot configuration which could
not be compensated any more.

The second assumption means that the functionh in the equation (3) is linear inX.
Concerning point landmark, this can be true only if the orientation is a priori known which
means that the robot configurationXv only contains the(x y) coordinates. This assumption
is widely used to prove the convergence theorems. The main problem with this assumption
is that also the Jacobian of the functionh with respect to the stateX, H = ∇Xh, depends
on the predictedX. Indeed, the key point in the proof, is thatH does not depend on the state
(equations (26) and (27) in the paper).

3 The Structure of the Relative Map Filter

A possible way to solve the previous drawbacks is obtained by introducing a filter whose
state only contains quantities invariant under translation and rotation. This is the idea charac-
terizing the relative filter introduced here. Once the relative map has been estimated through
this filter and the absolute location of a set of landmarks is known (e.g. by using the first



(a) (b) (c)

Figure 1: Relative Map before the observation (a), the observation (b), and the relative map obtained by fusing
the information coming from the old map and the observation (c). In all the three figures the map state only
contains the indicated distances between the landmarks

observation) it is possible to build the absolute map. Therefore, the entire method contains
two algorithms. The former estimates the relative map, the latter builds the absolute map. In
the sections 3.1 and 3.2 respectively we describe the two algorithms.

3.1 The Relative Map Filter

The state estimated through this filter only contains the distances between the point land-
marks. Clearly, the distance is a quantity invariant under translation and rotation, i.e. it is
independent of the robot configuration. Let denote withd the state and withP its covariance
matrix. In fig. 1a the vectord contains the marked distances between the6 landmarks. Clearly,
not all of the distances between the6 landmarks are stored ind because not all the landmarks
were observed together at the same time. At a given time step, the observation consists of a
set of distances between the landmarks observed by the robot through its external sensor (fig.
1b). Clearly, these distances may be already observed (i.e. can be in the vectord) or may not.
Let introduce the following notation:

dold = [u,wold]
T dobs = [wobs, v]T (4)

wheredold is the state estimated at a given time step anddobs is the observation at the
same time step, containing a set of distances between the landmarks observed by the robot.u
contains the distances which are not re-observed (i.e. which do not appear in the vectordobs)
andwold contains the distances re-observed (denoted bywobs in the vectordobs). Finally, v
contains the distances observed for the first time at the considered time step. The covariance
matrix of the previous vectors are:

Pold =

[
Puu Puw

P T
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]
Pobs =

[
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RT
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]
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We adopt the following notation to denote the estimated quantities, obtained by fusing the
old state with the observed one (the new estimated distances are depicted in fig. 1c).

dnew = [unew, wnew, vnew]T Pnew =
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We obtain the new estimation for the state and its covariance matrix by applying the equa-
tions of the Kalman filter. Observe that the observation is linear in the state (is the identity)
and therefore the Kalman filter is optimal.

unew = u + Puw (Pww + Rww)−1 (wobs − wold) (7)

wnew = wold + Pww (Pww + Rww)−1 (wobs − wold) (8)

vnew = v + Rvw (Pww + Rww)−1 (wold − wobs) (9)

Pnuu = Puu − Puw (Pww + Rww)−1 Pwu (10)

Pnuw = Puw − Puw (Pww + Rww)−1 Pww (11)

Pnuv = 0 (12)

Pnww = Pww − Pww (Pww + Rww)−1 Pww (13)

Pnwv = Rwv −Rww (Pww + Rww)−1 Rwv (14)

Pnvv = Rvv −Rvw (Pww + Rww)−1 Rwv (15)

Instead of the equations (8) and (13) it is possible to use the following equations:

wnew = wobs + Rww (Pww + Rww)−1 (wold − wobs) (16)

Pnww = Rww −Rww (Pww + Rww)−1 Rww (17)

They are derived by observing the symmetry of the filter with respect to the change ”ob-
servation”↔ ”old state”. Observe that the coincidence of the previous equations could be
easily proved also by using the inversion lemma.

3.2 Recovering the Absolute Landmark Location

We adopt a simple linear method to recover the absolute landmark locations starting from
the absolute location of three or more landmarks and the state estimated by the previous
filter, which contains the distances between the landmarks. At a given time step the absolute
locations of a set of landmarks are available (we assumed that the absolute coordinates of
at least three landmarks are known at the beginning; these coordinates could be provided by
the first observation). The aim is to estimate the location of a new landmark denoted byj.
We extract from the previous set a subset containing the landmarks whose distance from the
landmarkj is provided by the relative filter. Let denote the locations of these landmarks by
(xi, yi) and the distance between the landmarkj and the landmarki of this subset bydi. We



assumed that the number of the elements of this subset is equal ton. If n < 3 the absolute
location of the landmarkj cannot be provided. Clearly, we have for the landmarki

d2
i = (xj − xi)

2 + (yj − yi)
2 (18)

We therefore obtain a linear system in the unknownsxj andyj by considering all the
differencesd2

i − d2
1. By applying recursively this method for all the landmarks (allj) it is

possible to get their absolute location at each time step.

4 Results

In fig 2a the environment adopted in our simulations is displayed. The dotted line represents
the actual robot trajectory (which is always the same in all the simulations). The adopted unit
is the meter for both the axes. The cross represent the actual landmark location.

The data association problem is not considered here both in the case of the absolute and
relative map (i.e. the observations are always associated with the right landmark).

The simulated external sensor is a laser range finder. It provides the distance of the objects
around the robot with an angular resolution equal to1deg, a maximum range equal to25m
and the provided distance is a Gaussian quantity whose mean value is the actual one and the
variance is equal to(0.03m)2.

Finally, the frequency of the filter (both in the case of the absolute and the relative filter)
is always one cycle for each meter traveled by the robot.

In the figures 2 and 3 the trajectory estimated by the filter is marked with the symbol
o while for the landmark location estimation the symbol∗ is adopted. The figures display
the landmark positions as estimated at each time step of the navigation (for this reason it is
possible to have multiple points per landmark).

Figures 2b− c and 3a− b concern the absolute map filter. The influence of the odometry
error on the convergence of the filter is shown. The adopted model to characterize the odome-
try error is the one proposed by Chong and Kleeman [3]. The differential drive is considered.
The translation of the right/left wheel as estimated by the odometry sensors are assumed to
be Gaussian random variables satisfying the following relation:

δρR/L = δρ
R/L

+ νR/L δρ
R/L

= δρaR/LδR/L νR/L ∼ N(0, Kw|δρaR/L|) (19)

In other words, bothδρR andδρL are assumed Gaussian random variables, whose mean
values are given by the actual values (respectively,δρaR andδρaL) corrected for the systematic
errors (which are assumed to increase linearly with the distance traveled by each wheel), and
whose variances also increase linearly with the traveled distance. Moreover, it is assumed that
δρR andδρL are uncorrelated. With respect to the Chong-Kleeman model, only one parameter
(Kw) is here adopted to characterize both the variances for the right and left wheel. Finally, in
the Chong-Kleeman model also the distance between the wheels is affected by a systematic
error. However, in our simulations, we do not consider this systematic component, which, in
any case, has an influence only on theAMF .

In fig. 2b− c a perfect odometry calibration is assumed (i.e. the systematic parametersδR

andδL are assumed to be known without uncertainty). Therefore, there is only the influence of
the non-systematic errors. In fig. 2b Kw = 10−10m (which means that the standard deviation
in each wheel translation after one meter of navigation is equal to10−5m). The adopted value
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Figure 2: The considered environment with the actual trajectory and the actual position of the landmarks (a).
The estimated trajectory and landmarks position obtained through theAMF when the odometry is perfectly
calibrated with the non-systematic error obtained by consideringKw = 10−10m (b) andKw = 10−8m (c)
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Figure 3: The estimated trajectory and landmarks position obtained through theAMF by introducing a sys-
tematic error.δL = 1.0001 andδR = 1.0 (a) andδL = 1.001 andδR = 1.0 (b). The estimated trajectory and
landmarks position obtained through the Relative Filter (c)

in fig 2c is Kw = 10−8m. It is possible to conclude that the convergence of the filter starts to
be faulty asKw becomes larger than10−8m. Observe that this value is smaller than the value
experimentally estimated ([10] and [9]).

Fig. 3a− b show the results obtained forKw = 10−10m and by changing the uncertainty
on the systematic parameters (i.e. on the wheel diameters). We conclude that the convergence
of the filter is good only when the uncertainty on the wheel diameter is better than0.01%.

Fig. 3c shows the results obtained through the relative map filter. The absolute location
of the first three landmarks is obtained through the first observation. In this case the odom-
etry is not adopted and the error coming from a systematic and non-systematic component
does not affect the built map. Clearly, the odometry could play an important role in a real
implementation to solve the data association problem here not considered.

5 Conclusions and Future Research

In this paper we presented an approach to solve the SLAM problem in the stochastic map
framework based on the concept of the relative map. The idea consists in introducing a map
state which only contains quantities invariant under translations and rotations. This is the
only way in order to have a decoupling between the robot and the landmark estimation and
therefore not to rely the landmark estimation on the unmodeled error sources in the robot mo-



tion. A comparison with the absolute map filter is carried out both theoretically and through
accurate simulations. We conclude that the convergence of the absolute map filter is true only
if several infeasible hypothesis are satisfied. The proposed approach does not require these
hypothesis. Clearly, the main assumption done in this paper is that the observation is better
than the odometry (better meaning that the error model is better known). If, as often happens,
other more precise sensors than the odometry are available with a well-known error model,
it is much better to avoid the odometry in the estimation process, as shown in this paper
through simulations. In the proposed approach, the only error source, which could create a
divergence in the long term, is the gaussian assumption adopted in the statistical knowledge
of the external sensor.

We are implementing this approach on a real platform. We are also extending the approach
to the case of more general landmark. In particular, we are deriving the equations for this
relative filter in the frame-work of the SP-model [13].
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